首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Water transport at subtidal frequencies in the Marsdiep inlet   总被引:1,自引:0,他引:1  
Long-term time series of subtidal water transport in the 4-km wide Marsdiep tidal inlet in the western Dutch Wadden Sea have been analysed. Velocity data were obtained between 1998 and the end of 2002 with an acoustic Doppler current profiler that was mounted under the hull of the ferry ‘Schulpengat’. Velocities were integrated over the cross-section and low-pass filtered to yield subtidal water transport. A simple analytical model of the connected Marsdiep and Vlie tidal basins was extended to include wind stress and water-level and density gradients and applied to the time series of subtidal water transport. In accordance with the observations, the model calculates a mean throughflow from the Vlie to the Marsdiep basin. The mean water transport through the Marsdiep inlet consists of an export due to tidal stresses and freshwater discharge and an import due to southwesterly winds. In contrast, the variability in the subtidal water transport is mainly governed by wind stress. In particular, southwesterly winds that blow along the main axis of the Marsdiep basin force a throughflow from the Marsdiep to the Vlie basin, whereas northwesterly winds that blow along the main axis of the Vlie basin force a smaller mean water transport in the opposite direction. The contribution of remote sea-level change to the water transport, or coastal sea-level pumping, has been found to be much smaller than the contribution of local wind stress.  相似文献   

2.
Daily observations of the salinity of the Marsdiep tidal inlet, which connects the Dutch western Wadden Sea with the North Sea, already started over 140 years ago, in 1860. Since the year 2000 the sampling frequency has increased because of the use of electronic sensors. Analysis of these salinity data have revealed variations on time scales from tidal (~ 12 hour), seasonal, inter-annual, and multi-decadal, to centennial. The contributions of the salinity variations in the Marsdiep for these different spectral bands or time scales are all of the order of a standard deviation of 0.5 to 1. The centennial variation, which can be expressed as a 140 year long salinity trend, is related to engineering works on the rivers Rhine and IJssel, which already started in the early 18-th century, and more than doubled the magnitude of the freshwater content of the western Wadden Sea since then. In contrast with this anthropogenic salinity trend, the climatic variability of the precipitation over western Europe, and the connected changes in the Rhine discharge, are mainly responsible for the inter-annual variations in the salinity and/or freshwater content of the western Wadden Sea. Since variations in salinity and freshwater content also reflect variations in the terrigeneous and river influence on the Wadden ecosystem, e.g. via the nutrient content, it can be expected that the ecology of the Wadden Sea also experienced changes on centennial time scales.  相似文献   

3.
Seasonal and diurnal reduced sulfur gas emissions were measured along a salinity gradient in Louisiana Gulf Coast salt, brackish and freshwater marshes. Reduced sulfur gas emission was strongly associated with habitat and salinity gradient. The dominant emission component was dimethyl sulfide (average: 57·3 μg S m−2 h−1) in saltmarsh with considerable seasonal (max: 144·03 μg S m−2 h−1; min: 1·47 μg S m−2 h−1) and diurnal (max: 83·58 μg S m−2 h−1; min: 69·59 μg S m−2 h−1) changes in flux rates. Hydrogen sulfide was dominant (average: 21·2 μg S m−2 h−1, max: 79·2 μg S m−2 h−1; min: 5·29 μg S m−2 h−1) form in brackishmarsh and carbonyl sulfide (average: 1·09 μg S m−2 h−1; max: 3·42 μg S m−2 h−1; min: 0·32 μg S m−2 h−1) was dominant form in freshwater marsh. A greater amount of H2S was evolved from brackishmarsh (21·22 μg S m−2 h−1) as compared to the saltmarsh (2·46 μg S m−2 h−1) and freshwater marsh (0·30 μg S m−2 h−1). Emission of total reduced sulfur gases decreased with decrease in salinity and distance inland from the coast. Emission of total reduced sulfur gases over the study averaged 73·3 μg S m−2 h−1 for the saltmarsh, 32·1 μg S m−2 h−1 for brackishmarsh and 2·76 μg S m−2 h−1 for the freshwater marsh.  相似文献   

4.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

5.
Land/ocean boundaries constitute complex systems with active physical and biogeochemical processes that affect the global carbon cycle. An example of such a system is the mesotidal lagoon named Ria de Aveiro (Portugal, 40°38′N, 08°45′W), which is connected to the Atlantic Ocean by a single channel, 350 m wide. The objective of this study was to estimate the seasonal and inter-tidal variability of organic carbon fluxes between the coastal lagoon and the Ocean, and to assess the contribution of the organic carbon fractions (i.e. dissolved organic carbon (DOC) and particulate organic carbon (POC)) to the export of organic carbon to the Ria de Aveiro plume zone. The organic carbon fractions fluxes were estimated as the product of the appropriate fractional organic carbon concentrations and the water fluxes calculated by a two-dimensional vertically integrated hydrodynamic model (2DH). Results showed that the higher exchanges of DOC and POC fractions at the system cross-section occurred during spring tides but only resulted in a net export of organic carbon in winter, totalling 85 t per tidal cycle. Derived from the winter and summer campaigns, the annual carbon mass balance estimated corresponded to a net export of organic carbon (7957 = 6585 t yr−1 POC + 1372 t yr−1 DOC). On the basis of the spring tidal drainage area, it corresponds to an annual flux of 79 g m−2 of POC and 17 g m−2 of DOC out of the estuary.  相似文献   

6.
The Laptev Sea is a high-Arctic epicontinental sea north of Siberia (Russia) that is one of the least understood regions of the world’s ocean. It is characterized by a shallow and broad shelf plateau, high influx of river water, sediments and nutrients during summer, long-lasting sea-ice cover from October to May, and the formation of a narrow flaw-lead polynya off the fast-ice edge during winter.Here, we describe results of a German–Russian research project (1993-present), presenting the distribution patterns and dynamics of its marine flora and fauna, as well as pathways and processes of coupling between sea-ice, water-column and sea-floor biota.Three ecological zones are distinguished along a combined east–west and Lena-impact gradient, differing in the composition of pelagic and benthic communities. In general, high Chl a concentrations in the sediments indicate a tight coupling between sympagic and pelagic primary production and nutrient supply to the benthos throughout the entire Laptev Sea. However, there were pronounced regional differences between the ecological zones in magnitude of primary production and trophic dynamics. Primary production during the ice-free summer was highest in the estuarine zone most strongly influenced by the Lena River (210 mg C m−2 day−1). The western and northeastern Laptev Sea yielded 55 and 95 mg C m−2 day−1, respectively. Moreover, the zones differed in the partitioning of carbon flux between zooplankton and benthic food webs. In the Lena zone zooplankton carbon demand was about 31 mg C m−2 day−1 whereas in the western zone it was 21 mg C m−2 day−1 and in the eastern zone 4 mg C m−2 day−1. Total benthic carbon demand was 32 mg C m−2 day−1 for the Lena zone, 56 mg C m−2 day−1 in the western zone and 100 mg C m−2 day−1 in the northeastern zone.A carbon budget constructed for the Laptev Sea indicates that (1) a high proportion of primary production is channelled through the benthic trophic web, bypassing the pelagic trophic web, and (2) autochthonous primary production in the northeastern and western Laptev Sea might not be sufficient to fuel both pelagic and benthic secondary production and, hence, input of allochthonous organic carbon is required to balance the overall carbon demand.  相似文献   

7.
The Wadden Sea (North Sea, Europe) is a shallow coastal sea with high benthic and pelagic primary production rates. To date, no studies have been carried out in the Wadden Sea that were specifically designed to study the relation between pelagic respiration and production by comparable methods. Because previous studies have suggested that the import of primary-produced pelagic organic matter is important for benthic Wadden Sea carbon budgets, we hypothesised that on an annual average the northern Wadden Sea water column is autotrophic. To test this hypothesis, we studied annual dynamics of primary production and respiration at a pelagic station in a shallow tidal basin (List Tidal Basin, northern Wadden Sea). Since water depth strongly influences production estimates, we calculated primary production rates per unit area in two ways: on the basis of the mean water depth (2.7 m) and on the basis of 1 m depth intervals and their respective spatial extent in the List Tidal Basin. The latter more precise estimate yielded an annual primary production of 146 g C m− 2 y− 1. Estimates based on the mean water depth resulted in a 40% higher annual rate of 204 g C m− 2 y− 1. The total annual pelagic respiration was 50 g C m− 2 y− 1. The P/R ratio varied between seasons: from February to October the water column was autotrophic, with the highest P/R ratio of 4–5 during the diatom spring bloom in April/May. In autumn and winter the water column was heterotrophic. On an annual average, the water column of the List Tidal Basin was autotrophic (P/R 3). We suggest that a large fraction of the pelagic produced organic matter was respired locally in the sediment.  相似文献   

8.
Long-term variations of the sea surface salinity (SSS), air temperature (AT) and sea surface temperature (SST) of the Bohai Sea during 1960–1997 were analyzed. They all showed positive trends. The trends of the annual mean SSS, AT and SST of the Bohai Sea were, respectively, 0.074 y−1, 0.024°C y−1 and 0.011°C y−1. The increases of AT and SST were consistent with, the recent warming in northern China, in the Huanghai Sea (Yellow Sea) and in the East China Sea. The rise of SSS can be attributed to the rapid reduction of the total river discharge into the Bohai Sea, as well as to the increase inflow of high salinity water from the Huanghai Sea. It may also be attributed to increasing human use of river water and increases in evaporation from the sea surface. These changes in the marine environment seemed to have important influence on the Bohai Sea ecosystem.  相似文献   

9.
Fine sediment dynamics were recorded in February 2007 in coastal waters of the Great Barrier Reef during a moderate flood of the Tully River. An estuarine circulation prevailed on the inner continental shelf with a surface seaward velocity peaking at 0.1 m s−1 and a near-bottom landward flow peaking at 0.05 m s−1. Much of the riverine mud originating from eroded soils was exported onto a 10 km wide coastal strip during the rising stage of the river flood in the first flush. In coastal waters, suspended sediment concentration peaked at 0.2 kg m−3 near the surface and 0.4 kg m−3 at 10 m depth during calm weather, and 0.5 kg m−3 near the surface and 2 kg m−3 at 10 m depth during strong winds when bottom sediment was resuspended. Diurnal irradiance at 4 m depth was almost zero for 10 days. The sedimentation rate averaged 254 (±33) g m−2 d−1 over the 28-day study period, and concentrations of dissolved and particulate nutrients originating from the river were high. The observed low irradiance would have prevented coral photosynthesis, while the sedimentation rate would have been lethal to some juvenile corals. The mud may ultimately be minnowed out over long periods, however, flushing of the mud occurs at time scales much longer than the flood event and the mud is likely to affect coral physiology for significant periods after the flood has subsided. The data show the need to better control erosion on farmed land for the conservation of coral reefs on the inner shelf of the Great Barrier Reef.  相似文献   

10.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

11.
Seasonal new production (g C m−2) estimates obtained from dissolved oxygen and nitrate concentrations in surface waters (5 m depth) along a track between the UK (Portsmouth) and northern Spain (Bilbao) are compared. An oxygen flux method, in combination with a ship of opportunity (SOO), was tested on the northwest European shelf for its value in distinguishing high production in frontal regions. Dissolved oxygen, nitrate and chlorophyll a samples were collected monthly from February to July 2004, alongside continuous autonomous measurements of salinity, temperature and chlorophyll fluorescence. Depth integrated new production estimates for all the individually analysed hydrographic regions of the route were produced.Results from three widely used gas-exchange parameterizations gave seasonal (February–July) new production estimates of 54–68 g C m−2 for the Ushant region of the western English Channel and 31–40 g C m−2 for the shelf slope, averaging 24–31 g C m−2 for the route. This is double the route average obtained using the nitrate assimilation method (17 g C m−2) and within the ranges of previous estimates in the same region. The oxygen flux method gave a fivefold enhancement compared to the nitrate method in the Ushant frontal region and a threefold enhancement in the English Channel and shelf break regions. Determining oxygen fluxes to estimate new production may be more reliable than nitrate assimilation in active tidal or frontal regions of shelves where nitrate may be added to the system post-winter through advection or entrainment.  相似文献   

12.
The Great Belt, the Øresund and the Little Belt connect the central Baltic Sea and the Kattegat. A fixed station was moored in the contraction area in the Little Belt during the period 18–28 July 1995, measuring temperature, salinity and current in two levels, while discharge was measured by the RVDana. The composite Froude number calculated at the fixed station shows that the two layer flow through this area was most often supercritical. The discharges were satisfactorily related to the currents measured at the fixed station, and time-series of transports through the Little Belt were established. When compared to the transports through the Øresund the water transport ratio (Øresund:Little Belt) was found to be 4·4, while the salt transport ratio was found to be 3·0. The resistance of the Little Belt, when considering the differences in sea level from Gedser to Hornbæk, was 1839×10−12 s2 m−5. On the basis of water level and surface salinity measurements made during the period 1931–76, a net discharge of 2300 m3 s−1and a net salt transport of 36 tonnes s−1through the Little Belt from the central Baltic Sea were found.  相似文献   

13.
Dissolved and particulate Mn concentrations were investigated on a seasonal scale in surface waters of the NW German Wadden Sea (Spiekeroog Island) in 2002 and 2003. As the Wadden Sea forms the transition zone between the terrestrial and marine realms, Mn was analysed in coastal freshwater tributaries and in the adjoining German Bight as well. Additionally, sediments and porewaters of the tidal flat sediments were analysed for Mn partitioning and microbial activity.Dissolved Mn concentrations show strong tidal and seasonal variation with elevated concentrations during summer at low tide. Summer values in the Wadden Sea (av. 0.7 μM) are distinctly higher than in the central areas of the German Bight (av. 0.02 μM), suggesting a possible impact of the Wadden Sea environment on the Mn budget of the North Sea. Seasonality is also observed for particulate Mn in the Wadden Sea (winter av. 800 mg kg 1; summer av. 1360 mg kg 1). Although particles are relatively Mn-poor during winter, the high SPM load during this season causes elevated excess concentrations of particulate Mn, which in part exceed those of the dissolved phase. Therefore, winter values cannot be ignored in balance calculations for the Wadden Sea system.Porewater Mn concentrations differ depending on sediment type and season. Maximum concentrations are found in surface sediments at a mixed flat site (190 μM) during summer, while winter values are distinctly lower. This indicates that enhanced microbial activity owing to higher temperature during summer leads to increased reduction of Mn-oxides in surface sediments and enhances the corresponding diffusive and advective Mn flux across the sediment-water interface. Draining of Mn-rich porewaters from sediments is also documented by analyses of tidal creek waters, which are highly enriched in Mn during summer.Furthermore, an important Mn source is freshwater discharged into the Wadden Sea via a flood-gate. The concentration of dissolved Mn in freshwater was highly variable during the sampling campaigns in 2002 and 2003, averaging 4 μM. In contrast, particulate Mn displayed a seasonal behaviour with increasing contents during summer. On the basis of salinity variations in the Wadden Sea, the total amount of Mn contributed to the Wadden Sea via freshwater was estimated. This balance shows the importance of the freshwater environment for the Mn inventory of the Wadden Sea. During winter the total Mn inventory of the Wadden Sea water column may be explained almost completely by freshwater discharge, whereas in summer the porewater system forms the dominating source.  相似文献   

14.
The ampeliscid amphipod community in the Chirikov Basin of the northern Bering Sea was a focus of study during the 1980s because they were a major food for the Eastern North Pacific (ENP) population of gray whales Eschrichtius robustus. Information from the 1980s benthic investigations, published accounts of ENP gray whale population trends and the occurrence in 1999–2000 of an unusual number of gray whale mortalities prompted concern that the whale population may have exceeded the carrying capacity of its food base. Therefore, during two cruises per year between June and September, 2002 and 2003, we resampled the 20 stations occupied during the 1980s, to determine if there had been any significant changes in ampeliscid abundance and biomass. During 2002–2003, average ampeliscid dry weight biomass was about 28±10 g m−2 (95% confidence interval), a decline of nearly 50% from maximum values in the 1980s. Amphipod length measurements indicated that the declines were due mainly to the absence of the larger animals (20–30 mm length). Two hypotheses were considered regarding the amphipod declines: gray whale predation and climate. Ampeliscid production (105 kcal m−2 yr−1) and gray whale energy requirements (1.6×108 kcal individual−1 yr−1) indicated that as little as 3–6% of the current estimate of the ENP gray whale population could remove 10–20% of the annual ampeliscid production from the study site in 2002–2003, a finding consistent with the hypothesis that top-down control by foraging whales was the primary cause of the observed declines. A 10-yr time series of temperature near the bottom in the Bering Strait and northward transport did not reveal a consistent trend between 1990 and 2001, suggesting that climate influences were not the major cause of the observed declines. Arctic ampeliscids have slow growth rates and long generation times; therefore the ampeliscid community may require decades to recover to densities observed in the 1980s. Predicted warming trends in the northern Bering Sea could impact ampeliscid recovery by lowering primary production or altering the community composition of the benthos.  相似文献   

15.
The distributions of dissolved organic carbon (DOC), Ba, U, and a suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during high- and low-discharge conditions in the Loxahatchee River estuary, Florida to examine the role of submarine groundwater discharge in estuarine transport. The fresh water endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface water (hyporheic) exchange. During both discharge conditions, Ba concentrations indicated slight non-conservative mixing. Such Ba excesses could be attributed either to submarine groundwater discharge or particle desorption processes. Estuarine dissolved organic carbon concentrations were highest at salinities closest to zero. Uranium distributions were lowest in the fresh water sites and mixed mostly conservatively with an increase in salinity. Suspended particulate matter (SPM) concentrations were generally lowest (< 5 mg L− 1) close to zero salinity and increased several-fold ( 18 mg L− 1; low discharge) toward the seaward endmember, which may be attributed to dynamic resuspension of bottom sediments within Jupiter Inlet.Surface water-column 222Rn activities were most elevated (> 28 dpm L− 1) at the freshwater endmember of the estuary and appear to identify regions of the river most influenced by the discharge of fresh groundwater. Activities of four naturally occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells yield mean estuarine water-mass transit times of less than 1 day; these values are in close agreement to those calculated by tidal prism and tidal frequency. Submarine groundwater discharge rates to the Loxahatchee River estuary were calculated using a tidal prism approach, an excess 226Ra mass balance, and an electromagnetic seepage meter. Average SGD rates ranged from 1.0 to 3.8 × 105 m3 d− 1 (20–74 L m− 2 d− 1), depending on river-discharge stage. Such calculated SGD estimates, which must include both a recirculated as well as fresh water component, are in close agreement with results obtained from a first-order watershed mass balance. Average submarine groundwater discharge rates yield NH4+ and PO4− 3 flux estimates to the Loxahatchee River estuary that range from 62.7 to 1063.1 and 69.2 to 378.5 μmol m− 2 d− 1, respectively, depending on river stage. SGD-derived nutrient flux rates are compared to yearly computed riverine total N and total P load estimates.  相似文献   

16.
Benthic Denitrification in the Gulf of Bothnia   总被引:1,自引:0,他引:1  
Denitrification was measured over an 8-month period in the Bothnian Bay and the Bothnian Sea, the two northernmost basins of the Baltic Sea. The recorded rates varied between 0 and 0·94 mmol N m−2day−1. In the Bothnian Sea, a seasonal pattern could be discerned with high rates in spring, no rate in summer and a moderate rate in winter. In the Bothnian Bay, no such seasonality was observed. It is suggested that denitrification in the Gulf of Bothnia is regulated by sediment nitrification. Calculation of annual mean rates of denitrification gave that the amount of nitrogen consumed by denitrification corresponded to 1·45×104tons N year−1for the Bothnian Bay and 3·45×104tons N year−1for the Bothnian Sea. A comparison with total N input (river runoff, point sources and atmospheric deposition) to the two basins showed that the proportion of N removed through denitrification amounted to 23% for the Bothnian Bay and 31% for the Bothnian Sea.  相似文献   

17.
The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000–2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn–winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77–79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7–2.4 g m−2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003–2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50′N 50°22′E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s–1960s almost to complete disappearing in 1970–1990s. The peak of this species’ occurrence (18–26%) took place in the beginning of warm period (1999–2000) after a succession of cold years. The subsequent reduction of the relative abundance of M. norvegica to 7% might have been mostly caused by fish predation during a period of low population densities of capelin. This high predation pressure may therefore have been mediated both by other pelagic fishes (i.e. herring, blue whiting, polar cod) but also by demersal fishes such as cod and haddock. Similar sharp fluctuations in the capelin stock (the major consumer of euphausiids) created marked perturbations in the food web in the Barents Sea in the middle 1980s and the early 1990s.  相似文献   

18.
The impact of dredge spoil disposal on asymmetrical large-scale dunes has been studied at a disposal site in a shallow subtidal area of the outer Weser Estuary (German Bight, southeastern North Sea). Between June and December 1998, this site was used for the disposal of ~3×106 m3 dredge spoil. Repeated bathymetric surveys with a multibeam echosounder system reveal that the artificial supply of sediment provoked significant morphological changes in the dune field, including the infill of dune troughs and even the complete burial of individual dunes. However, even completely buried dunes began to regenerate within a few months. In addition, slow migration of the dunes toward the open sea was observed, indicating net seaward sediment transport in the survey area. Since the dumped sediment does not appear to have a persistent effect on the bedforms and, in all likelihood, will be exported from the estuarine system on medium- to long-term timescales, the investigated area constitutes a suitable disposal site.  相似文献   

19.
The Wadden Sea, a shallow coastal area bordering the North Sea, is optically a complex area due to its shallowness, high turbidity and fast changes in concentrations of optically active substances. This study gathers information from the area on concentrations of suspended particulate matter (SPM), Chlorophyll-a (Chl-a), and Coloured Dissolved Organic Matter (CDOM), on total absorption and beam attenuation, and on reflectances from the whole area. It examines the processes responsible for variations in these. Sampling took place at 156 stations in 2006 and 2007. At 37 locations also the specific inherent optical properties (SIOPs) were determined. Results showed large concentration ranges of 2–450 (g m-3) for SPM, 2–67 (mg m-3) for Chl-a, and 0–2.5 m−1 for CDOM(440) absorption. Tides had a large influence on the SPM concentration, while Chl-a had a mainly seasonal pattern. Resuspension lead to a correlation between SPM and Chl-a. The absorption of CDOM had a spatial variability with extremely high values in the Dollard, although the slope of CDOM absorption spectra was comparable with that of the North Sea. The Chl-a specific pigment absorption proved to be influenced by phytoplankton species and specific absorption of non-algal particles at 440 nm was correlated with the mud content of the soil at the sample locations. SPM specific absorption was not found to correlate with any measured factor. As the concentrations of optically active substances changed, we also found spatial and temporal variability in the absorption, beam attenuation and reflectances. Reflectance spectra categorized in groups with decreasing station water depths and with extreme CDOM and SPM concentrations showed distinguishable shapes.  相似文献   

20.
A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr−1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m−2 d−1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m−2 d−1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号