首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed palaeomagnetic integrated with rock magnetic studies have been carried out on a loess-palaeosol sequence in Baoji, Shaanxi province, southern Chinese Loess Plateau. For most samples stepwise thermal demagnetization revealed two well-defined magnetization components. A low-temperature component (LTC), which was isolated between 100 and 200 °C, is consistent with the present geomagnetic field direction. A high-temperature component (HTC), which was isolated between 250 and 620–680 °C, shows normal, reversed or transitional polarities. Our new magnetostatigraphy revealed two distinct geomagnetic excursions recorded in loess unit of L5 and palaeosol unit of S7, respectively, and the Matuyama-Brunhes (M-B) polarity boundary in loess unit of L8. Rock magnetic experiments demonstrated that the specimens from the excursion zones have the same magnetic properties as those from the Brunhes normal or Matuyama reversed polarity zones. Measurements of anisotropy of magnetic susceptibility (AMS) showed that the sediments have primary sedimentary fabrics. Based on the palaeoclimatological and magnetostratigraphic age models, the middle Brunhes excursion in loess L5 is dated at 413–433 ka, and the early Brunhes excursion is estimated to occur 23–33 ka after the M-B reversal. Comparing with previously reported geomagnetic excursions in the Brunhes chron, the middle Brunhes excursion (L5) is likely global. For the early Brunhes excursion (S7), we need further studies to examine its global occurrence.  相似文献   

2.
Summary . Detailed thermal demagnetization results combined with vector analysis and study of the convergence point of remagnetization circles reveal that the late Palaeozoic ignimbrites of North Sardinia possess a multi component remanence in addition to having experienced a tectonic rotation. The degree of palaeomagnetic complexity increases with increasing degree of oxidation of the magnetic mineralogy. It is concluded that the rocks were laid down in late Permian time just before the close of the reversed Kiaman geomagnetic epoch. Subsequent oxidation and partial remagnetization basically occurred in late Permian—Triassic time, during a period characterized by alternating field polarity. In the majority of the sites this remagnetization cycle brought about fairly erratic and relatively stable resultant magnetizations which are generally smeared out towards easterly directions. At a later date Sardinia was subject to an anticlockwise rotation of about 45 degrees, after which a minor chemical magnetization, aligned along the direction of the present axial dipole field, seems to have been acquired by some specimens.  相似文献   

3.
Summary. Middle Precambrian and Cretaceous kimberlites were collected from three sites (Premier, Montrose and National) and two sites (Wesselton and Koffyfontein) in South Africa respectively. The natural remanent magnetization of these rocks remains stable to both alternating field and thermal demagnetization. The virtual geomagnetic pole-positions derived from the directions of stable remanence of the Precambrian rocks can be correlated with palaeomagnetic poles obtained from other Middle-Late Precambrian rocks in Africa. The Cretaceous poles for the Wesselton and the Koffyfontein rocks coincide with other Cretaceous poles.  相似文献   

4.
The geomagnetic field intensity during Archaean times is evaluated from a palaeomagnetic and chronological study of a dolerite dyke intruded into the 3000 Ma Nuuk Gneisses at Nuuk (64.2°N, 51.7°W), west Greenland. Plagioclase from the dolerite dyke yields a mean K-Ar age of 2752 Ma. Palaeomagnetic directions after thermal demagnetization of the dyke and the gneiss reveal a positive baked-contact test, indicating that the high-temperature-component magnetization of the dyke is primary. Thellier experiments on 12 dyke specimens yield a palaeointensity value of 13.5±4.4 μT. The virtual dipole moment at ca. 2.8 Ga is 1.9±0.6 × 1022 Am2, which is about one-quarter of the present value. The present study and other available data imply that the Earth's magnetic field at 2.7 ∼ 2.8 Ga was characterized by a weak dipole moment and that a fairly strong geomagnetic field similar to the present intensity followed the weak field after ca. 2.6 Ga.  相似文献   

5.
Summary. Six hundred new samples are added to those we previously reported from the Shungura and Usno Formations of southwestern Ethiopia, and the entire data set is reviewed. Limited mineralogical study of sands indicates maghemite and hematite as carriers of remanence. After AF cleaning the remanent directions are well polarized into normal and reversed groups, with greater scatter in reversed directions. The time-averaged magnetization axis corresponds to a 'far-sided right-hand' virtual pole, a pattern previously found by Wilson. Intrasite dispersion is commonly large but better for the new samples, which we attribute to field technique. Polarity zonation is accomplished by statistical smoothing on stratigraphic plots of angle from dipole axis. Magnetozones are correlated with the standard polarity-chronologic intervals using K-A dates at nine stratigraphic levels. The main change from our previous interpretation is that the reversed zone in the Basal Member of the Shungura Formation is correlated with the top of the Gilbert Epoch rather than with the Mammoth event of the Gauss Epoch. Thus the Basal Member and Member A are somewhat older than we previously believed, but age assignments for major fossil localities are unaffected. The inferred age ranges for the Shungura and Usno Formations are 3.5 to 0.8 Myr and 3.7 to 2.8 Myr respectively. The present analysis yields five zones of normal polarity in the lower Matuyama Reversed Epoch, that is, between the Matuyama/Gauss transition and the base of the Olduvai. All were found both in the previous data and in the new samples taken at different locations. For three of the five zones an unbroken series of normal samples extends over several lithologies, so a geomagnetic event is indicated.  相似文献   

6.
Summary. In palaeomagnetic studies of volcanic rocks it is often considered that, if the direction of NRM does not change much and the intensity de-creases gradually and smoothly during ac cleaning, then the remanent magnetization is stable and chiefly composed of TRM. This argument is extended as a consistency check to detect unwanted effects during laboratory heating. A simple procedure which employs orientated samples and a short heating (15 min) for TRM acquisition in the laboratory has been used for determining the ancient geomagnetic field intensity using seven volcanic rocks of Late Cenozoic age from central Mexico. The main reliability tests are based on the stability of direction, the close correspondence of the entire coercitivity spectra of both NRM and TRM to ac demagnetization, the low scatter of TRM directions, close correspondence of the TRM directions and the direction of the laboratory magnetic field, proportionality of TRM intensities to applied field, susceptibility comparison before and after heating, and the within-unit consistency of palaeointensity determinations.  相似文献   

7.
We report on a detailed palaeomagnetic study of the Miocene Farellones volcanic formation in the Chilean Andes near Santiago (two sections, 37 sites, about 400 orientated cores). Petrological observations show evidence of low-grade metamorphism increasing downwards through the volcanic sequence. Optical observations of opaque minerals and magnetic experiments suggest that in many cases maghemitization is associated with hydrothermal alteration. However, thermal demagnetization data indicate that the low-grade metamorphism did not significantly modify the direction of the primary remanent magnetization recorded at the time of emplacement of the volcanic lava flows. Four intervals of polarity with two intermediate palaeodirections were observed in the ~650-m-thick composite section. According to the dispersion of flow average directions, palaeosecular variation was slightly larger than that observed in general during the Upper Cenozoic. The site mean directions obtained in this study differ significantly from the expected Miocene direction. Clockwise rotations of up to 20° of small blocks are probably associated with the deformation of the Andean Cordillera since middle Miocene times. Geomagnetic palaeointensity data were obtained, using the Thellier method, on 24 samples from eight distinct lava flows. The flow mean VDM varies from 1.4 to 4.0 × 1022 A m−2. Altogether, our data seem to suggest the existence of a relatively low geomagnetic field undergoing large fluctuations. Although a linear relationship was observed between the natural remanent magnetization and the thermal remanent magnetization acquired during the Thellier–Thellier experiments, undetected chemical alteration of the magnetic minerals during hydrothermalism may also explain the unusually low palaeointensity obtained.  相似文献   

8.
Summary. In order to contribute to the resolution of the problem of the plate tectonic character of the Caribbean, a palaeomagnetic study has been carried out on some Jamaican igneous rocks. Sixteen Late Cretaceous intrusives and lavas and one Late Miocene lava sampled in five sites have been investigated. Because of widespread maghaemitization of the predominantly large-grained deuteric class 1 titanomagnetites, some difficulty was experienced in identifying stable directions of magnetization in the Cretaceous rock units. Using thermal demagnetization technique, two distinct directions of magnetization were obtained, significantly different from those observed in contemporaneous North American rocks. Nine units yield a palaeomagnetic pole at 143.8°W, 44.1°N, referred to as 'normal', while seven units yield'equatorial'poles situated both east and west of Jamaica. It is not possible to decide which of the two directions of magnetization reflects the Late Cretaceous geomagnetic field in Jamaica, but from other evidence they appear to merit palaeotectonic interpretation. They are consistent with the plate tectonic behaviour of the Caribbean since Late Cretaceous and its motion from the southwest relative to the present day frame of reference, with a simultaneous large anticlockwise horizontal rotation of Jamaica. Late Miocene lavas, containing high-coercivity magnetic material, yield closely grouped directions giving a palaeopole at 152.4°W, 73.3°N, supporting the deductions made from the Cretaceous data.  相似文献   

9.
Summary. A record of geomagnetic field polarity for the Barremian, Aptian and Albian stages of the Early Cretaceous has been derived in three over-lapping sections of pelagic carbonate rocks in the Umbrian Apennines of northern Italy. The remanence carrier in the greyish-white Majolica limestone and Fucoid Marls is magnetite, with haematite also an important constituent in a zone of 'couches rouges' within the Fucoid Marls. The weak remanent magnetizations were measured with a cryogenic magnetometer. Alternating field or thermal demagnetization was used to isolate the characteristic remanent magnetization (ChRM) in 655 specimens from 248 stratigraphic levels. The samples respond positively to a tectonic fold test, indicating that the ChRM predates the Late Tertiary folding of the Umbrian sequence. The magnetic stratigraphy derived from variations of virtual geomagnetic pole latitude clearly defines the recognizable reversal pattern associated with Mesozoic marine magnetic anomalies M0 to M4. The sections have been zones palaeontologically on the basis of planktonic foraminifera and calcareous nannofossil assemblages. The ages of magnetic anomalies M0 to M4 determined in this way are somewhat older than those in the reversal time scale of Larson & Hilde (1975). Anomaly M0 is located in the Early Aptian, close to the Aptian/Barremian boundary. A long period of normal polarity in the Aptian and Albian corresponds to the early part of the Cretaceous magnetic quiet zone. It is interrupted in the Late Aptian by a reversal which we find in only one of the Fucoid Marl sections, and which has not been reported in oceanic magnetic anomaly investigations.  相似文献   

10.
Summary. Palaeomagnetic investigations were carried out on nine lava flows around the Dhar region, which constitute the northern part of the Deccan traps. The stability of remanent magnetism of these specimens was analysed by an alternating magnetic field, thermal demagnetization and memory tests. Six flows exhibited characteristic components of magnetization, with a mean direction of D =143°, I =+46° ( K = 107.1, α95=5.5°). This gives a VGP located at 29° N, 67° W (δp=4.5°, δm= 7.0°). The lower site with normal magnetization and the upper five sites with reverse magnetization indicate a geomagnetic field reversal during the initial phases of Deccan volcanism in the Early Tertiary period. A rapid northward migration of about 18° in latitude and a simultaneous anticlockwise rotation of 37° is calculated for the subcontinent.  相似文献   

11.
The acquisition of a gyroremanent magnetization (GRM) by single-domain (SD) greigite particles during alternating-field (AF) demagnetization is demonstrated. Previous palaeomagnetic studies failed to identify the presence of authigenic greigite in the glacio-marine clays studied. These clays formed the subject of an earlier debate about the validity of a Late Weichselian geomagnetic excursion (the Gothenburg Flip) in southern Sweden. The greigite carries a stable chemical remanent magnetization (CRM), which coexists with a detrital remanent magnetization (DRM) carried by magnetite. AF demagnetization could not isolate the primary remanence in the sediments where magnetite and greigite coexist, due to the overlapping coercivity spectra of the two minerals and the inability to determine the time lag between sediment deposition and CRM formation. Thermal demagnetization removed the CRM at temperatures below 400 C, but this method was hindered by the unconsolidated nature of the sediments and the formation of secondary magnetic minerals at higher temperatures. The results suggest that the low-coercivity DRM carried by magnetite was mistaken for a 'viscous' component in the earlier studies. Hence the former debate about the record of the Gothenburg Flip may have been based on erroneous palaeomagnetic interpretations or non-reproducible results. AF demagnetization procedures applied to samples suspected of bearing SD magnetic particles (such as greigite) should be carefully selected to recognize and account for GRM acquisition.  相似文献   

12.
Summary. A palaeomagnetic investigation of Carbon-14-dated marsh and near-shore lacustrine sediments deposited between about 25000–5000 yr bp at Tlapacoya, Mexico, reveals normal polarity of the geomagnetic field in all samples measured. At one site, anomalous palaeomagnetic directions in a mud unit dated about 14500 yr bp raised the possibility of a geomagnetic excursion, but subsequent work at six additional sites in the unit revealed no abnormal directions. Thus the anomalous directions are most likely not a true reflection of geomagnetic field behaviour, although no specific alternative explanation is entirely convincing. The preliminary Tlapacoya data of anomalous directions have been cited by others as positive evidence for an excursion. We strongly recommend it no longer be considered as such.  相似文献   

13.
Magnetic stratigraphy observed in ferromanganese crust   总被引:1,自引:0,他引:1  
Summary. A sample of ferromanganese crust deposit (SCHW-1D) was cut into two sets of 1 mm slices for palaeomagnetic study. Alternating field and thermal demagnetization, and isothermal remanent magnetization analyses were performed on each thin slice. The results reveal the presence of a stable magnetism and both normal and reversed polarity intervals in the specimens. The observed polarity intervals cannot be confidently correlated with the geomagnetic polarity time-scale of the last 10 Myr due to the polarity overlap inherent in the sampling technique. But the results confirm the slow accretion rate of ferromanganese deposit determined by 10Be method and suggest potential use of ferromanganese deposits in palaeomagnetic and tectonic studies.  相似文献   

14.
Calcite and sedimentary fills in fractures cutting the Upper Devonian carbonates in the Holy Cross Mountains (HCM) were dated palaeomagnetically by comparison with the apparent polar wander path (APWP). Haematite-bearing calcite possessed well-defined components of natural remanent magnetization (NRM), which were preserved under thermal demagnetization to temperatures of approximately 500 °C, when specimens disintegrated. Although not completely demagnetized, some specimens revealed a stable NRM component before destruction, thus making a component analysis possible. Five components were determined using density point distribution and cluster analysis. One has a mean that is similar to the present-day local geomagnetic vector. The remaining four components yielded palaeomagnetic poles located at: A (70.3°S, 5.5°E), B (71.3°S, 31.2°E), C (48.7°S, 351.0°E, virtual geomagnetic pole), and D (11.6°S, 312.3°E). Antipodal polarities found in the fracture fills, together with dissimilarities in magnetization found in calcite and hosting carbonates, indicate the lack of simultaneous remagnetization, and different times of remanence acquisition for the rocks under comparison. Taking both palaeomagnetically inferred palaeolatitudes and regional tectonics into consideration, a Mesozoic (Cretaceous?) age is estimated for palaeopoles A and B, a Permian age for pole C, and a Carboniferous age for pole D. These age determinations are in line with the calcite ages estimated from isotopic studies. A comparative palaeomagnetic study performed on a well-dated Upper Devonian neptunian dyke of limestone and a Lower Triassic clastic vein yielded virtual geomagnetic poles (VGPs) close to the APWP for Baltica. Generally, the remanence from fracture fills may be useful for dating related tectonics, karst phenomena and mineralization processes.  相似文献   

15.
Summary. The Precambrian basement under east-central Kansas was drilled at two circular aeromagnetic positives, one at Osawattamie and one at Big Springs. The core retrieved from these sites is a coarse to medium grained granite which has been dated by U-Pb to be 1350 Ma old. The palaeomagnetism of these azimuthally unoriented cores was studied to see if a technique which uses low-coercivity, low-temperature magnetization components to orient the cores would allow an independent confirmation of the core's mid-Proterozoic age. Orthogonal projection plots of the alternating field (af) and thermal demagnetization data show that the magnetization of these cores is relatively simple, having only two components: a low-temperature, low-coercivity magnetization with steep positive inclinations and a shallow, negative inclination characteristic magnetization for the Osawattamie core or a positive, moderate inclination characteristic magnetization for the Big Springs core. If the declination of the low-temperature, low-coercivity component is aligned parallel to the present field declination, the characteristic directions may be azimuthally oriented. This allows the calculation of palaeomagnetic poles for the Big Springs core (lat. = 4.5°S, long. = 29.9°E) and the Osawattamie core (lat.= 20.2°N, long. = 39.3°E) which are consistent with Irving's apparent polar wander path for Laurentia at about 1300–1400 Ma. Comparison of anhysteretic remanent magnetization (ARM), viscous remanent magnetization (VRM), and isothermal remanent magnetization af demagnetization curves with a natural remanent magnetization (NRM) demagnetization curve suggests that the Osawattamie core probably acquired a piezoremanent magnetization (PRM) parallel to the core axis during drilling.  相似文献   

16.
Summary. The directions of remanent magnetism of samples of the Dunnet Head sandstone from Scotland are very scattered on a scale down to a few millimetres, although an overall mean direction is reasonably well defined. The scattered directions show considerable stability against thermal demagnetization and there is evidence that haematite pigment is an important carrier of the remanence. It is concluded that the origin of the inhomogeneous magnetization is a disturbed ambient field during acquisition of chemical remanence by the pigment.  相似文献   

17.
We present the results of a palaeomagnetic study of four mid-Cretaceous limestone sections exposed in northeastern Mexico. The limestones are weakly magnetized and exhibit two- to three-component magnetizations. These magnetization components appear to be carried by both a sulphide mineral and a magnetite-titanomagnetite mineral. The sulphide mineral carries a reverse polarity overprint that often makes it difficult to isolate definitively the higher-unblocking-temperature component. The high-unblocking-temperature component is well defined in the upper portion of the Santa Rosa Canyon section and in the Cienega del Toro section and passes the fold test. The characteristic remanent magnetization (ChRM) inclinations agree well with predicted mid-Cretaceous inclinations for these sites, although the declinations differ by more than 100°. The relative rotation between these two sites probably occurred as the thrust sheets were emplaced during Laramide deformation. At two of the sections, namely Cienega del Toro and the overturned Los Chorros sections, only normal polarity directions are observed. The La Boca Canyon and Santa Rosa Canyon sections exhibit zones of both normal and reverse polarity magnetization. Correlation of these polarity zones with the geomagnetic polarity timescale provides a time framework for lithostratigraphic and palaeoceanographic studies of these sections.  相似文献   

18.
i
Oriented cores have been secured from fourteen sites in the Great Rhodesian Dyke, by means of a portable sampling drill. The natural remanent magnetizations showed high dispersion at all sites except one. After demagnetization in alternating magnetic fields, nine sites gave well grouped directions of primary magnetization. These sites include five rock types distributed among three Complexes of the Great Dyke and two satellite dykes, over 200 miles of the length of the Dyke and through several thousand feet in depth as the rocks were originally intruded. The nine site mean directions of primary magnetization are closely grouped and are believed to represent directions of thermo-remanent magnetization at the date of intrusion of the Great Dyke. It is suggested that the dates of magnetization at the sites must cover a sufficient time interval to give a mean pole position close to the axial geocentric dipole freed from secular variation. On the assumption of a geocentric dipole field, the position of the mean South magnetic pole is 211/2 °N, 611/2 °E, with radius of 95 per cent confidence 9°. This pole position is close to positions of North magnetic poles given by studies of the palaeo-magnetism of the Pilansberg Dykes and Bushveld gabbro.  相似文献   

19.
The magnetostratigraphy of five new sections through the Neogene Siwalik Group of Nepal is presented. Rock magnetic experiments and detailed thermal demagnetization experiments prove that haematite is the carrier of a primary DRM or a PDRM. After stepwise thermal demagnetization of specimens from all sections, directions of characteristic remanent magnetization were obtained. The results show a positive reversal test and exhibit inclination errors of about 20. Due to gaps in exposures and extremely variable demagnetization behaviour of the haematite-bearing sediments, the resulting polarity sequences are poorly defined for some parts of the sections. However, double-sampled parts of some sections yield similar results. A correlation with the Surai Khola section (Appel, Rösler & Corvinus 1991) is proposed, based on rock magnetic parameters. AMS results from three of the sections prove the existence of primary sedimentary magnetic fabrics in these sections with systematic orientations of minimum and maximum susceptibility axes. Correlation with a standard polarity timescale indicates that the ages of all new sections lie within the age limits of the Surai Khola section.  相似文献   

20.
Palaeomagnetic and geochronological measurements have been carried out on the late Pleistocene basaltic–andesitic unit of Monte Chirica–Costa Rasa, on the island of Lipari (Aeolian Archipelago). The lava flow sequence is about 10  m thick and has been sampled in detail. Magnetic properties are rather uniform; Curie temperatures of 540° to 580 °C, and the saturation IRM reached at applied values of 0.1  T point to titanomagnetite as the main magnetization carrier. Thermal and AF demagnetization have shown the presence of secondary magnetization components. These were removed mostly at 450°–500 °C or 20–30  mT, indicating a highly stable ChRM with directions from transitional to reverse. Where a ChRM could not be isolated by application of the demagnetization techniques, the converging remagnetization circles method gave a mean ChRM value fully comparable with that obtained from other methods. 40Ar/39Ar determinations were performed on two lava flows, in the lower and upper parts of the sequence. The former shows a transitional ChRM direction and a whole-rock age of 157±12  ka, the latter a reverse direction, a whole-rock age of 143±17  ka and a ground-mass age of 128±23  ka. The radiometric data and the reconstructed stratigraphy, which indicate ages of 150±10  ka and 104±3.5  ka, respectively, for the volcanic units at the bottom and top of the Monte Chirica–Costa Rasa unit, suggest that the reverse directions recorded in Lipari are related to the Blake event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号