首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

2.
This study emphasizes that the harmonic downward continuation of an external representation of the Earth’s gravity potential to sea level through the topographic masses implies a topographic bias. It is shown that the bias is only dependent on the topographic density along the geocentric radius at the computation point. The bias corresponds to the combined topographic geoid effect, i.e., the sum of the direct and indirect topographic effects. For a laterally variable topographic density function, the combined geoid effect is proportional to terms of powers two and three of the topographic height, while all higher order terms vanish. The result is useful in geoid determination by analytical continuation, e.g., from an Earth gravity model, Stokes’s formula or a combination thereof.  相似文献   

3.
The formulas for the determination of the coefficients of the spherical harmonic expansion of the disturbing potential of the earth are defined for data given on a sphere. In order to determine the spherical harmonic coefficients, the gravity anomalies have to be analytically downward continued from the earth's surface to a sphere—at least to the ellipsoid. The goal of this paper is to continue the gravity anomalies from the earth's surface downward to the ellipsoid using recent elevation models. The basic method for the downward continuation is the gradient solution (theg 1 term). The terrain correction has also been computed because of the role it can play as a correction term when calculating harmonic coefficients from surface gravity data. Theg 1 term and the terrain correction were expanded into the spherical harmonics up to180 th order. The corrections (theg 1 term and the terrain correction) have the order of about 2% of theRMS value of degree variance of the disturbing potential per degree. The influences of theg 1 term and the terrain correction on the geoid take the order of 1 meter (RMS value of corrections of the geoid undulation) and on the deflections of the vertical is of the order 0.1″ (RMS value of correction of the deflections of the vertical).  相似文献   

4.
The determination of the gravimetric geoid is based on the magnitude of gravity observed at the surface of the Earth or at airborne altitude. To apply the Stokes’s or Hotine’s formulae at the geoid, the potential outside the geoid must be harmonic and the observed gravity must be reduced to the geoid. For this reason, the topographic (and atmospheric) masses outside the geoid must be “condensed” or “shifted” inside the geoid so that the disturbing gravity potential T fulfills Laplace’s equation everywhere outside the geoid. The gravitational effects of the topographic-compensation masses can also be used to subtract these high-frequent gravity signals from the airborne observations and to simplify the downward continuation procedures. The effects of the topographic-compensation masses can be calculated by numerical integration based on a digital terrain model or by representing the topographic masses by a spherical harmonic expansion. To reduce the computation time in the former case, the integration over the Earth can be divided into two parts: a spherical cap around the computation point, called the near zone, and the rest of the world, called the far zone. The latter one can be also represented by a global spherical harmonic expansion. This can be performed by a Molodenskii-type spectral approach. This article extends the original approach derived in Novák et al. (J Geod 75(9–10):491–504, 2001), which is restricted to determine the far-zone effects for Helmert’s second method of condensation for ground gravimetry. Here formulae for the far-zone effects of the global topography on gravity and geoidal heights for Helmert’s first method of condensation as well as for the Airy-Heiskanen model are presented and some improvements given. Furthermore, this approach is generalized for determining the far-zone effects at aeroplane altitudes. Numerical results for a part of the Canadian Rocky Mountains are presented to illustrate the size and distributions of these effects.  相似文献   

5.
Recent papers in the geodetic literature promote the reduction of gravity for geoid determination according to the Helmert condensation technique where the entire reduction is made in place before downward continuation. The alternative approach, primarily developed by Moritz, uses two evaluation points, one at the Earths surface, the other on the (co-)geoid, for the direct topographic effect. Both approaches are theoretically legitimate and the derivations in each case make use of the planar approximation and a Lipschitz condition on height. Each method is re-formulated from first principles, yielding equations for the direct effect that contain only the spherical approximation. It is shown that neither method relies on a linear relationship between gravity anomalies and height (as claimed by some). Numerical tests, however, show that the practical implementations of these two approaches yield significant differences. Computational tests were performed in three areas of the USA, using 1×1 grids of gravity data and 30×30 grids of height data to compute the gravimetric geoid undulation, and GPS/leveled heights to compute the geometric geoid undulation. Using the latter as a control, analyses of the gravimetric undulations indicate that while in areas with smooth terrain no substantial differences occur between the gravity reduction methods, the Moritz–Pellinen (MP) approach is clearly superior to the Vanicek–Martinec (VM) approach in areas of rugged terrain. In theory, downward continuation is a significant aspect of either approach. Numerically, however, based on the test data, neither approach benefited by including this effect in the areas having smooth terrain. On the other hand, in the rugged, mountainous area, the gravimetric geoid based on the VM approach was improved slightly, but with the MP approach it suffered significantly. The latter is attributed to an inability to model the downward continuation of the Bouguer anomaly accurately in rugged terrain. Applying the higher-order, more accurate gravity reduction formulas, instead of their corresponding planar and linear approximations, yielded no improvement in the accuracy of the gravimetric geoid undulation based on the available data.  相似文献   

6.
The topographic bias is defined as the error/bias committed by continuing the external gravity field inside the topographic masses by a harmonic function. We study the topographic bias given by a digital terrain model defined by a spherical template, and we show that the topographic bias is given only by the potential of an inner-zone cap, and it equals the bias of the Bouguer shell, independent of the size of the cap. Then we study the effect on the real Earth by decomposing its topography into a template, and we show also in this case that the topographic bias is that of the Bouguer shell, independent of the shape of the terrain. Finally, we show that the topographic potential of the terrain at the geoid can be determined to any precision by a Taylor expansion outside the Earth’s surface. The last statement is demonstrated by a Taylor expansion to fourth order.  相似文献   

7.
The topographic effects by Stokes formula are typically considered for a spherical approximation of sea level. For more precise determination of the geoid, sea level is better approximated by an ellipsoid, which justifies the consideration of the ellipsoidal corrections of topographic effects for improved geoid solutions. The aim of this study is to estimate the ellipsoidal effects of the combined topographic correction (direct plus indirect topographic effects) and the downward continuation effect. It is concluded that the ellipsoidal correction to the combined topographic effect on the geoid height is far less than 1 mm. On the contrary, the ellipsoidal correction to the effect of downward continuation of gravity anomaly to sea level may be significant at the 1-cm level in mountainous regions. Nevertheless, if Stokes formula is modified and the integration of gravity anomalies is limited to a cap of a few degrees radius around the computation point, nor this effect is likely to be significant.AcknowledgementsThe author is grateful for constructive remarks by J Ågren and the three reviewers.  相似文献   

8.
The application of Stokes’s formula to determine the geoid height requires that topographic and atmospheric masses be mathematically removed prior to Stokes integration. This corresponds to the applications of the direct topographic and atmospheric effects. For a proper geoid determination, the external masses must then be restored, yielding the indirect effects. Assuming an ellipsoidal layering of the atmosphere with 15% increase in its density towards the poles, the direct atmospheric effect on the geoid height is estimated to be −5.51 m plus a second-degree zonal harmonic term with an amplitude of 1.1 cm. The indirect effect is +5.50 m and the total geoid correction thus varies between −1.2 cm at the equator to 1.9 cm at the poles. Finally, the correction needed to the atmospheric effect if Stokes’s formula is used in a spherical approximation, rather than an ellipsoidal approximation, of the Earth varies between 0.3 cm and 4.0 cm at the equator and pole, respectively.  相似文献   

9.
 The downward continuation of the harmonic disturbing gravity potential, derived at flight level from discrete observations of airborne gravity by the spherical Hotine integral, to the geoid is discussed. The initial-boundary-value approach, based on both the direct and inverse solution to Dirichlet's problem of potential theory, is used. Evaluation of the discretized Fredholm integral equation of the first kind and its inverse is numerically tested using synthetic airborne gravity data. Characteristics of the synthetic gravity data correspond to typical airborne data used for geoid determination today and in the foreseeable future: discrete gravity observations at a mean flight height of 2 to 6 km above mean sea level with minimum spatial resolution of 2.5 arcmin and a noise level of 1.5 mGal. Numerical results for both approaches are presented and discussed. The direct approach can successfully be used for the downward continuation of airborne potential without any numerical instabilities associated with the inverse approach. In addition to these two-step approaches, a one-step procedure is also discussed. This procedure is based on a direct relationship between gravity disturbances at flight level and the disturbing gravity potential at sea level. This procedure provided the best results in terms of accuracy, stability and numerical efficiency. As a general result, numerically stable downward continuation of airborne gravity data can be seen as another advantage of airborne gravimetry in the field of geoid determination. Received: 6 June 2001 / Accepted: 3 January 2002  相似文献   

10.
Local geoid determination from airborne vector gravimetry   总被引:3,自引:2,他引:1  
Methods are illustrated to compute the local geoid using the vertical and horizontal components of the gravity disturbance vector derived from an airborne GPS/inertial navigation system. The data were collected by the University of Calgary in a test area of the Canadian Rocky Mountains and consist of multiple parallel tracks and two crossing tracks of accelerometer and gyro measurements, as well as precise GPS positions. Both the boundary-value problem approach (Hotines integral) and the profiling approach (line integral) were applied to compute the disturbing potential at flight altitude. Cross-over adjustments with minimal control were investigated and utilized to remove error biases and trends in the estimated gravity disturbance components. Final estimation of the geoid from the vertical gravity disturbance included downward continuation of the disturbing potential with correction for intervening terrain masses. A comparison of geoid estimates to the Canadian Geoid 2000 (CGG2000) yielded an average standard deviation per track of 14 cm if they were derived from the vertical gravity disturbance (minimally controlled with a cross-over adjustment), and 10 cm if derived from the horizontal components (minimally controlled in part with a simulated cross-over adjustment). Downward continuation improved the estimates slightly by decreasing the average standard deviation by about 0.5 cm. The application of a wave correlation filter to both types of geoid estimates yielded significant improvement by decreasing the average standard deviation per track to 7.6 cm.  相似文献   

11.
The short wavelength geoid undulations, caused by topography, amount to several decimeters in mountainous areas. Up to now these effects are computed by means of digital terrain models in a grid of 100–500m. However, for many countries these data are not yet available or their collection is too expensive. This problem can be overcome by considering the special behaviour of the gravity potential along mountain slopes. It is shown that 90 per cent of the topographic effects are represented by a simple summation formula, based on the average height differences and distances between valleys and ridges along the geoid profiles, δN=[30.H.D.+16.(H−H′).D] in mm/km, (error<10%), whereH, H′, D are estimated in a map to the nearest 0.2km. The formula is valid for asymmetric sides of valleys (H, H′) and can easily be corrected for special shapes. It can be used for topographic refinement of low resolution geoids and for astrogeodetic projects. The “slope method” was tested in two alpine areas (heights up to 3800m, astrogeodetic deflection points every 170km 2) and resulted in a geoid accuracy of ±3cm. In first order triangulation networks (astro points every 1000km 2) or for gravimetric deflections the accuracy is about 10cm per 30km. Since a map scale of 1∶500.000 is sufficient, the method is suitable for developing countries, too.  相似文献   

12.
Geoid, topography, and the Bouguer plate or shell   总被引:1,自引:1,他引:1  
 Topography plays an important role in solving many geodetic and geophysical problems. In the evaluation of a topographical effect, a planar model, a spherical model or an even more sophisticated model can be used. In most applications, the planar model is considered appropriate: recall the evaluation of gravity reductions of the free-air, Poincaré–Prey or Bouguer kind. For some applications, such as the evaluation of topographical effects in gravimetric geoid computations, it is preferable or even necessary to use at least the spherical model of topography. In modelling the topographical effect, the bulk of the effect comes from the Bouguer plate, in the case of the planar model, or from the Bouguer shell, in the case of the spherical model. The difference between the effects of the Bouguer plate and the Bouguer shell is studied, while the effect of the rest of topography, the terrain, is discussed elsewhere. It is argued that the classical Bouguer plate gravity reduction should be considered as a mathematical construction with unclear physical meaning. It is shown that if the reduction is understood to be reducing observed gravity onto the geoid through the Bouguer plate/shell then both models give practically identical answers, as associated with Poincaré's and Prey's work. It is shown why only the spherical model should be used in the evaluation of topographical effects in the Stokes–Helmert solution of Stokes' boundary-value problem. The reason for this is that the Bouguer plate model does not allow for a physically acceptable condensation scheme for the topography. Received: 24 December 1999 / Accepted: 11 December 2000  相似文献   

13.
Gravimetric geoid determination by Stokes formula requires that the effects of topographic masses be removed prior to Stokes integration. This step includes the direct topographic and the downward continuation (DWC) effects on gravity anomaly, and the computations yield the co-geoid height. By adding the effect of restoration of the topography, the indirect effect on the geoid, the geoid height is obtained. Unfortunately, the computations of all these topographic effects are hampered by the uncertainty of the density distribution of the topography. Usually the computations are limited to a constant topographic density, but recently the effects of lateral density variations have been studied for their direct and indirect effects on the geoid. It is emphasised that the DWC effect might also be significantly affected by a lateral density variation. However, instead of computing separate effects of lateral density variation for direct, DWC and indirect effects, it is shown in two independent ways that the total geoid effect due to the lateral density anomaly can be represented as a simple correction proportional to the lateral density anomaly and the elevation squared of the computation point. This simple formula stems from the fact that the significant long-wavelength contributions to the various topographic effects cancel in their sum. Assuming that the lateral density anomaly is within 20% of the standard topographic density, the derived formula implies that the total effect on the geoid is significant at the centimetre level for topographic elevations above 0.66 km. For elevations of 1000, 2000 and 5000 m the effect is within ± 2.2, ± 8.8 and ± 56.8 cm, respectively. For the elevation of Mt. Everest the effect is within ± 1.78 m.  相似文献   

14.
This research deals with some theoretical and numerical problems of the downward continuation of mean Helmert gravity disturbances. We prove that the downward continuation of the disturbing potential is much smoother, as well as two orders of magnitude smaller than that of the gravity anomaly, and we give the expression in spectral form for calculating the disturbing potential term. Numerical results show that for calculating truncation errors the first 180 of a global potential model suffice. We also discuss the theoretical convergence problem of the iterative scheme. We prove that the 5×5 mean iterative scheme is convergent and the convergence speed depends on the topographic height; for Canada, to achieve an accuracy of 0.01 mGal, at most 80 iterations are needed. The comparison of the “mean” and “point” schemes shows that the mean scheme should give a more reasonable and reliable solution, while the point scheme brings a large error to the solution. Received: 19 August 1996 / Accepted: 4 February 1998  相似文献   

15.
The evaluation of deflections of the vertical for the area of Greece is attempted using a combination of topographic and astrogeodetic data. Tests carried out in the area bounded by 35°≤ϕ≤42°, 19°≤λ≤27° indicate that an accuracy of ±3″.3 can be obtained in this area for the meridian and prime vertical deflection components when high resolution topographic data in the immediate vicinity of computation points are used, combined with high degree spherical harmonic expansions of the geopotential and isostatic reduction potential. This accuracy is about 25% better than the corresponding topographic-Moho deflection components which are evaluated using topographic and Moho data up to 120 km around each station, without any combination with the spherical harmonic expansion of the geopotential or isostatic reduction potential. The accuracy in both cases is increased to about 2″.6 when the astrogeodetic data available in the area mentioned above are used for the prediction of remaining values. Furthermore the estimation of datum-shift parameters is attempted using least squares collocation.  相似文献   

16.
Least-squares collocation and Stokes integral formula, as implemented using the Fast Fourier Technique, handle the harmonic downward continuation problem quite differently. FFT furthermore requires gridded data, amplifying the difference of methods.We have in this paper studied numerically the effects of downward continuation and gridding in a mountainous area in central Norway. Topographically smoothed data were used in order to reduce these effects. Despite the smoothing, it was found that the vertical gravity gradient had values up to -11 mgal/km. The corresponding differences between geoid heights and the height anomalies at altitude reached 12 cm.The differences between geoid heights obtained using collocation or FFT with gravity data at terrain level or sea level showed differences between the values of up to 10 cm r.m.s. A part of this difference was a consequence of different data areas used in the FFT and collocation solution, though.Major discrepancies between the solutions were found in areas where the topographic smoothing could not be applied (deep fjords with no depth information in the used DTM) or where there seemed to be gross errors in the data.We conclude that proper handling of harmonic continuation is important, even when we as here have used a 1 km resolution DTM for the calculation of topographic effects. The effect of data gridding, required for the FFT method, seems not to be as serious as the need to limit the data distribution area, required when least squares collocation is used with randomly distributed data.  相似文献   

17.
 The analytical continuation of the surface gravity anomaly to sea level is a necessary correction in the application of Stokes' formula for geoid estimation. This process is frequently performed by the inversion of Poisson's integral formula for a sphere. Unfortunately, this integral equation corresponds to an improperly posed problem, and the solution is both numerically unstable, unless it is well smoothed, and tedious to compute. A solution that avoids the intermediate step of downward continuation of the gravity anomaly is presented. Instead the effect on the geoid as provided by Stokes' formula is studied directly. The practical solution is partly presented in terms of a truncated Taylor series and partly as a truncated series of spherical harmonics. Some simple numerical estimates show that the solution mostly meets the requests of a 1-cm geoid model, but the truncation error of the far zone must be studied more precisely for high altitudes of the computation point. In addition, it should be emphasized that the derived solution is more computer efficient than the detour by Poisson's integral. Received: 6 February 2002 / Accepted: 18 November 2002 Acknowledgements. Jonas ?gren carried out the numerical calculations and gave some critical and constructive remarks on a draft version of the paper. This support is cordially acknowledged. Also, the thorough work performed by one unknown reviewer is very much appreciated.  相似文献   

18.
The solution of the linear Molodensky problem by analytical continuation to point level is numerically the most convenient of all the theoretically equivalent solutions. It is obtained by successively applying the same integral operator and it does not depend explicitly on the terrain inclination. However, its dependence on the computation point restricts somehow the computational efficiency. The use of the Fourier transform for the evaluation of the integral operator in planar approximation lessens significantly the burden of computations. Using this spectral approach, the problem has been reformulated and solved in the frequency domain. Moreover, it is shown that the solution can be easily split into two steps: (a) “downward” continuation to sea level, which is independent of the computation point, and (b) “upward” continuation from sea to point level, using the values computed at sea level. Such a treatment not only simplifies the formulas and increases the numerical efficiency but also clarifies the physical interpretation and the theoretical equivalence of the continuation solution with respect to the other solution types. Numerical tests have been performed to investigate which terms in the Molodensky series are of significance for geoid and deflection computations. The practical difficulty of differences in the grid spacings of gravity and height data has been overcome by frequency domain interpolation. Presented at theXIX IUGG General Assembly, Vancouver, B.C., August 9–22, 1987.  相似文献   

19.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

20.
The objective of this study is to evaluate two approaches, which use different representations of the Earth’s gravity field for downward continuation (DC), for determining Helmert gravity anomalies on the geoid. The accuracy of these anomalies is validated by 1) analyzing conformity of the two approaches; and 2) converting them to geoid heights and comparing the resulting values to GPS-leveling data. The first approach (A) consists of evaluating Helmert anomalies at the topography and downward-continuing them to the geoid. The second approach (B) downward-continues refined Bouguer anomalies to the geoid and transforms them to Helmert anomalies by adding the condensed topographical effect. Approach A is sensitive to the DC because of the roughness of the Helmert gravity field. The DC effect on the geoid can reach up to 2 m in Western Canada when the Stokes kernel is used to convert gravity anomalies to geoid heights. Furthermore, Poisson’s equation for DC provides better numerical results than Moritz’s equation when the resulting geoid models are validated against the GPS-leveling. On the contrary, approach B is significantly less sensitive to the DC because of the smoothness of the refined Bouguer gravity field. In this case, the DC (Poisson’s and Moritz’s) contributes only at the decimeter level to the geoid model in Western Canada. The maximum difference between the geoid models from approaches A and B is about 5 cm in the region of interest. The differences may result from errors in the DC such as numerical instability. The standard deviations of the hHN for both approaches are about 8 cm at the 664 GPS-leveling validation stations in Western Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号