首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zooplankton assemblages were studied from January 2007 to January 2008 along the salinity gradient of the Charente estuary (France). A Lagrangian survey was performed monthly at five sampling stations defined by salinity (freshwater, 0.5, 5, 15 and 25) in order to collect zooplankton and measure the main environmental parameters (concentrations of suspended particulate matter, particulate organic carbon, chlorophyll a and phaeopigments). A combination of multivariate cluster analysis, species indicator index and canonical correspondence analysis was used to relate the spatio-temporal patterns of the zooplankton assemblages with environmental drivers. The estuary was divided into three different zones by means of environmental parameters while four zooplankton assemblages were identified along the salinity gradient. The Charente estuary appeared as one of the most turbid systems in Europe, with suspended particulate matter (SPM) concentration reaching 3.5 g l−1 in the Maximum Turbidity Zone (MTZ). Algal heterotrophy and microphytobenthos resuspension from the wide mudflats could be responsible for the relatively high chlorophyll a concentrations measured within this MTZ. Salinity and SPM affected significantly the spatial distribution of zooplankton species while temperature and river flow seemed to control their temporal variations. From a zooplanktonic viewpoint, the highly turbid Charente estuary seemed to match an “ecotone–ecocline” model: the succession of species assemblages along the salinity gradient matched the concept of ecocline while the MTZ, which is a stressful narrow area, could be considered as an ecotone. Although such ecoclinal characteristics seemed to be a general feature of estuarine biocenoses, the ecotone could be more system-specific and biological compartment-specific.  相似文献   

2.
Although the recruitment of larvae and juveniles of marine fishes into estuaries has been well documented, little is known about the factors governing the immigration of estuary-associated marine fishes into estuaries. Fishes have a well-developed sense of smell and it has been suggested by several workers that olfactory cues of freshwater or estuarine origin serve as stimuli, attracting larvae and juveniles of estuary-associated species into estuaries. Attraction of postflexion Rhabdosargus holubi larvae to estuary and river water from the Kowie estuarine system, South Africa, was measured using a rectangular choice chamber. In experiments, conducted during peak recruitment periods, larvae selected estuary and river water with a significantly higher frequency than sea water. This study, the first to assess the possible role of olfaction in the recruitment process of an estuary-associated marine fish species, demonstrates that larvae are able to recognise water from different origins, probably based on odour.  相似文献   

3.
Phytoplankton diversity and community composition were studied along the Schelde river–estuary–coastal zone continuum during the summer of 2003. DCA analysis indicated a gradual compositional turnover of the phytoplankton community within the estuary. GAM modelling of species response curves along the estuarine gradient was used to identify taxa that had their population maximum in the river, the coastal zone or within the estuary. Taxa that had their population maximum within the estuary did not form a homogenous community but comprised species with different salinity optima and rather restricted salinity tolerances. The observed changes in community composition along the estuarine transition zone correspond more closely to an ecocline than to an ecotone model. Despite the fact that few taxa had their population maximum at or near the salinity gradient, alpha diversity did not display a minimum around the salinity gradient. This lack of a diversity minimum within the estuary was ascribed to an important contribution of taxa of riverine or coastal origin to alpha diversity within the estuary contributed. On average 55% of the alpha diversity in the estuarine samples was due to riverine or coastal taxa. Beta diversity displayed a clear maximum around the salinity gradient. For planktonic organisms which are subject to mass effects, beta diversity is probably a better indicator for the impact of the salinity gradient on diversity in estuaries than alpha diversity.  相似文献   

4.
Estuaries act as filters for land derived material reducing the river input to the coastal zone. Silicon (Si) removal from freshwater which is tightly linked to the growth of diatoms was studied in the estuarine mixing zone where the mixing of freshwater and seawater results in a salinity gradient. Three planktonic diatom species with different origin and salinity tolerance were grown in an artificial salinity gradient. Salinity stress and nutrient depletion led to a specific succession of the three diatoms along the salinity gradient. When available light was increased, diatoms reached higher biomass and the Si removal from water column was more efficient along the mixing. From this experiment, a conceptual model of Si transformations and removal from freshwater was build and applied to an idealized stratified estuary. Sensitivity analysis with varying initial conditions and parameter values pointed transit time of freshwater in the estuary, freshwater and seawater mixing rate and river turbidity as important interactive factors influencing Si removal from freshwater. Other factors like the total amount and the salinity tolerance of diatoms in the upstream river were shown to significantly affect riverine Si removal from the surface layer of an estuary. Finally it appears that Si removal from freshwater in estuarine mixing zones proceeds in two ways: a first rapid death and sedimentation of planktonic stenohaline diatoms imported from the river and second, the growth and subsequent settling of planktonic euryhaline diatoms of either freshwater or marine origin.  相似文献   

5.
由于来自江河的淡水在多数情况下携带大量的营养盐入海,河口海区成为适合于特殊门类的有机物生长的有利海洋环境。与此同时,大量的人类与工业废弃物也随着江河径流入海,从而严重地影响到河口海区的生态环境。鉴于上述原因,淡水入流的生态学 意义现正被广泛地研究。  相似文献   

6.
Between 2003 and 2006, a severe drought occurred throughout the Mondego River catchment's area, inducing lower freshwater flows into the estuary. As a consequence, both 2004 and 2005 were considered as extreme drought events. From June 2003 to June 2006, the fish assemblage of the Mondego Estuary was sampled monthly in five stations during the night, using a 2 m beam trawl. Fish abundance was standardized as the number of individuals per 1000 m2 per season and the assemblage was analyzed based on ecological guilds: estuarine residents, marine juveniles, marine adventitious, freshwater, catadromous and marine species that use the estuary as a nursery area. A total of 42 species belonging to 23 families were identified, with estuarine residents and nursery species dominating the fish community. Variations in the fish community were assessed using non-metric MDS, being defined as three distinct periods: summer and autumn 2003, 2004/2005 and winter and summer 2006. The main drought-induced effects detected were the depletion of freshwater species and an increase in marine adventitious in 2004/2005, due to an extended intrusion of seawater inside the estuary and a significant reduction in abundance during the driest period of estuarine resident species. Nevertheless, from the management point of view, it could be stated that although some variations occurred due to environmental stress, the main core of the Mondego Estuary fish community remained relatively unchanged.  相似文献   

7.
Variation in sedimentology as well as freshwater and marine palynomorphs has been studied in ecological perspective in two 2.5‐ and 5‐m deep sediment cores deposited since 3440 and 3630 cal BP, respectively in the central part of Pichavaram mangrove wetland, Cauvery River delta. The palynological and sedimentological results of the sediments reveal a monsoonal circulation and a climatic shift from warm and humid with strengthened monsoon (3630–3190 cal BP) to dry and arid (~2750–760 cal BP). Since the last millennium (~760 cal BP), Pichavaram estuary has been influenced by a similar cyclicity but with a less wet and humid climate due to weakened monsoon conditions. These ecological changes in turn affect the relative sea level rise and fall which is reflected by the variability/extinction of freshwater and marine palynomorphs. The estuary remained an active water channel between ~3630 and 2750 cal BP, responding to the strengthened monsoon, during which the freshwater algal remains with thecamoebians and marine dinoflagellate cysts and foraminiferal linings both dominated with a ratio of 1.5 for marine/freshwater forms. After this period, since ~2750 cal BP there has been a dominance of marine forms with a ratio of 4.5 for marine/freshwater forms, indicating fluvio‐marine sediment deposition and suggesting the recent landward intrusion of seawater during weakened monsoon conditions. Freshwater thecamoebians are vulnerable to the salinity >3 in the aqueous soil solution of estuarine sediment, and therefore serve as an excellent proxy for monitoring salinity gradient along with short‐term high resolution palaeoecological fluctuations induced by climate and relative sea‐level changes in an estuarine ecosystem.  相似文献   

8.
Freshwater inflow has a strong impact on the biological, chemical and physical characteristics of estuaries, which in turn affect the distribution and abundance of estuarine organisms. Increased climatic variability associated with climate change is predicated to modify precipitation patterns, which will likely intensify floods in estuaries. The demersal fish assemblage of the freshwater-dominated Great Fish Estuary, South Africa, was sampled using beam trawls, monthly, from December 2013 to November 2014. The first six months of the study were characterised by river flooding and high flow, with estuarine conditions found only in the mouth region; this was followed by six months of intermediate flow, with estuarine conditions recorded up to 10 km from the mouth. River flooding and subsequent reduced salinity resulted in a decrease in species richness and abundances of fishes in the estuary, with only two estuarine species (Glossogobius callidus and Psammogobius knysnaensis) and one marine migrant (Solea turbynei) recorded following river flooding (201 m3 s?1), in January 2014. The greatest species richness and abundances among both marine and estuarine fishes were recorded during intermediate flow conditions. We conclude that although freshwater inflow into estuaries is important for the nursery function of these systems, flooding—especially in freshwater-dominated estuaries—may cause a temporary decline in the abundance of most marine and estuarine fish species, including important bentho-pelagic marine migrant fishery species, such as Argyrosomus japonicus and Pomadasys commersonnii.  相似文献   

9.
New data on the abiotic conditions; species composition; abundance, distribution, and migrations of fauna; and feeding interactions in an estuary ecosystem were obtained during expeditions in the mouths of Penzhina and Talovka rivers (northwest Kamchatka). It is revealed that in the ice-free season, the hydrological regime of the estuary is determined by seasonal fluctuations of river runoff, as well as fortnightly and daily variation of tides. The estuary is characterized by hypertidal fluctuations (up to 10–12 m); strong reverse flows (up to 1.0–1.5 m/s), considerable tidal variations in salinity (from 0 to 6–9‰ at the river boundary and from 6–8 to 14–16‰ at the offshore boundary), and high water turbidity (up to 1 000 NTU or more). Based on the spatial structure of the community, three ecological zones with mobile boundaries are distinguished: freshwater (salinity 0–0.1‰), estuarine (0–12.3‰), and neritic (11.2–18.9‰). High turbidity prevents the development of phytoplankton in the estuarine zone (EZ), and the local benthic community is significantly depleted due to the desalination and wide spread of aleuritic silts. Neritic copepods and nektobenthic brackish- water crustaceans generate the maximum abundance and biomass here. The species that have adapted to the local extreme hydrologic conditions dominate and form the basis of the estuarine food chain. Dominant among the EZ vertebrates are such groups as anadromous fishes (smelts, pacific salmons, charrs, and sticklebacks); waterfowl (terns, kittiwakes, cormorants, fulmars, puffins, guillemots, auklets, and wadepipers); and predatory marine mammals (larga, ringed seal, bearded seal, and white whale). The total abundance and biomass of these animals are much higher in the pelagic EZ in comparison to neighboring zones.  相似文献   

10.
The construction of an estuary barrage, an instream structure in the lower reaches of a river, causes significant physical changes in water flow patterns and river morphology, and results in altered environmental conditions. Here, we examined the impact of the Geum River estuary barrage, completed in 1990, on fish assemblages by using a literature search and fresh surveys of fishways in the barrage. We found that fish assemblages upstream and downstream of the barrage were altered following its completion. After construction, more species were found in the freshwater area, with a particularly great increase in freshwater species. Conversely, estuarine and marine species were only consistently caught in the downstream salt-water area, although the number of species increased. In total, 15,829 fish from 47 species and 20 families were identified at the three types (pool and weir, rubble type, and boat passage) of fishways in the barrage. The dominant species were Chelon haematocheilus, an estuarine species, Coilia nasus, a diadromous species, and Erythroculter erythropterus, a freshwater species. The mean total length of fish (101.9 ± 76.0 mm) in the boat passage fishway was approximately 100 mm lesser than those in the pool and weir (207.2 ± 112.8 mm) and rubble type (205.8 ± 112.7 mm) fishways. The boat passage fishway was the most efficient for fish movements. The current fishway system is not sufficient for fish migration, and thus additional ways are required to improve the system such as the boat passage. Few estuarine or diadromous species were found in both freshwater and salt-water areas, but freshwater fishes that accidently moved to salt-water area actively used fishways. Therefore, fishway management in the Geum River estuary barrage has to focus on freshwater fish; however, this may need to change to a focus on migratory fishes depending on ecological life cycles of migratory fish.  相似文献   

11.
Hurricane Isabel made landfall along the North Carolina coast on September 18, 2003 (UTC 17:00) and the storm surge exceeded 2.0 m in many areas of the Chesapeake Bay and in the York River estuary. River flooding occurred subsequently, and the peak river discharge reached 317 and 104 m3 s−1 in the Pamunkey and Mattaponi rivers, respectively. The York River estuary experienced both storm surge and river flooding during the event and the estuary dynamics changed dramatically. This study investigates the hydrodynamics of the York River estuary in response to the storm surge and high river inflows. A three-dimensional model was used to investigate the changes of estuarine stratification, longitudinal circulation, salt flux mechanisms, and the recovery time required for the estuary to return to its naturally evolved condition without the storm. Results show that the salt flux was mainly caused by advection, which was induced by the barotropic gradient during the storm event. The net salt flux increased by a factor of 30 during the rise of the storm surge. However, the large amount of salt transported into the estuary was quickly transported out of the estuary as the barotropic gradient reversed during the descent of the storm surge. Subsequent high freshwater inflow influenced the estuarine circulation substantially. The estuary changed from a partially mixed estuary to a very stratified estuary for a prolonged period. The model results show that it will take about 4 months for the estuary to recover to its naturally evolved salinity distribution after the impacts of the storm surge and freshwater pulse.  相似文献   

12.
Freshwater fraction method is popular for cost-effective estimations of estuarine flushing time in response to freshwater inputs. However, due to the spatial variations of salinity, it is usually expensive to directly estimate the long-term freshwater fraction in the estuary from field observations. This paper presents the application of the 3D hydrodynamic model to estimate the distributions of salinity and thus the freshwater fractions for flushing time estimation. For a case study in a small estuary of the North Bay in Florida, USA, the hydrodynamic model was calibrated and verified using available field observations. Freshwater fractions in the estuary were determined by integrating freshwater fractions in model grids for the calculation of flushing time. The flushing time in the North Bay is calculated by the volume of freshwater fraction divided by the freshwater inflow, which is about 2.2 days under averaged flow conditions. Based on model simulations for a time series of freshwater inputs over a 2-year period, a power regression equation has been derived from model simulations to correlate estuarine flushing time to freshwater inputs. For freshwater input varying from 12 m3/s to 50 m3/s, flushing time in this small estuary of North Bay changes from 3.7 days to 1.8 days. In supporting estuarine management, the model can be used to examine the effects of upstream freshwater withdraw on estuarine salinity and flushing time.  相似文献   

13.
Although many studies of Nematoda have been undertaken in estuarine systems, there are relatively few studies which have analysed the distribution of fauna across the entire salinity range from marine to freshwater conditions. The Thames estuary has a long history of anthropogenic impact and recovery, since it was described as “azoic” in the 1950s, which has been monitored primarily through studies of water quality and fish stocks, with less emphasis on macroinfauna and very little information on meiofaunal organisms. This study aimed to describe the nematode fauna at eight stations along the estuary from marine to freshwater conditions in order to assess patterns of density, diversity and species assemblage structure. Nematode density and diversity were generally lower in the middle reaches of the estuary, associated with the region of greatest salinity range, a pattern which was found to be in agreement with Attrill's [2002. A testable linear model for diversity trends in estuaries. Journal of Animal Ecology 71, 262–269] linear model. Multivariate analysis confirmed that each station supported a distinct nematode fauna, which could be used to identify five zones along the estuary related to salinity regime. Although alpha diversity at each station was relatively low, species turnover along the estuary resulted in relatively high gamma diversity (153 spp.) similar to that found in a number of European estuaries. The results of this study did not suggest that the nematode fauna was under significant stress from the lower levels of pollution currently found in the system. The potential routes for the recovery and re-colonization of the estuary since it most polluted days are discussed.  相似文献   

14.
A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April–May. In the Churchill Estuary, conditions varied abruptly throughout winter–spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (∼ 6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in this study highlight the variability and instability of small frozen estuaries during winter–spring transition, which implies sensitivity to climate change.  相似文献   

15.
We examine the microchemistry of otoliths of cohorts of a fished population of the large catadromous fish, barramundi Lates calcarifer from the estuary of a large tropical river. Barramundi from the estuary of the large, heavily regulated Fitzroy River, north-eastern Australia were analysed by making transects of 87Sr/86Sr isotope and trace metal/Ca ratios from the core to the outer edge. Firstly, we examined the Sr/Ca, Ba/Ca, Mg/Ca and Mn/Ca and 87Sr/86Sr isotope ratios in otoliths of barramundi tagged in either freshwater or estuarine habitats that were caught by the commercial fishery in the estuary. We used 87Sr/86Sr isotope ratios to identify periods of freshwater residency and assess whether trace metal/Ca ratios varied between habitats. Only Sr/Ca consistently varied between known periods of estuarine or freshwater residency. The relationships between trace metal/Ca and river flow, salinity, temperature were examined in fish tagged and recaptured in the estuary. We found weak and inconsistent patterns in relationships between these variables in the majority of fish. These results suggest that both individual movement history within the estuary and the scale of environmental monitoring were reducing our ability to detect any patterns. Finally, we examined fish in the estuary from two dominant age cohorts (4 and 7 year old) before and after a large flood in 2003 to ascertain if the flood had enabled fish from freshwater habitats to migrate to the estuary. There was no difference in the proportion of fish in the estuary that had accessed freshwater after the flood. Instead, we found that larger individuals with of each age cohort were more likely to have spent a period in freshwater. This highlights the need to maintain freshwater flows in rivers. About half the fish examined had accessed freshwater habitats before capture. Of these, all had spent at least their first two months in marine salinity waters before entering freshwater and some did not enter freshwater until four years of age. This contrasts with the results of several previous studies in other parts of the range that found that access to freshwater swamps by larval barramundi was important for enhanced population productivity and recruitment.  相似文献   

16.
Concentrations of dissolved nutrients (NO3, PO4, Si), germanium species, arsenic species, tin, barium, dimethylsulfide and related parameters were measured along the salinity gradient in Charlotte Harbor. Phosphate enrichment from the phosphate industry on the Peace River promotes a productive diatom bloom near the river mouth where NO3 and Si are completely consumed. Inorganic germanium is completely depleted in this bloom by uptake into biogenic opal. The GeSi ratio taken up by diatoms is about 0·7 × 10?6, the same as that provided by the river flux, confirming that siliceous organisms incorporate germanium as an accidental trace replacement for silica. Monomethylgermanium and dimethylgermanium concentrations are undetectable in the Peace River, and increase linearly with increasing salinity to the seawater end of the bay, suggesting that these organogermanium species behave conservatively in estuaries, and are neither produced nor consumed during estuarine biogenic opal formation or dissolution. Inorganic arsenic displays slight removal in the bloom. Monomethylarsenic is produced both in the bloom and in mid-estuary, while dimethylarsenic is conservative in the bloom but produced in mid-estuary. The total production of methylarsenicals within the bay approximately balances the removal of inorganic arsenic, suggesting that most biological arsenic uptake in the estuary is biomethylated and released to the water column. Dimethylsulfide increases with increasing salinity in the estuary and shows evidence of removal, probably both by degassing and by microbial consumption. An input of DMS is observed in the central estuary. The behavior of total dissolvable tin shows no biological activity in the bloom or in mid-estuary, but does display a low-salinity input signal that parallels dissolved organic material, perhaps suggesting an association between tin and DOM. Barium displays dramatic input behavior at mid-salinities, probably due to slow release from clays deposited in the harbor after catastrophic phosphate slime spills into the Peace River.  相似文献   

17.
As a consequence of climate change, flood and drought events are increasing in frequency throughout the world. Nevertheless, knowledge of the effects on zooplankton estuarine communities is still scarce. The present study aimed to examine zooplankton ecology over two contrasting environmental conditions: regular years and extreme dry years, in a shallow temperate southern European estuary, the Mondego Estuary (Portugal). Monthly samples were carried out during three consecutive years: 2003 characterized as a regular temperate year concerning precipitation and river flow, and an extremely dry period during 2004–2005. The spatial and temporal structure of the biological data was evaluated by a three-mode principal component analysis (PCA), which allowed us to distinguish three distinct ecological areas based on their biological composition and their relationship with hydrologic parameters. The severe drought in 2004–2005 was responsible for spatial shifts in the estuary regarding zooplankton community and interannual variability, with an increase in abundance and diversity during the period of low freshwater flow. This freshwater flow regime influenced the composition of the zooplankton community at the most upstream section of Mondego estuary (zone 3), with a replacement of the freshwater community by one predominantly dominated by estuarine organisms. The occurrence of such estuarine community contributed to the increase in zooplankton abundance which is ascribed to the estuarine species Acartia tonsa. The comparison with previous data obtained for this estuarine ecosystem, demonstrated the occurrence of a different scenario at times of high freshwater flow, being defined the existence of two sub-estuarine systems, the north and south arm, presenting the south one the highest values of abundance.  相似文献   

18.
The Mfolozi estuary, located on the east coast of South Africa, was historically directly linked to the adjacent St Lucia estuarine system, the largest estuarine system in Africa and a World Heritage Site. The Mfolozi used to be the main feeder system to maintain lake levels in St Lucia, but increased siltation from sugar cane farming in the Mfolozi floodplain led to artificial separation of the two systems in 1950. Reduced freshwater inflow due to drought conditions caused the St Lucia mouth to remain closed from June 2002 to present, coinciding with low lake levels and hypersaline conditions, except for a brief period during 2007 after the St Lucia mouth breached. These conditions led to disruption of larval recruitment into the system and major changes in biotic communities. Due to the importance of the St Lucia – Mfolozi System link, a study was initiated in 2007 on the fish community of the Mfolozi system, which was sampled using seine and gill nets. The 48 species recorded were dominated by juveniles of marine spawners, particularly Leiognathus equula and Valamugil cunnesius and the estuarine spawners Ambassis dussumieri and Ambassis natalensis. Estuarine dependent marine spawning species formed 68% of both the species numbers and CPUE, an indication of the regional importance of the Mfolozi estuary as an alternate refuge for juvenile marine fish during periods when the St Lucia system remained closed. Post-larval recruits of marine spawning species were particularly abundant, but low zoobenthic densities caused a rapid decline in numbers of benthic feeders shortly after their recruitment into the system. The importance of the Mfolozi estuary in maintaining marine brood stocks of estuarine dependent marine fish is discussed with particular reference to estuarine degradation and the ecological integrity of the St Lucia system.  相似文献   

19.
A 3D,time-dependent,baroclinic,hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea.The model was driven by the forcing of tidal elevations along the open boundaries and freshwater inflows from the Oujiang River.The bottom friction coefficient and vertical eddy viscosity were adjusted to complete model calibration and verification in simulations.It is demonstrated that the model is capable of reproducing observed temporal variability in the water surface elevation and longitudinal velocity,presenting skill coefficient higher than 0.82.This model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow conditions in the Oujiang River estuary.The model results reveal that the river channel presents a two-layer structure with flood currents near the bottom and ebb currents at the top layer in the region of seawater influenced on north shore under high river flow condition.The river discharge is a major factor affecting the salinity stratification in the estuarine system.The water exchange is mainly driven by the tidal forcing at the estuary mouth,except under high river flow conditions when the freshwater extends its influence from the river’s head to its mouth.  相似文献   

20.
金元欢 《台湾海峡》1992,11(4):353-358
本文主要论述作为先成边界条件的节点(包括矶)和岩岛对河口分汊的影响.指出节点和矶的分布和性质对河口能否形成分汊以及分汊形态等具有不容忽视的作用。表明单个节点易形成喇叭状的少汊河口,多个节点则易导致藕节状展宽及分汊河口,而节点位于口门,则不利于河口展宽而使得河口难以分汊。在研究河口岩岛对河口分汊的作用时,分别从珠江口、韩江口和闽江口三个分汊河口,分析了岩岛的数目多少、规模大小和分布状况,对导致河口形成不同分汊模式的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号