首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
黑龙江依兰地区黑硬绿泥石片岩岩石学与P-T条件研究   总被引:3,自引:2,他引:1  
依兰地区黑龙江杂岩中黑硬绿泥石片岩矿物组合为黑硬绿泥+绿泥石+多硅白云母+钠长石+透闪石+钾长石±黑云母.岩石矿物学研究表明黑硬绿泥石片岩形成于250~400℃,6~9kbar的变质条件下.黄褐色黑硬绿泥石呈束状、放射状集合体.黑硬绿泥石片岩形成于佳木斯地块向西与松嫩地块俯冲拼贴过程中蓝片岩变质作用的后期,压力稍有降低而温度略有升高的变质变形环境,是蓝片岩向绿片岩转变的蓝闪绿片岩相变质条件下的产物.  相似文献   

2.
Phase relations of biotite and stilpnomelane in the greenschist facies   总被引:1,自引:0,他引:1  
Phase relations of biotite and stilpnomelane and associated silicate minerals have been studied in rocks of the greenschist facies, chiefly from Otago, New Zealand and western Vermont, but also from Scotland, Minnesota-Michigan iron range, and northwest Washington. That stilpnomelane in the greenschicht facies crystallizes initially with nearly all iron in the ferrous state is indicated by chemical analyses, high p-T experiments, and phase relationships. Alteration of stilpnomelane after metamorphism not only oxidizes iron but leaches potassium; corrections for both effects must be made in using analyses of brown stilpnomelane in studies of phase relations. Two discontinuous reactions which produce biotite at the biotite isograd have been identified:
  1. muscovite+stilpnomelane+actinolite→ biotite+chlorite+epidote
  2. chlorite+microcline→ biotite+muscovite. Biotite produced by the first of these reactions has a limited range of variation in Fe/Mg. As grade advances within the biotite zone more magnesian and ferruginous biotites become stable in consequence of the two continuous reactions:
  3. muscovite+actinolite+chlorite→ biotite (Mg-rich)+epidote
  4. muscovite+stilpnomelane→ biotite (Fe-rich)+chlorite.
Stilpnomelane is stable in muscovite-free rocks throughout the biotite zone, and even up to the grade at which hornblende becomes stable. Phengitic muscovite is stable throughout the biotite zone in New Zealand and thus apparently does not contribute to the formation of biotite until a higher grade is reached.  相似文献   

3.
BROWN  E. H. 《Journal of Petrology》1975,16(1):258-271
This report presents an analysis of phase relations among biotite,muscovite, chlorite, stilpnomelane, actinolite and K-feldsparin a ten component system within the greenschist facies. Itis based on study of the chemical composition of these minerals,on calculations to balance chemical equations-among them, andon their field distribution. A petrogenetic grid resulting fromthis treatment consists of a single invariant point and multipleunivariant lines, the number depending on what part of the assemblageset is held constant. The reactions which involve biotite aresimilar to previously proposed reactions for the biotite isograd.At high pressure, biotite is produced from muscovite+stilpnomelane+actinolite?K-feldspar.At low pressure, chlorite+K-feldspar?stilpnomelane?actinolitereact to form biotite. A biotite-free reaction, not previouslyidentified, divides the chlorite zone into high pressure andlow pressure fields, characterized by the assemblages muscovite+stilpnomelane+actinoliteand chlorite+K-feldspar, respectively. In the blueschist facies,muscovite plus stilpnomelane and/or actinolite are stable insteadof biotite.  相似文献   

4.
BROWN  E. H. 《Journal of Petrology》1975,16(2):258-271
This report presents an analysis of phase relations among biotite,muscovite, chlorite, stilpnomelane, actinolite and K-feldsparin a ten component system within the greenschist facies. Itis based on study of the chemical composition of these minerals,on calculations to balance chemical equationsamong them, andon their field distribution. A petrogenetic grid resulting fromthis treatment consists of a single invariant point and multipleunivariant lines, the number depending on what part of the assemblageset is held constant. The reactions which involve biotite aresimilar to previously proposed reactions for the biotite isograd.At high pressure, biotite is produced from muscovite+stilpnomelane+actinolite±K-feldspar.At low pressure, chlorite+K-feldspar±stilpnomelane±actinolitereact to form biotite. A biotite-free reaction, not previouslyidentified, divides the chlorite zone into high pressure andlow pressure fields, characterized by the assemblages muscovite+stilpnomelane+actinoliteand chlorite+K-feldspar, respectively. In the blueschist facies,muscovite plus stilpnomelane and/or actinolite are stable insteadof biotite.  相似文献   

5.
Moderately manganiferous siliceous pelagites near Meyers Pass, Torlesse Terrane, South Canterbury, New Zealand, have been metamorphosed in the prehnite–pumpellyite facies. A conodont colour index measurement suggests T max in the range 190–300 °C. Porphyroblastic manganaxinite, manganoan pumpellyite, manganoan chlorite and trace spessartine-rich garnet and sphalerite have formed in an extremely fine-grained quartz–albite–berthierine–phengite–titanite groundmass. Porphyroblastic manganaxinite semischists and schists are distinctive rocks in prehnite–pumpellyite to lower-grade greenschist and blueschist facies of New Zealand and Japan. Mn in the manganoan pumpellyites substitutes for Ca in W sites. Total Fe/(Fe+Mg) ratios in chlorite are dependent on oxidation state, being ≤0.22 in red hematitic hemipelagites, and ≥0.61 in low-f O2 grey metapelagites. In the low-f O2 metapelagites, manganoan berthierine with little or no chlorite is inferred in the groundmass and iron-rich chlorite occurs as porphyroblasts and veinlets, whereas in the red rocks, Mg-rich chlorite occurs both in groundmasses and veinlets. Variably high Si in the manganoan chlorites correlates with evidence for contaminant phases. The Mn content of chlorite contributing to garnet growth is dependent on metamorphic grade; incipient spessartine indicates a saturation value of 6–8% MnO in chlorite in low-f O2 rocks at Meyers Pass. Lower MnO contents are recorded for otherwise analogous rocks with increasing metamorphic grade, but at a given grade coexisting chlorite and garnet are richer in Mn where f O2 is high. Manganaxinite and manganoan pumpellyite also contributed to reactions forming grossular–spessartine solid solutions. Formation of garnet in siliceous pelagites is dependent on both Mn and Ca content. The spessartine component increases with grade into the greenschist facies. Partial recrystallization of berthierine to chlorite and the growth of porphyroblastic patches of other minerals was facilitated by brittle fracture and access of fluids to an otherwise impermeable matrix; to this extent the very low-grade metamorphism was episodic.  相似文献   

6.
Rocks of the greenschist facies in eastern Otago, New Zealand, have been investigated in an area some thirteen to sixteen kilometers wide and sixty-five kilometers long extending northeastwards approximately normal to the boundary of the schist with lower grade rocks. Quartzo-feldspathic schists predominate but greenschists and metacherts occur sporadically throughout the area. At the southwestern edge of the area schists are in the chlorite zone, slightly above the high-grade limit of pumpellyite. Metamorphic grade increases toward the northeast into the biotite zone which occupies about half the terrane studied and is believed to be everywhere little advanced in metamorphic grade past that of the biotite isograd. Some 130 mineral specimens have been partially analysed with the electron probe. Results derived from these data as well as other mineralogical investigation are as follows: Albite contains a maximum of 1% anorthite plus orthoclase in epidote-bearing rocks from all parts of the area.Compositions of epidotes range from 12% to 32% Ca2Fe3(SiO4)3(OH), but most lie between 15% and 20%, a compositional field thought by Strens (1965) and Holdaway (1965) to occupy a miscibility gap in the epidote series. Zoning in some epidotes suggests a history of early growth of small, sparse iron-rich epidotes, and later growth of relatively large amounts of iron-poor epidote probably caused by breakdown of prehnite and/or pumpellyite. Muscovites vary widely in celadonite content; but the composition shows little if any dependence on metamorphic grade within the area studied. Most tend to be celadonite-rich, and in this respect are similar in composition to muscovites from rocks of the glaucophane-schist facies.Chlorites range widely in Mg/Fe; but Al/Mg+Fe is relatively uniform. Chlorites associated with actinolite tend to have higher Mg/Fe than those associated with stilpnomelane. Following the classification of Foster (1962) most chlorites are brunsvigite and some are ripidolite. Textural and chemical relations between biotite and coexisting minerals demonstrate that, contrary to some previous suggestions, biotite is not a relict mineral. An alteration product of chlorite bears strong resemblance to biotite, and previous misidentification of this mineral as biotite has caused much confusion regarding the distribution and metamorphic significance of biotite in Otago schists.An attempt to determine the reaction producing biotite is not successful. Possibly biotitebearing rocks have slightly higher biotite component than rocks of the chlorite zone. All newly formed amphibole found in eastern Otago is pale green, Al- and Na-poor actinolite. One of the chemical conditions necessary for the formation of actinolite in schists of eastern Otago is a relatively high Mg/Fe+Al ratio.Stilpnomelane is an integral part of assemblages in which it occurs, being developed under conditions of relatively low and in rocks with a high Fe/Mg + Al ratio. The present highly oxidized state of all stilpnomelane observed in this study is probably not a primary feature of the mineral but developed after metamorphism.Porphyroblastic garnets are accessory constituents in about half the quartzo-feldspathic schists collected from the biotite zone but are extremely rare in specimens of the same lithology from the chlorite zone. Either a garnet-producing reaction began in quartzo-feldspathic schists at about the biotite isograd, or rocks of biotite zone tend to have slightly higher garnet component than those of the chlorite zone. Composition of the garnets ranges widely, extremes being: 77% spess., 18% gross., 5% alm.; 25% spess., 50% gross., 25% alm.; 15% spess., 30% gross., 55% alm. Most of the variation in composition is controlled by host rock composition, but garnets at higher grade tend to have lower spessartine content. The garnets are zoned; generally Mn decreases and Fe increases from core to rim.For the most part chemical equilibrium among different grains and minerals was closely approached over distances of at least a few millimeters. However, profound disequilibrium exists within some individual grains, such as a zoned garnet which over a distance of only 15 microns ranges in spessartine content from 77% in the core to 35% on the rim.This report is a condensed version of part of the author's Ph.D. thesis (Brown, 1966), University of California, Berkeley.  相似文献   

7.
Stilpnomelane is known to be index-mineral of lowest metamorphic facies in the northern zone of the Swiss Alps. In Montblanc-region the first stilpnomelane due to alpine metamorphism will be found in the Montblanc-granite, whereas until now the adjacent metamorphic rocks in the north of granite have not yielded any stilpnomelane. This could be explained by chemical control in the metamorphic rocks or by instability of stilpnomelane because a new formed biotite has been found in the shearing-zones in the northern part of granite and stilpnomelane is disappearing.Metamorphic reactions in the very coarse granite are bound to the limits between constituents or to the interior of larger crystals. Stilpnomelane very often has been found in microcline situated near to biotite or chlorite of primary origin. Towards the southern part of granite stilpnomelane will be found in larger quantities and occasionally a new formed chlorite will appear. This evolution is accompanied by the appearance of larger quantities of patch-perthite and chessboard-perthite in the microcline-megacrysts.Probably a green biotite coexists with stilpnomelane, but majority of alpine biotite has been formed in a later phase and is accompanied by a strong change of quartz-fabric and disappearance of stilpnomelane.One might suppose, that the change of lowest greenschist-facies (stilpnomelane) to a higher degree (biotite) even over very short distances depends more on the influence of changing chemical composition in the coexisting aqueous-gaseous phases than on a real increase of pressure and temperature.

Ich danke Herrn Prof. Dr. E. Niggli, Bern, für die Möglichkeit des ständigen Erfahrungsaustausches und die Bereitstellung der Nonius-Kamera und Herrn Prof. Dr. H. G. F. Winkler, Göttingen, für wertvolle Hinweise und kritische Stellungnahme. Endlich sei Herrn Prof. Dr. P. Bearth, Basel, herzlich gedankt für die Diskussion und die Mitteilung weiterer Fundpunkte von Stilpnomelan.Wertvolle Unterstützung erhielt diese Arbeit durch einen Kredit des Schweizerischen Nationalfonds.  相似文献   

8.
In this study, we have deduced the thermal history of the subducting Neotethys from its eastern margin, using a suite of partially hydrated metabasalts from a segment of the Nagaland Ophiolite Complex (NOC), India. Located along the eastern extension of the Indus‐Tsangpo suture zone (ITSZ), the N–S‐trending NOC lies between the Indian and Burmese plates. The metabasalts, encased within a serpentinitic mélange, preserve a tectonically disturbed metamorphic sequence, which from west to east is greenschist (GS), pumpellyite–diopside (PD) and blueschist (BS) facies. Metabasalts in all the three metamorphic facies record prograde metamorphic overprints directly on primary igneous textures and igneous augite. In the BS facies unit, the metabasalts interbedded with marble show centimetre‐ to metre‐scale interlayering of lawsonite blueschist (LBS) and epidote blueschist (EBS). Prograde HP/LT metamorphism stabilized lawsonite + omphacite (XJd = 0.50–0.56 to 0.26–0.37) + jadeite (XJd = 0.67–0.79) + augite + ferroglaucophane + high‐Si phengite (Si = 3.6–3.65 atoms per formula unit, a.p.f.u.) + chlorite + titanite + quartz in LBS and lawsonite + glaucophane/ferroglaucophane ± epidote ± omphacite (XJd = 0.34) + chlorite + phengite (Si = 3.5 a.p.f.u.) + titanite + quartz in EBS at the metamorphic peak. Retrograde alteration, which was pervasive in the EBS, produced a sequence of mineral assemblages from omphacite and lawsonite‐absent, epidote + glaucophane/ferroglaucophane + chlorite + phengite + titanite + quartz through albite + chlorite + glaucophane to lawsonite + albite + high‐Si phengite (Si = 3.6–3.7 a.p.f.u.) + glaucophane + epidote + quartz. In the PD facies metabasalts, the peak mineral assemblage, pumpellyite + chlorite + titanite + phengitic white mica (Si = 3.4–3.5 a.p.f.u.) + diopside appeared in the basaltic groundmass from reacting titaniferous augite and low‐Si phengite, with prehnite additionally producing pumpellyite in early vein domains. In the GS facies metabasalts, incomplete hydration of augite produced albite + epidote + actinolite + chlorite + titanite + phengite + augite mineral assemblage. Based on calculated TM(H2O), T–M(O2) (where M represents oxide mol.%) and PT pseudosections, peak PT conditions of LBS are estimated at ~11.5 kbar and ~340 °C, EBS at ~10 kbar, 325 °C and PD facies at ~6 kbar, 335 °C. Reconstructed metamorphic reaction pathways integrated with the results of PT pseudosection modelling define a near‐complete, hairpin, clockwise PT loop for the BS and a prograde PT path with a steep dP/dT for the PD facies rocks. Apparent low thermal gradient of 8 °C km?1 corresponding to a maximum burial depth of 40 km and the hairpin PT trajectory together suggest a cold and mature stage of an intra‐oceanic subduction zone setting for the Nagaland blueschists. The metamorphic constraints established above when combined with petrological findings from the ophiolitic massifs along the whole ITSZ suggest that intra‐oceanic subduction systems within the Neotethys between India and the Lhasa terrane/the Karakoram microcontinent were also active towards east between Indian and Burmese plates.  相似文献   

9.
T. Ramamohana Rao 《Lithos》1977,10(2):103-112
The Lower Proterozoic Warramunga Group of the Tennant Creek area consists essentially of slates, phyllites and greywackes. ‘Porphyroidal’ rocks of pyroclastic origin, consisting of quartz porphyry and quartz-feldspar porphyry, form conformable horizons within the Warramunga Group and both show the same structural evolution. Recrystallization of phengite and chlorite in the Warramunga rocks was synchronous with regional folding and took place under greenschist facies conditions. Recrystallization of groundmass matrix into phengite and chlorite in the ‘porphyroidal’ rocks also took place under greenschist facies conditions during regional deformation. The major elements in coexisting phengite and chlorite from these groups were analysed in 14 samples by electron microprobe. Total analyses of 6 rocks were carried out by X-ray fluorescence spectrograph. Distribution of Mg and Fe2+ between coexisting phengite and chlorite shows a vague linear trend. The distribution coefficient KD(Mg) is influenced in part by XMg of phengite. The tie lines for the mineral pairs on the triangular diagram show a subparallel trend. The Mg/Mg + Fe2+ of chlorite varies sympathetically with the Mg/Mg + Fe2+ of the rock.  相似文献   

10.
张翊钧 《地球学报》1988,10(1):105-115
在沸石相变质条件下,花岗岩里浊沸石交代了斜长石和石英,在酸性火山岩里产生明矾石、埃洛石或高岭石。经受绿纤石-葡萄石相变质的花岗岩,其中黑云母变为钙铝榴石、帘石、绿纤石和葡萄石集合体,同时斜长石发生绢云母化。绿片岩相内酸性岩的浅色矿物有石英、微斜长石、钠长石和绿帘石,暗色矿物有绿泥石和黑云母。在角闪岩相变质的酸性岩中,开始出现中、基性斜长石,其中暗色矿物黑云母的镁铁比值要大于角闪石的镁铁比值。经受麻粒岩相变质后,紫苏花岗岩的矿物组成没有变化,但有铀、钍和钾的迁出。  相似文献   

11.
An Early Palaeozoic (Ordovician ?) metamudstone sequence near Wojcieszow, Kaczawa Mts, Western Sudetes, Poland, contains numerous metabasite sills, up to 50 m thick. These subvolcanic rocks are of within-plate alkali basalt type. Primary igneous phases in the metabasites, clinopyroxene (salite) and kaersutite, are veined and partly replaced by complex metamorphic mineral assemblages. Particularly, the kaersutite is corroded and rimmed by zoned sodic, sodic–calcic and calcic amphiboles. The matrix is composed of actinolite, pycnochlorite, albite (An ≤ 0.5%), epidote (Ps 27–33), titanite, calcite, opaques and, occasionally, biotite, phengite and stilpnomelane. The sodic amphiboles are glaucophane to crossite in composition with NaB from 1.9 to 1.6. They are rimmed successively by sodic–calcic and calcic amphiboles with compositions ranging from magnesioferri-winchite to actinolite. No compositions between NaB= 0.92 and NaB= 1.56 have been ascertained. The textures may be interpreted as representing a greenschist facies overprint on an earlier blueschist (or blueschist–greenschist transitional) assemblage. The presence of glaucophane and no traces of a jadeitic pyroxene + quartz association indicate pressures between 6 and 12 kbar during the high-pressure episode. Temperature is difficult to assess in this metamorphic event. The replacement of glaucophane by actinolite + chlorite + albite, with associated epidote, allows restriction of the upper pressure limit of the greenschist recrystallization to <8 kbar, between 350 and 450°C. The mineral assemblage representing the greenschist episode suggests the P–T conditions of the high-pressure part of the chlorite or lower biotite zone. The latest metamorphic recrystallization, under the greenschist facies, may have taken place in the Viséan.  相似文献   

12.
The andesitic early Oligocene Taveyanne metagreywacke of the Helvetic nappes of western Switzerland shows an increase of metamorphic grade from zeolite facies through lower greenschist facies. Electron microprobe analysis, fluid inclusion thermometry, stable isotope analysis, coal rank, illite and chlorite crystallinity and thermodynamic calculations were carried out to determine metamorphic conditions. Evaluation of all techniques used in this study suggest that only combinations of different parameters yield reliable information to constrain very low-grade metamorphic conditions. Electron microprobe analyses are presented for actinolite, chlorite, epidote, phengite, laumontite, prehnite, pumpellyite, and titanite. With increasing metamorphic grade, chlorite is enriched in tetrahedral Al, pumpellyite becomes poorer in Fetot and more homogeneous in chemical composition, and titanite tends to incorporate Ti at the expense of Al and Fe3+. Metamorphic P-T conditions were determined by a combination of fluid inclusion microthermobarometry, stable isotope thermometry on quartz-calcite veins, chlorite “geothermometry” and thermodynamic calculations. Peak temperatures range from 210–250 °C for zeolite facies to 270–300 °C for prehnite-pumpellyite facies to 300–360 °C for pumpellyite-actinolite facies. An evaluation of 289 chlorite analyses indicates that the tetrahedral Al content is negatively correlated with the saponite component. Temperatures derived from chlorite “geothermometry” match maximum temperature conditions mentioned above. Illite crystallinity data for shales and slates intercalated with the Taveyanne metagreywacke indicate that the diagenetic zone correlates with the zeolite facies, the upper anchizone with the prehnite-pumpellyite facies, and the lower epizone with the pumpellyite-actinolite facies. A comparison of coal rank and illite crystallinity data (n=12,r=0.91) yielded R max values of 2.9 and 5.5% for the lower and upper boundary of the anchizone, respectively. Received: 2 August 1996 / Accepted: 16 July 1997  相似文献   

13.
Mineral paragenescs in the prehnite-pumpellyite to greenschistfades transition of the Karmutsen metabasites are markedly differentbetween amygdule and matrix, indicating that the size of equilibriumdomain is very small. Characteristic amygdule assemblages (+chlorite + quartz) vary from: (1) prehnite + pumpeUyite + epidote,prehnite + pumpellyite + calcite, and pumpellyite + epidote+ calcite for the prehnite-pumpellyite facies; through (2) calcite+ epidote + prehnite or pumpellyite for the transition zone;to (3) actinolite + epidote + calrite for the greenschist facies.Actinolite first appears in the matrix of the transition zone.Na-rich wairakites containing rare analcime inclusions coexistwith epidote or Al-rich pumpellyite in one prehnite-pumpellyitefacies sample. Phase relations and compositions of these wairakite-bearingassemblages further suggest that pumpellyite may have a compositionalgap between 0.10 and 0.15 XFe?. Although the facies boundaries are gradational due to the multi-varianceof the assemblages, several transition equilibria are establishedin the amygdule assemblages. At low Xco2, pumpellyite disappearsprior to prehnite by a discontinuous-type reaction, pumpellyite+ quartz + CO2 = prehnite + epidote + calcite + chlorite + H2O,whereas prehnite disappears by a continuous-type reaction, prehnite+ CO2 = calcite + epidote + quartz-l-H2O. On the other hand,at higher XCO2 a prehnite-out reaction, prehnite + chlorite+ H2O + CO2 = calcite + pumpellyite + quartz, precedes a pumpellyiteoutreaction, pumpellyite + CO2 = calcite + epidote + chlorite +quartz + H2O. The first appearance of the greenschist faciesassemblages is defined at both low and high XCOj by a reaction,calcite + chlorite + quartz = epidote + actinolite+ H2O + CO2.Thus, these transition equilibria are highly dependent on bothXFe3+ + of Ca-Al silicates and XH20 of the fluid phase. Phaseequilibria together with the compositional data of Ca-Al silicatesindicate that the prehnite-pumpellyite to greenschist faciestransition for the Karmutsen metabasites occurred at approximately1.7 kb and 300?C, and at very low Xco2, probably far less than0.1.  相似文献   

14.
Seafloor hydrothermal alteration at an Archaean mid-ocean ridge   总被引:2,自引:0,他引:2  
A hydrothermally metamorphosed/altered greenstone complex capped by bedded cherts exposed in the North Pole, Pilbara Carton, Western Australia, is interpreted as an accretionary complex. It is distinctive in being characterised by both duplex structure and an oceanic crust stratigraphy. This complex is shown to represent an Archaean upper oceanic crust with a mid‐ocean ridge hydrothermal metamorphism that increases in grade stratigraphically downward. Three mineral zones have been defined; Zone A of the zeolite facies, the prehnite‐pumpellyite facies or the lower‐greenschist facies at high‐XCO2 condition, Zone B of the greenschist facies, and Zone C of the greenschist/amphibolite transition facies. In Zone A metabasites, Ca‐Al silicates including Ca‐zeolites, prehnite and pumpellyite are absent and epidote/clinozoisite is extremely rare. Instead, abundant carbonates are present with chlorite suggesting high‐XCO2 composition in the fluid. On the other hand, in Zones B and C metabasites, where Ca‐amphibole + epidote/clinozoisite + chlorite + Ca‐Na plagioclase are the dominant assemblages, carbonate is not identified. The metamorphic conditions boundary of Zones B/C were estimated to be about 350 °C at a pressure of <0.5 kbar. Fluid compositions coexisting with Archaean greenstones at the transition between Zones B and C were estimated by thermodynamic calculation in the CaFMASCH system (T = 350–370 °C, P = 150–1000 bar) at XCO2 of 0.012–0.140, such values are higher than present‐day vent fluids collected near mid‐ocean ridges with low‐XCO2 values, up to 0.005. The Archaean seawater depth at the mid‐ocean ridge was estimated to be 1600 m at XCO2 = 0.06 using a depth‐to‐boiling point curve for a fluid. The carbonation due to high‐XCO2 hydrothermal fluids occurred near the ridge‐axis before or was coincident with ridge metamorphism.  相似文献   

15.
An exceptionally well-exposed part of the Flin Flon Greenstone Belt (Manitoba/Saskatchewan) is used to characterize the mineral assemblage evolution associated with prehnite–pumpellyite through amphibolite facies metamorphism of basalts. Data from these rocks are combined with a large literature data set to assess the ability of current thermodynamic models to reproduce natural patterns, evaluate the use of metabasic rocks at these grades to estimate pressure–temperature (P–T) conditions of metamorphism, and to comment on the metamorphic devolatilization that occurs. At Flin Flon, five major isograds (actinolite-in, prehnite- and pumpellyite-out, hornblende-in, oligoclase-in, and actinolite-out) collectively represent passage from prehnite–pumpellyite to lower amphibolite facies conditions. The evolution in mineral assemblages occurs in two narrow (~1,000 m) zones: the prehnite–pumpellyite to greenschist facies (PP-GS) transition and greenschist to amphibolite facies (GS-AM) transition. Across the GS-AM transition, significant increases in the hornblende and oligoclase proportions occur at the expense of actinolite, albite, chlorite, and titanite, whereas there is little change in the proportions of epidote. The majority of this mineral transformation occurs above the oligoclase-in isograd within the hornblende–actinolite–oligoclase zone. Comparison with thermodynamic modelling results suggests data set 5 (DS5) of Holland and Powell (1998, Journal of Metamorphic Geology, 16 (3):309–343) and associated activity–composition (a–x) models is generally successful in reproducing natural observations, whereas data set 6 (DS6) (Holland & Powell, 2011, Journal of Metamorphic Geology, 29 (3):333–383) and associated a–x models fail to reproduce the observed mineral isograds and compositions. When the data from Flin Flon are combined with data from the literature, two main pressure-sensitive facies series for metabasites are revealed, based on prograde passage below or above a hornblende–albite bathograd at ~3.3 kbar: a low-pressure ‘actinolite–oligoclase type’ facies series, characterized by the appearance of oligoclase before hornblende, and a moderate- to high-pressure ‘hornblende–albite type’ facies series, characterized by the appearance of hornblende before oligoclase. Concerning the PP-GS transition, the mineral assemblage evolution in Flin Flon suggests it occurs over a small zone (<1,000 m), in which assemblages containing true transitional assemblages (prehnite and/or pumpellyite coexisting with actinolite) are rare. This contrasts with thermodynamic modelling, using either DS5 or DS6, which predicts a wide PP-GS transition involving the progressive appearance of epidote and actinolite and disappearance of pumpellyite and prehnite. Patterns of mineral assemblages and thermodynamic modelling suggest a useful bathograd (‘CHEPPAQ bathograd’), separating prehnite–pumpellyite-bearing assemblages at low pressures and pumpellyite–actinolite-bearing assemblages at higher pressures, occurs at ~2.3 to 2.6 kbar. Observations from the Flin Flon sequence suggests devolatilization across the GS-AM transition (average: ~1.8 wt% H2O) occurs over a very narrow interval within the actinolite–hornblende–oligoclase zone, associated with the loss of >75% of the total chlorite. By contrast, modelling of the GS-AM transition zone predicts more progressive dehydration of ~2 wt% H2O over a >50°C interval. Observations from the field suggest devolatilization across the PP-GS transition occurs over a very narrow interval given the rarity of transitional assemblages. Modelling suggests fluid release of 1.0–1.4 wt% resulting from prehnite breakdown over a ~10°C interval. This fluid may not be entirely lost from the rock package due to involvement in the hydration of igneous mineralogy across the PP-GS transition as observed in the Flin Flon sequence.  相似文献   

16.
Chlorite is a common sheet silicate that occurs in various lithologies over a wide grade range involving diagenesis and low‐grade metamorphism. Thus, the reaction progress of chlorite offers a unique opportunity for direct correlation of zonal classification of metasedimentary rocks based on illite crystallinity with metabasite mineral facies. To provide such correlation, chlorite crystallinity indices, apparent mean crystallite sizes and lattice strains, crystallite size distributions and compositions of chlorite from coexisting metapelites and metabasites were determined by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), analytical electron microscopy (AEM) and electron microprobe (EMP) methods. Samples were from Palaeozoic and Mesozoic formations of the Bükkium (innermost Western Carpathians, Hungary) that underwent Alpine (Cretaceous) orogenic metamorphism. Metapelites range in grade from late diagenesis to epizone, whereas metabasites vary from prehnite–pumpellyite through pumpellyite–actinolite to greenschist facies. Despite significant differences in composition, mineral assemblages and textures, reaction progress, as measured in part by chlorite crystallinity, in metapelites paralleled that in metabasites. Chlorite crystallinity and mean crystallite size increase and the proportion of mixed layers in chlorite decreases, whereas the calculated lattice strain does not change significantly with increasing metamorphic grade. Similar trends, but (especially at higher grades) significant differences, were found in mean crystallite size values using various methods for XRD line profile analyses. The increase in crystallite size with increasing grade was demonstrated also by direct TEM measurements on ion‐milled whole‐rock samples, but with a larger scatter of data at higher grades. In spite of the different kinds of mixed layering in chlorite (Mg‐rich smectitic, mostly random, local corrensite‐like units in metabasites, and Fe‐rich berthierine and dioctahedral smectite in metapelites), XRD‐calculated and TEM‐measured parameters were found to be reliable tools for measuring reaction progress and metamorphic grade of the same degree in both lithotypes.  相似文献   

17.
D. Craw 《Lithos》1981,14(1):49-57
Biotite, chlorite and stilpnomelane have undergone post-metamorphic oxidation in situ in the Otago schist, due to surficial weathering. The oxidation results in changes in the chemistry of these minerals. Oxidation of biotite and stilpnomelane is accompanied by loss of potassium, and stilpnomelane with its full metamorphic potassium content is probably rare. analytical work such as KAr dating which depends critically on K2O contents of biotite and stilpnomelane should therefore proceed with due caution. Potassium in stilpnomelane is very mobile under the microprobe beam, and only approximate K2O analyses may be obtained.  相似文献   

18.
The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite ± omphacite ± quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz ± omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13–15.5 kbar at temperatures of 420–500 °C. Peak metamorphic temperature/depth ratios were low (~12 °C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5–7 kbar and temperatures between 450 and 550 °C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of >300 °C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran).  相似文献   

19.
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasively altered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote, prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilites or spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphic grades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. This indicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area have formed as a result of Caledonian regional metamorphism. We suggest that the previously denoted spilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks. The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite facies for the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpeilyite to lower greenschist facies for the lower part of the Middle Ordovician vol  相似文献   

20.
Two types of biotite isograd are defined in the low-grade metamorphism of the Wazuka area, a Ryoke metamorphic terrain in the Kii Peninsula, Japan. The first, BI1, is defined by the reaction of chlorite+K-feldspar= biotite+muscovite+quartz+H2O that took place in psammitic rocks, and the second, BI2, by the continuous reaction between muscovite, chlorite, biotite and quartz in pelitic rocks. The Fe/Mg ratios of the host rocks do not significantly affect the reactions. From the paragenesis of pelitic and psammitic metamorphic rocks, the following mineral zones were established for this low-pressure regional metamorphic terrain: chlorite, transitional, chlorite-biotite, biotite, and sillimanite. The celadonite content of muscovite solid solution in pelitic rocks decreases systematically with the grade of metamorphism from 38% in the chlorite zone to 11% in the biotite zone. Low pressure does not prohibit muscovite from showing the progressive change of composition, if only rocks with appropriate paragenesis are chosen. A qualitative phase diagram of the AKF system relevant to biotite formation suggests that the higher the pressure of metamorphism, the higher the celadonite content of muscovite at BI1, which is confirmed by comparing the muscovites from the Barrovian and Ryoke metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号