首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a model of a freely precessing neutron star, which is then compared against pulsar observations. The aim is to draw conclusions regarding the structure of the star, and to test theoretical ideas of crust–core coupling and superfluidity. We argue that, on theoretical grounds, it is likely that the core neutron superfluid does not participate in the free precession of the crust. We apply our model to the handful of proposed observations of free precession that have appeared in the literature. Assuming crust-only precession, we find that all but one of the observations are consistent with there being no pinned crustal superfluid at all; the maximum amount of pinned superfluid consistent with the observations is about 10−10 of the total stellar moment of inertia. However, the observations do not rule out the possibility that the crust and neutron superfluid core precess as a single unit. In this case the maximum amount of pinned superfluid consistent with the observations is about 10−8 of the total stellar moment of inertia. Both of these values are many orders of magnitude less than the 10−2 value predicted by many theories of pulsar glitches. We conclude that superfluid pinning, at least as it affects free precession, needs to be reconsidered.  相似文献   

2.
Pulsar slow glitches in a solid quark star model   总被引:1,自引:0,他引:1  
A series of five unusual slow glitches of the radio pulsar B1822–09 (PSR J1825–0935) was observed between 1995 and 2005. This is a phenomenon that is understood in a solid quark star model, and reasonable parameters for slow glitches are given in this paper. We propose that, because of increasing shear stress as the pulsar spins down, a slow glitch may occur, beginning with the collapse of a superficial layer of the quark star. This layer of material turns to viscous fluid at first, the viscosity of which helps to deplete the energy released from both the accumulated elastic energy and the gravitation potential. There is then a slow glitch. Numerical calculations show that the slow glitches that have been observed could be reproduced if the effective coefficient of viscosity is ∼102 cm2 s−1 and the initial velocity of the superficial layer is of the order of 10−10 cm s−1 in the coordinate rotating frame of the star.  相似文献   

3.
r-modes in neutron stars with crusts are damped by viscous friction at the crust–core boundary. The magnitude of this damping, evaluated by Bildsten & Ushomirsky (BU) under the assumption of a perfectly rigid crust, sets the maximum spin frequency for neutron stars spun up by accretion in low-mass X-ray binaries (LMXBs). In this paper we explore the mechanical coupling between the core r-modes and the elastic crust, using a toy model of a constant-density neutron star having a crust with a constant shear modulus. We find that, at spin frequencies in excess of ≈50 Hz, the r-modes strongly penetrate the crust. This reduces the relative motion (slippage) between the crust and the core compared with the rigid-crust limit. We therefore revise down, by as much as a factor of 102–103 , the damping rate computed by BU, significantly reducing the maximal possible spin frequency of neutron stars with solid crusts. The dependence of the crust–core slippage on the spin frequency is complicated, and is very sensitive to the physical thickness of the crust. If the crust is sufficiently thick, the curve of the critical spin frequency for the onset of the r-mode instability becomes multivalued for some temperatures; this is related to avoided crossings between the r-mode and higher-order torsional modes in the crust. The critical frequencies are comparable to the observed spins of neutron stars in LMXBs and millisecond pulsars.  相似文献   

4.
Many radio pulsars exhibit glitches wherein the star's spin rate increases fractionally by ∼10−10–10−6. Glitches are ascribed to variable coupling between the neutron star crust and its superfluid interior. With the aim of distinguishing among different theoretical explanations for the glitch phenomenon, we study the response of a neutron star to two types of perturbations to the vortex array that exists in the superfluid interior: (1) thermal motion of vortices pinned to inner crust nuclei, initiated by sudden heating of the crust, (e.g., a starquake), and (2) mechanical motion of vortices (e.g., from crust cracking by superfluid stresses). Both mechanisms produce acceptable fits to glitch observations in four pulsars, with the exception of the 1989 glitch in the Crab pulsar, which is best fitted by the thermal excitation model. The two models make different predictions for the generation of internal heat and subsequent enhancement of surface emission. The mechanical glitch model predicts a negligible temperature increase. For a pure and highly conductive crust, the thermal glitch model predicts a surface temperature increase of as much as ∼2 per cent, occurring several weeks after the glitch. If the thermal conductivity of the crust is lowered by a high concentration of impurities, however, the surface temperature increases by ∼10 per cent about a decade after a thermal glitch. A thermal glitch in an impure crust is consistent with the surface emission limits following the 2000 January glitch in the Vela pulsar. Future surface emission measurements coordinated with radio observations will constrain glitch mechanisms and the conductivity of the crust.  相似文献   

5.
The pulsar PSR B1259–63 is in a highly eccentric 3.4-yr orbit with the Be star SS 2883. Timing observations of this pulsar, made over a 7-yr period using the Parkes 64-m radio telescope, cover two periastron passages, in 1990 August and 1994 January. The timing data cannot be fitted by the normal pulsar and Keplerian binary parameters. A timing solution including a (non-precessing) Keplerian orbit and timing noise (represented as a polynomial of fifth order in time) provides a satisfactory fit to the data. However, because the Be star probably has a significant quadrupole moment, we prefer to interpret the data by a combination of timing noise, dominated by a cubic phase term, and ω. and x . terms. We show that the ω. and x . terms are likely to be a result of a precessing orbit caused by the quadrupole moment of the tilted companion star. We further rule out a number of possible physical effects which could contribute to the timing data of PSR B1259–63 on a measurable level.  相似文献   

6.
The quantum phenomenon of spectral flow which has been observed in laboratory superfluids, such as 3He-B, controls the drift velocity of proton type II superconductor vortices in the liquid core of a neutron star and so determines the rate at which magnetic flux can be expelled from the core to the crust. In the earliest and most active phases of the anomalous X-ray pulsars and soft-gamma repeaters, the rates are low and consistent with a large fraction of the active crustal flux not linking the core. If normal neutrons are present in an appreciable core matter-density interval, the spectral flow force limits flux expulsion in cases of rapid spin-down, such as in the Crab pulsar or in the propeller phase of binary systems.  相似文献   

7.
RX J0720.4–3125 has recently been identified as a pulsating soft X-ray source in the ROSAT all-sky survey with a period of 8.391 s. Its spectrum is well characterized by a blackbody with a temperature of 8 × 105 K. We propose that the radiation from this object is thermal emission from a cooling neutron star. For this blackbody temperature we can obtain a robust estimate of the object's age of ∼ 3 × 105 yr, yielding a polar field ∼ 1014 G for magnetic dipole spin-down and a value of P compatible with current observations.  相似文献   

8.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

9.
Transiently accreting neutron stars in quiescence ( L X ≲1034 erg s−1) have been observed to vary in intensity by factors of few, over time-scales of days to years. If the quiescent luminosity is powered by a hot neutron star core, the core cooling time-scale is much longer than the recurrence time, and cannot explain the observed, more rapid variability. However, the non-equilibrium reactions which occur in the crust during outbursts deposit energy in isodensity shells, from which the thermal diffusion time-scale to the photosphere is days to years. The predicted magnitude of variability is too low to explain the observed variability unless – as is widely believed – the neutrons beyond the neutron-drip density are superfluid. Even then, the variability due to this mechanism in models with standard core neutrino cooling processes is less than 50 per cent – still too low to explain the reported variability. However, models with rapid core neutrino cooling can produce a variability by a factor as great as 20, on time-scales of days to years following an outburst. Thus, the factors of ∼ few intensity variability observed from transiently accreting neutron stars can be accounted for by this mechanism only if rapid core cooling processes are active.  相似文献   

10.
We use ideal axisymmetric relativistic magnetohydrodynamic simulations to calculate the spin-down of a newly formed millisecond,   B ∼ 1015 G  , magnetar and its interaction with the surrounding stellar envelope during a core-collapse supernova (SN) explosion. The mass, angular momentum and rotational energy lost by the neutron star are determined self-consistently given the thermal properties of the cooling neutron star's atmosphere and the wind's interaction with the surrounding star. The magnetar drives a relativistic magnetized wind into a cavity created by the outgoing SN shock. For high spin-down powers  (∼1051–1052 erg s−1)  , the magnetar wind is superfast at almost all latitudes, while for lower spin-down powers  (∼1050 erg s−1)  , the wind is subfast but still super-Alfvénic. In all cases, the rates at which the neutron star loses mass, angular momentum and energy are very similar to the corresponding free wind values (≲30 per cent differences), in spite of the causal contact between the neutron star and the stellar envelope. In addition, in all cases that we consider, the magnetar drives a collimated  (∼5–10°)  relativistic jet out along the rotation axis of the star. Nearly all of the spin-down power of the neutron star escapes via this polar jet, rather than being transferred to the more spherical SN explosion. The properties of this relativistic jet and its expected late-time evolution in the magnetar model are broadly consistent with observations of long duration gamma-ray bursts (GRBs) and their associated broad-lined Type Ic SN.  相似文献   

11.
In an attempt to model the accretion on to a neutron star in low-mass X-ray binaries, we present 2D hydrodynamical models of the gas flow in close vicinity of the stellar surface. First, we consider a gas pressure-dominated case, assuming that the star is non-rotating. For the stellar mass we take   M star= 1.4 × 10−2 M  and for the gas temperature   T = 5 × 106 K  . Our results are qualitatively different in the case of a realistic neutron star mass and a realistic gas temperature of T ≃ 108 K, when the radiation pressure dominates. We show that to get the stationary solution in a latter case, the star most probably has to rotate with the considerable velocity.  相似文献   

12.
A Chandra X-ray observation of the globular cluster Terzan 1   总被引:1,自引:0,他引:1  
We present a ∼19-ks Chandra Advanced CCD Imaging Spectrometer (ACIS)-S observation of the globular cluster Terzan 1. 14 sources are detected within 1.4 arcmin of the cluster centre with two of these sources predicted to be not associated with the cluster (background active galactic nuclei or foreground objects). The neutron star X-ray transient, X1732−304, has previously been observed in outburst within this globular cluster with the outburst seen to last for at least 12 yr. Here, we find four sources that are consistent with the ROSAT position for this transient, but none of the sources are fully consistent with the position of a radio source detected with the Very Large Array that is likely associated with the transient. The most likely candidate for the quiescent counterpart of the transient has a relatively soft spectrum and an unabsorbed 0.5–10 keV luminosity of  2.6 × 1032 erg s−1  , quite typical of other quiescent neutron stars. Assuming standard core cooling, from the quiescent flux of this source we predict long (>400 yr) quiescent episodes to allow the neutron star to cool. Alternatively, enhanced core cooling processes are needed to cool down the core. However, if we do not detect the quiescent counterpart of the transient this gives an unabsorbed 0.5–10 keV luminosity upper limit of  8 × 1031 erg s−1  . We also discuss other X-ray sources within the globular cluster. From the estimated stellar encounter rate of this cluster we find that the number of sources we detect is significantly higher than expected by the relationship of Pooley et al.  相似文献   

13.
It is shown that the radius of curvature of magnetic field lines in the polar region of a rotating magnetized neutron star can be significantly less than the usual radius of curvature of the dipole magnetic field. The magnetic field in the polar cap is distorted by toroidal electric currents flowing in the neutron star crust. These currents close up the magnetospheric currents driven by the electron–positron plasma generation process in the pulsar magnetosphere. Owing to the decrease in the radius of curvature, electron–positron plasma generation becomes possible even for slowly rotating neutron stars, with   PB −2/312 < 10 s  , where P is the period of star rotation and   B 12= B /1012 G  is the magnitude of the magnetic field on the star surface.  相似文献   

14.
Three slow glitches in the rotation rate of the pulsar B1822−09 were revealed over the 1995–2004 interval. The slow glitches observed are characterized by a gradual increase in the rotation frequency with a long time-scale of several months, accompanied by a rapid decrease in the magnitude of the frequency first derivative by ∼1–2 per cent of the initial value and subsequent exponential increase back to its initial value on the same time-scale. The cumulative fractional increase in the pulsar rotation rate for the three glitches amounts to  Δν/ν0∼ 7 × 10−8  .  相似文献   

15.
We show that the crust–core interface in neutron stars acts as a potential barrier to the peripheral neutron vortices approaching the interface in the model in which these are coupled to the proton vortex clusters. This elementary barrier arises because of the interaction of vortex magnetic flux with the Meissner currents set up by the crustal magnetic field at the interface. The dominant part of the force is derived from the cluster–interface interaction. As a result of the stopping of the continuous neutron vortex current through the interface, angular momentum is stored in the superfluid layers in the vicinity of the crust–core interface during the interglitch period. Discontinuous annihilation of proton vortices at the boundary restores the neutron vortex current and spins up the observable crust on short time-scales, leading to a glitch in the spin characteristics of a pulsar.  相似文献   

16.
It is usually assumed that pulsar glitches are caused by the large-scale unpinning of superfluid neutron vortices in the solid crust of a neutron star and that vortex motion relative to the crust is highly dissipative at low velocities, owing to the excitation of long-wavelength Kelvin waves. The force per unit length acting on a vortex as a result of Kelvin wave excitation has been calculated for a polycrystalline structure using the free-vortex Green function. An approximate upper limit for the maximum pinning force has been obtained which, for the form of structure anticipated, is many orders of magnitude too small for consistency with the observed size and frequency of glitches. The corollary is that glitches do not originate in the crust: the necessary pinning may be given by the interaction between neutron and proton vortices in the liquid core of the star.  相似文献   

17.
The timing properties of the 4.45 s pulsar in the Be X-ray binary system GRO J1750−27 are examined using hard X-ray data from INTEGRAL and Swift during a type II outburst observed during 2008. The orbital parameters of the system are measured and agree well with those found during the last known outburst of the system in 1995. Correcting the effects of the Doppler shifting of the period, due to the orbital motion of the pulsar, leads to the detection of an intrinsic spin-up that is well described by a simple model including     and     terms of  −7.5 × 10−10 s s−1  and  1 × 10−16 s s−2  , respectively. The model is then used to compare the time-resolved variation of the X-ray flux and intrinsic spin-up against the accretion torque model of Ghosh & Lamb; this finds that GRO J1750−27 is likely located 12–22 kpc distant and that the surface magnetic field of the neutron star is  ∼2 × 1012  G. The shape of the pulse and the pulsed fraction shows different behaviour above and below 20 keV, indicating that the observed pulsations are the convolution of many complex components.  相似文献   

18.
The single glitch observed in PSR B1821−24, a millisecond pulsar in M28, is unusual on two counts. First, the magnitude of this glitch is at least an order of magnitude smaller  (Δν/ν∼ 10−11)  than the smallest glitch observed to date. Secondly, all other glitching pulsars have strong magnetic fields with   B ≳ 1011 G  and are young, whereas PSR B1821−24 is an old recycled pulsar with a field strength of  2.25 × 109 G  . We have earlier suggested that some of the recycled pulsars could actually be strange quark stars. In this work, we argue that the crustal properties of such a strange pulsar are just right to give rise to a glitch of this magnitude, explaining the scarcity of larger glitches in millisecond pulsars.  相似文献   

19.
Six glitches have been recently observed in the rotational frequency of the young pulsar PSR B1737−30 (J1740−3015) using the 25-m Nanshan telescope of Urumqi Observatory. With a total of 20 glitches in 20 yr, it is one of the most frequently glitching pulsars of the ∼1750 known pulsars. Glitch amplitudes are very variable with fractional increases in rotation rate ranging from 10−9 to 10−6. Interglitch intervals are also very variable, but no relationship is observed between interval and the size of the preceding glitch. There is a persistent increase in     , opposite in sign to that expected from slowdown with a positive braking index, which may result from changes in the effective magnetic dipole moment of the star during the glitch.  相似文献   

20.
We treat the phenomenon of a γ -ray burst as the non-linear collapse of a magnetic cavity surrounding a neutron star with extremely large magnetic field B ∼1015–1016 G due to the process of bubble shape instability in the resonant MHD field of an accreting plasma or on a neutron star surface. The QED effect of vacuum polarizability by a strong magnetic field is taken into a consideration. We develop an analogy with the phenomenon of sonoluminescence in which the gas bubble is located in a surrounding liquid with a driven sound intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号