首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A palaeomagnetic study has been carried out in the Tethyan Himalaya (TH; the northern margin of Greater India). Twenty-six palaeomagnetic sites have been sampled in Triassic low-grade metasediments of western Dolpo. Two remanent components have been identified. A pyrrhotite component, characterized by unblocking temperatures of 270–335 °C, yields an in situ mean direction of D=191.7°, I=−30.9° (k=29.5, α95=5.7°, N=23 sites). The component fails the fold test at the 99% confidence level (kin situ/kbed=6.9) and is therefore of postfolding origin. For reason of the low metamorphic grade, this pyrrhotite magnetization is believed to be of thermo-chemical origin. Geochronological data and inclination matching indicate an acquisition age around 35 Ma. The second remanence component has higher unblocking temperatures (>400 °C and up to 500–580 °C range) and resides in magnetite. A positive fold test and comparison with expected Triassic palaeomagnetic directions suggest a primary origin.The postfolding character of the pyrrhotite component, and its interpreted age of remanence acquisition, implies that the main Himalayan folding is older than 35 Ma in the western Dolpo area. This study also suggests that the second metamorphic event (Neo-Himalayan) was more significant in the Dolpo area than the first (Eo-Himalayan) one.A clockwise rotation of 10–15° is inferred from the pyrrhotite component, which is compatible with oroclinal bending and/or rotational underthrusting models. This rotation is also supported by the magnetite component, indicating that no rotation of the Tethyan Himalaya relative to India took place before 35 Ma.  相似文献   

2.
The South Indian Craton is composed of low-grade and high-grade metamorphic rocks across different tectonic blocks between the Moyar–Bhavani and Palghat–Cauvery shear zones and an elongated belt of eastern margin of the peninsular shield. The Madras Block north of the Moyar–Bhavani shear zone, which evolved throughout the Precambrian period, mainly consists of high-grade metamorphic rocks. In order to constrain the evolution of the charnockitic region of the Pallavaram area in the Madras Block we have undertaken palaeomagnetic investigation at 12 sites. ChRM directions in 61 oriented block samples were investigated by Alternating Field (AF) and Thermal demagnetization. Titanomagnetite in Cation Deficient (CD) and Multi Domain (MD) states is the remanence carrier. The samples exhibit a ChRM with reverse magnetization of Dm = 148.1, Im = + 48.6 (K = 22.2, α95 = 9.0) and a palaeomagnetic pole at 37.5 °N, 295.6 °E (dp/dm = 7.8°/11.8°). This pole plots at a late Archaean location on the Indian Apparent Polar Wander Path (APWP) suggesting an age of magnetization in the Pallavaram charnockites as 2600 Ma. The nearby St. Thomas Mount charnockites indicate a period of emplacement at 1650 Ma (Mesoproterozoic). Thus the results of Madras Block granulites also reveal crustal evolution similar to those in the Eastern Ghats Belt with identical palaeopoles from both the areas.  相似文献   

3.
The Annandagstoppane Granite is exposed at three nunataks in Western Dronning Maud Land, Antarctica. It comprises medium- to coarse-grained granite crosscut by veins of pegmatite and graphic granite and has many S-type characteristics such as containing normative corundum greater than 1.1%, molecular Al2O3/(CaO+K2O+Na2O) greater than 1.1 and very little zircon. Hydrothermal alteration in the Granite is variably developed and has affected only certain minerals in any phase. R-Sr and Pb whole rock and mineral isotopic data suggest: 1) that Sr isotopes within it were nearly homogenized on a whole rock scale about 2823 Ma ago by this hydrothermal alteration; 2) that the Pb isotopic system was also disturbed at that time, and 3) that the Granite may have been was emplaced sometime during the interval 3115 Ma to 2945 Ma ago. The Granite was probably intruded by the Annandagstoppane Gabbro about 1200 Ma ago, resetting the Rb-Sr system in biotite. The Annandagstoppane Granite may form part of a basement complex to the Proterozoic sedimentary, volcanic and mafic igneous rocks exposed to the east in the Ahlmannryggen and the Borgmassivet. Its chemical composition and geologic history appears to be unique in Antarctica and in the Kaapvaal Craton of Southern Africa, consistent with the possibility that the Annandagstoppane Granite is part of a crustal fragment that joined Antarctica relatively late in the history of that continent.  相似文献   

4.
The Banded Hematite Jasper Formation within the Iron Ore Supergroup of the Singhbhum Craton in eastern India comprises fine alternating layers of jasper and specularite. It was deposited at 3000 Ma and deformed by a mobile episode at 2700 Ma. Hematite pigment (<1 μm) mixed with cryptocrystalline silica and specularite (> 10 μm) is chiefly responsible for red to brown rhythmic bands in the hematite jasper facies although thermomagnetic study also shows that minor amounts (1–2%) of magnetite are present. Palaeomagnetic study identifies a dual polarity remanence resident in hematite (D/I = 283/60°, α95 = 12°) which predates deformation. Studies of the fabric of magnetic susceptibility and rock magnetic results suggest a diagenetic origin for this magnetisation with the hematite formed from oxidation of primary magnetite. The palaeopole (32°E, 24°N, dp/dm = 14/18°) records the earliest post-metamorphic magnetisation event in the Orissa Craton. A minimum apparent polar wander motion of the Orissa-Singhbhum craton of through 80° is identified during Late Archaean times (2900-2600 Ma).  相似文献   

5.
Samples collected from folded carbonate rocks of the Early Permian Copacabana Group exposed in the Peruvian Subandean Zone have been subjected to detailed palaeomagnetic analysis. Thermal demagnetisation of most samples yield stable high unblocking temperature directions dominantly carried by titanomagnetite minerals. This remanence, identified in 32 samples (43 specimens), is exclusively of reverse polarity consistent with the Permian–Carboniferous Reversal Superchron (PCRS). The overall directions pass the fold test at the 99% confidence level and are considered as being a pre-folding remanence acquired in Early Permian times. The Copacabana Group yields an overall mean direction of D = 166°, I = +49° (α95 = 4.5°, k = 131.5, N = 9 sites) in stratigraphic coordinates and a corresponding palaeosouth pole position situated at λ = 68°S,  = 321°E (A95 = 5.2°, K = 100). Combining this pole with the coeval high quality data from South America, Africa and Australia results in a mean pole for Gondwana situated at λ = 34.4°S,  = 065.6°E (A95 = 4.9°, K = 73.6, N = 13 studies) in African coordinates. This pole position supports a Pangaea B palaeogeography in Early Permian times. In contrast, the combined pole for Gondwana diverges from the coeval Laurasian mean pole when assuming the Pangaea A-type configuration. Poor quality of the Gondwana dataset and inclination shallowing in sediments seem to play no role in the misfit between the Permian–Triassic poles from Gondwana and Laurasia in Pangaea A reconstruction.  相似文献   

6.
A comparison of late Mesoproterozoic palaeomagnetic poles from the Kalahari craton and its correlative Grunehogna craton in East Antarctica shows that the Kalahari–Grunehogna craton straddled the palaeo-Equator and underwent no azimuthal rotation between ca. 1130 and 1105 Ma. Comparison of the Kalahari palaeopoles with the Laurentia APWP between 1130 and 1000 Ma shows that there was a latitudinal separation of 30±14° between Kalahari and the Llano–West Texas margin of Laurentia at ca. 1105 Ma. The Kalahari craton could have converged with southwestern Laurentia between 1060 and 1030 Ma to become part of Rodinia by 1000 Ma. In Rodinia, the Kalahari craton lay near East Antarctica with the Namaqua–Natal orogenic belt facing outboard and away from the Laurentian craton.  相似文献   

7.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   

8.
The Mascot–Jefferson City (M-JC) Mississippi Valley-type (MVT) deposits are in the Valley and Ridge province of the Appalachian orogen in East Tennessee. They have been a major source of zinc for the USA but their age is uncertain and thus their genesis controversial. About 10 specimens from each of 37 sites have been analysed paleomagnetically using alternating field and thermal step demagnetisation methods and saturation isothermal remanence methods. The sites sample limestones, dolostones, breccia clasts and sphalerite–dolomite MVT mineralisation from mines in the Lower Ordovician Kingsport and Mascot formations of the Knox Group. The characteristic remanent magnetisation (ChRM) is carried by magnetite in the limestones, by both magnetite and pyrrhotite in the dolostones and by pyrrhotite preferentially to magnetite in the mineralisation. Mineralized sites have a more intense ChRM than non-mineralised, indicating that the mineralising and magnetisation event are coeval. Paleomagnetic breccia tests on clasts at the three sites are negative, indicating that their ChRM is post-depositional remagnetisation, and a paleomagnetic fold test is negative, indicating that the ChRM is a remagnetisation, and a post-dates peak Alleghanian deformation. The unit mean ChRM direction for the: (a) limestones gives a paleopole at 129°E, 12°N (dp=18°, dm=26°, N=3), indicating diagenesis formed a secondary chemical remanent magnetisation during the Late Ordovician–Early Silurian; (b) dolomitic limestones and dolostone host rocks gives a paleopole at 125.3°E, 31.9°N (dp=5.3°, dm=9.4°, N=7), recording regional dolomitisation at 334±14 Ma (1σ); and (c) MVT mineralisation gives a paleopole at 128.7°E, 34.0°N (dp=2.4°, dm=4.4°, N=25), showing that it acquired its primary chemical remanence at 316±8 Ma (1σ). The mineralisation is interpreted to have formed from hydrothermal fluid flow, either gravity or tectonically driven, after peak Alleghanian deformation in eastern Tennessee with regional dolomitisation of the host rocks occurring as part of a continuum during the 20 Ma prior to and during peak deformation.  相似文献   

9.
The Middle Jurassic Fourth of July Batholith and cross-cutting mafic dikes have been studied geochronologically, geobarometrically and paleomagnetically to estimate subsequent tectonic motion of the Cache Creek Terrane (CCT) in the northern Canadian Cordillera. 40Ar/39Ar hornblende ages from a granodiorite phase are similar to U–Pb zircon ages and indicate rapid cooling of the batholith upon intrusion, suggesting that the magnetization age is coincident with the 173-Ma crystallization age. Argon ages of biotite from the granodiorite and two mafic dikes have similar ages of 165 Ma, which dates cooling through 280 °C.Aluminum-in-hornblende geobarometry indicates differential uplift of the batholith across a north–south fault zone along Atlin Lake with >6 km more uplift on its eastern side. Also, the eastern side has been tilted downward to the south–southwest by 9°.Combined paleomagnetic data from 20 granitoid and 11 mafic dike sites yield an in situ paleopole at 55°W, 63°N (dp=5°, dm=5°) and a tilt-corrected paleopole at 81°W, 55°N (dp=5°, dm=6°). Compared to the 173-Ma reference pole for the North American craton, the tilt-corrected pole suggests a significant southward translation of 16.1±3.7° and a significant clockwise rotation of 107±7°. The translation estimate is similar to the Jurassic Teslin Crossing pluton in the Stikine Terrane, however, the rotation estimate is very different. This could indicate that the Cache Creek Terrane was at a similar latitude of the Stikine Terrane, but the two were not yet amalgamated.  相似文献   

10.
A palaeomagnetic study of seven sites in redbeds of the Late Precambrian Bhander and Rewa Series of the Upper Vindhyan System confirms that their original magnetization was extensively overprinted during the Early Tertiary, possibly related to the extrusion of the Deccan Traps about 65 Ma ago. Careful thermal demagnetization at temperatures close to the Curie Temperature of hematite revealed the primary magnetization in 100 of 121 specimens investigated. The resulting palaeomagnetic pole for the Upper Vindhyan System lies at 51.0S 37.8E. A combination with all previous results gives an overall palaeomagnetic pole at 47.3S 32.7E (N = 18, K = 35.5, A95 = 5.8°). Twelve samples from the Gwalior Traps (1830 Ma) give a palaeomagnetic pole at 16N 160.5E after magnetic cleaning.Twelve flows collected from the Permo-Carboniferous Panjal Traps of Kashmir give mean direction D = 156.5, I = + 32.5 (κ = 19.8, α95 = 9.9°) with a positive fold test. The palaeomagnetic pole (32N 282E), however, lies close to that observed for Deccan Trap times in India. It appears that the magnetization of the Panjal Traps was acquired during the Early Tertiary Himalayan uplift following which they were tilted to their present attitudes.  相似文献   

11.
Mafic volcanic rocks of the Mesozoic Kutch basin represent the earliest phase of Deccan volcanic activity. An olivine-clinopyroxene-plagioclase-phyric undersaturated basalt occurs as a sill near Sadara in the Pachham upland, Northern Kutch. The Sadara sill is deformed and emplaced along faults. The sill is alkaline in character and is transitional between basalt and basanite. Compared to primitive mantle, the Sadara sill is enriched in Sr, Ba, Pb and LREE but depleted in Nb, Cr, Y, Cs and Lu. Fractional crystallization of olivine and clinopyroxene from an alkaline mafic melt generated by low degree partial melting of mantle peridotite can explain the observed chemical variation in the sill.IRM and L-F test experiments and mineral analyses show titano-magnetite as the major remanence carrying magnetic mineral. AF and thermal demagnetizations of the Sadara sill yielded a mean ChRM direction as D=315.6°, I=−43.0° (α95=9.78; k=25.38) and the corresponding VGP at 25°S; 114.6°E (dp/dm=6.58°/11.6°). The Sadara sill pole is significantly different from those of the Deccan (65 Ma) and the Rajmahal Traps (118 Ma) but is close to the Cretaceous poles of 85–91 Ma rock units from southern India. This suggests a pre-Deccan age for the sill.  相似文献   

12.
J.D.A. Piper   《Tectonophysics》2007,432(1-4):133-157
The Southern Uplands terrane is an Ordovician–Silurian back-arc/foreland basin emplaced at the northern margin of the Iapetus Ocean and intruded by granite complexes including Loch Doon (408.3 ± 1.5 Ma) during Early Devonian times. Protracted cooling of this 130 km3 intrusion recorded magnetic remanence comprising a predominant (‘A’) magnetisation linked to initial cooling with dual polarity and mean direction D / I = 237 / 64° (α95 = 4°, palaeopole at 316°E, 21°N). Subsidiary magnetisations include Mesozoic remanence correlating with extensional tectonism in the adjoining Irish Sea Basin (‘B’, D / I = 234/− 59°) and minority populations (‘C’, D / I = 106/− 2° and ‘D’, D / I = 199/1°) recording emplacement of younger ( 395 Ma) granites in adjoining terranes and the Variscan orogenic event. The ‘A’ directions have an arcuate distribution identifying anticlockwise rotation during cooling. A comparable rotation is identified in the Orthotectonic Caledonides to the north and the Paratectonic Caledonides to the south following closure of Iapetus. Continental motion from midsoutherly latitudes ( 40°S) at 408 Ma to equatorial palaeolatitudes by  395 Ma is identified and implies minimum rates of continental movement between 430 and 390 Ma of 30–70 cm/year, more than double maximum rates induced by plate forces and interpreted as a signature of true polar wander. Silurian–Devonian palaeomagnetic data from the British–Scandinavian Caledonides define a 430–385 Ma closed loop comparable to the distributed contemporaneous palaeomagnetic poles from Gondwana. They reconcile pre-430 Ma and post-380 Ma APW from this supercontinent and show that Laurentia–Baltica–Avalonia lay to the west of South America with a relict Rheic Ocean opening to the north which closed to produce Variscan orogeny by a combination of pivotal closure and right lateral transpression.  相似文献   

13.
The 92.5 Ma Fort Knox granodiorite stock, near the western end of the Fairbanks Belt in the Yukon–Tanana terrane (YTT) of central Alaska, hosts a world-class gold mine. The stock has been analysed paleomagnetically using thermal and alternating-field step demagnetization and isothermal remanence methods. This pluton retains a primary thermoremanent magnetization at 18 sites (232 specimens) that resides mainly in single-to pseudosingle-domain magnetite with a direction of D = 228.8°, I = 84.3° (N = 18, k = 130, α95 = 3.0°), giving a paleopole at 56.5°N, 197.1°E (dp = 5.9°, dm = 5.8°). The pluton's host rock, the Fairbanks schist, does not retain a stable coherent remanence. Relative to the North American craton, the stock's paleoinclination indicates that the Fairbanks Belt has undergone nonsignificant poleward (northwesterly) translation of 25 ± 750 km only. Analysed in concert with the few available paleoinclinations available for the YTT in Yukon, the paleoinclination suggests further that the YTT has undergone only  250 to 450 km of dextral displacement along the Tintina fault in the past  100 Ma and, therefore, is parautocthonous since the mid-Cretaceous. The stock's paleodeclination records 121 ± 35° of counterclockwise rotation relative to the North American craton. Consideration of models published for Alaska's tectonic evolution suggests that this paleodeclination discordance is caused by rotations associated with the opening of the Canada Basin, with dextral displacement on the Tintina fault, and with development of the western Alaskan orocline. Thus the paleomagnetic results for the Fort Knox stock support a thin-skin tectonic model for the accretion of the YTT and Intermontane Belt terranes to the northern Cordillera.  相似文献   

14.
We present geochronologic and paleomagnetic data from a north-trending quartz diorite intrusion that cuts Archean metasedimentary and metaigneous rocks of the South Pass Greenstone Belt of the Wyoming craton. The quartz diorite was previously thought to be either Archean or Early Proterozoic (?) in age and is cut by north and northeast-trending Proterozoic diabase dikes of uncertain age, for which we also report paleomagnetic data. New U–Pb analyses of baddeleyite and zircon from the quartz diorite yield a concordia upper intercept age of 2170±8 Ma (95% confidence). An 40Ar/39Ar amphibole date from the same sample yields a similar apparent age of about 2124±30 Ma (2σ), thus confirming that the intrusion is Early Proterozoic in age and that it has probably not been thermally disturbed since emplacement. A magmatic event at ca. 2.17 Ga has not previously been documented in the Wyoming craton. The quartz diorite and one of the crosscutting diabase dikes yield essentially identical, well-defined characteristic remanent magnetizations. Results from eight sites in the quartz diorite yield an in situ mean direction of north declination and moderate to steep positive inclination (Dec.=355°, Inc.=65°, k=145, α95=5°) with a paleomagnetic pole at 84°N, 215°E (δm=6°, δp=7°). Data from other diabase dike sites are inconsistent with the quartz diorite results, but the importance of these results is uncertain because the age of the dikes is not well known. Interpretation of the quartz diorite remanent magnetization is problematic. The in situ direction is similar to expected directions for magnetizations of Late Cretaceous/early Tertiary age. However, there is no compelling evidence to suggest that these rocks were remagnetized during the late Mesozoic or Cenozoic. Assuming this magnetization to be primary, then the in situ paleomagnetic pole is strongly discordant with poles of 2167, 2214, and 2217 Ma from the Canadian Shield, and is consistent with proposed separation of the Wyoming Craton and Laurentia prior to about 1.8 Ga. Correcting the quartz diorite pole for the possible effects of Laramide-age tilting of the Wind River Range, based on the attitude of nearby overlying Cambrian Flathead Sandstone (dip=20°, N20°E), gives a tilt corrected pole of 75°N, 58°E (δm=4°, δp=6°), which is also discordant with respect to time-equivalent poles from the Superior Province. Reconstruction of the Superior and Wyoming Province using a rotation similar to that proposed by Roscoe and Card [Can. J. Earth Sci. 46(1993)2475] is problematic, but reconstruction of the Superior and Wyoming Provinces based on restoring them to their correct paleolatitude and orientation using a closest approach fit indicates that the two cratons could have been adjacent at about 2.17 Ga prior to rifting at about 2.15 Ga. The paleomagnetic data presented are consistent with the hypothesis that the Huronian and Snowy Pass Supergroups could have evolved as part of a single epicratonic sedimentary basin during the Early Proterozoic.  相似文献   

15.
The Juiz de Fora Complex is mainly composed of granulites, and granodioritic-migmatite gneisses and is a cratonic basement of the Ribeira belt. Paleomagnetic analysis on samples from 64 sites widely distributed along the Além Paraíba dextral shear zone (SE Brazil, Rio de Janeiro State) yielded a northeastern, steep downward inclination direction (Dm=40.4°, Im=75.4, a95=6.0°, K=20.1) for 30 sites. The corresponding paleomagnetic pole (RB) is situated at 335.2°E; 0.6°S (a95=10.0°; K=7.9). Rock magnetism indicates that both (titano)magnetite and titanohematite are the main magnetic minerals responsible for this direction. Anisotropy of low-field magnetic susceptibility (AMS) measurements were used to correct the ChRM directions and consequently its corresponding paleomagnetic pole. This correction yielded a new mean ChRM (Dm = 2.9°, Im = 75.4°, a95 = 6.4°, K = 17.9) whose paleomagnetic pole RBc is located at 320.1°E, 4.2° N (a95=10.3°, K=7.5). Both mean ChRM and paleomagnetic pole obtained from uncorrected and corrected data are statistically different at the 95% confidence circle. Geological and geochronological data suggest that the age of the Juiz de Fora Complex pole is probably between 535–500 Ma, and paleomagnetic results permit further constraint on these ages to the interval 520–500 Ma by comparison with high quality paleomagnetic poles in the 560–500 Ma Gondwana APW path.  相似文献   

16.
Eighty-two palaeomagnetic samples of calcareous and jaspilitic grainstones (iron-formation or ‘taconite’) and chert carbonate were collected from the 1.88-Ga Gunflint Formation at 22 sites in the Thunder Bay area, Ontario. Twenty clasts of Gunflint taconite also were sampled from the basal conglomerate of the overlying Mesoproterozoic Sibley Group. Anisotropy of magnetic susceptibility measurements indicate the Gunflint Formation in the sampling area has not experienced regional dynamic metamorphism. Analyses by variable-field translation balance and X-ray diffraction show that the predominant magnetic mineral is hematite but a small amount of magnetite also is present in some samples. Altogether, 213 Gunflint specimens and 59 Sibley conglomerate specimens were subjected to stepwise thermal demagnetisation and 74 Gunflint specimens to stepwise alternating-frequency demagnetisation. The following components were isolated for the taconites:
• Gunflint magnetite: normal declination D=293.4°, inclination I=30.8°, α95=7.2°, n=21; reverse D=86.7°, I=–54.6°, α95=5.8°, n=29.
• Gunflint hematite: normal D=243.6°, I=23.6°, α95=6.0°, n=11; reverse D=70.3°, I=–51.4°, α95=3.2°, n=79.
• Sibley clasts magnetite: normal D=282.7°, I=33.4°, α95=7.6°, n=20.
• Sibley clasts hematite: normal D=254.5°, I=56.2°, α95=8.4°, n=13; reverse D=110.6°, I=–55.7°, α95=8.3°, n=11.
None of these sets passed the reversal test, with the normal component generally being the shallower. Fold tests were negative or inconclusive and the conglomerate test also was negative. Chert carbonate at one other site appears to have acquired a remanence carried by magnetite (D=97.3°, I=−78.2°, α95=6.3°, n=18) prior to folding related to Keweenawan (1.1 Ga) Logan diabase sill emplacement. Most of the components we identified match components for Keweenawan sills, volcanic rocks, intrusions and baked contact rocks in the Thunder Bay area, indicating that Keweenawan magmatism caused widespread chemical remagnetisation of the Proterozoic country rock in our sampling area. Although others have argued that asymmetry was a feature of the Keweenawan geomagnetic field, the declinations of our Gunflint and Sibley hematite and magnetite components are different, suggesting that the components were acquired at significantly different times. We conclude that the reversal asymmetry shown by our Gunflint and Sibley data may best be ascribed to apparent polar wander during Keweenawan times.  相似文献   

17.
A section 300 m thick across the Permian—Triassic boundary has been sampled in the Southern Coalfield of the Sydney Basin, New South Wales. 55 samples, mainly grey to drab sandstones, were collected from 9 diamond drill holes which penetrated the entire Narrabeen Group and the upper part of the conformably underlying Illawarra Coal Measures, as well as a sill emplaced into the coal measures. The samples included fully oriented cores. Additional reconnaissance samples from two further drill holes were also studied.Partial alternating field demagnetization and petrography indicate the magnetic remanence to be a stable DRM. Partial thermal demagnetization above 300°C or 400°C caused large increases in magnetic susceptibility. Partial chemical demagnetization did not cause significant changes in remanence directions.For the Coal Cliff Sandstone (basal Narrabeen Group, Triassic) the palaeomagnetic pole position (Normal) was calculated to be at 59°N 322°E (dp = 27°, dm = 29°), which agrees with previously published data. For the uppermost coal measures (Permian) the pole position was calculated as 58°N 340°E (dp = 09°, dm = 10°). Data for samples from the lower to middle coal measures yield a pole position which is between the new Permian—Triassic pole position and that for the underlying Middle Permian igneous rocks. The top of the Reversed “Kiaman Magnetic Interval” (Permian) may be near the Tongarra coal and Appin Formation boundary — (early) Late Permian.  相似文献   

18.
Historically, the Tuareg shield is divided into three parts bordered by mega-shear zones with the centre, the Central Polycyclic Hoggar, characterized by Archaean and Palaeoproterozoic lithologies. Nearly 10 years ago, the Tuareg shield was shown to be composed of 23 displaced terranes [Geology 22 (1994) 641] whose relationships were deciphered in Aïr to the SE [Precambr. Res. 67 (1994) 59]. The Polycyclic Central Hoggar terranes were characterized by the presence of well preserved Archaean/Palaeoproterozoic and Neoproterozoic lithologies.We show here that the terranes from Central Hoggar (Laouni, Azrou-n-Fad, Tefedest, Egéré-Aleksod) belonged to a single old passive margin, to which we gave the acronym name LATEA, which behaved as a craton during the Mesoproterozoic and the Early-Middle Neoproterozoic but was partly destabilized and dissected during the Late Neoproterozoic as a consequence of its involvement as a passive margin in the Pan-African orogen.An early Pan-African phase consisted of thrust sheets including garnet-bearing lithologies (eclogite, amphibolite, gneiss) that can be mapped and correlated in three LATEA terranes. In the Tin Begane area, PTt paths have been established from>15 kbar––790 °C (eclogite) to 4 kbar––500 °C (greenschist retrogression) through 12 kbar––830 °C (garnet amphibolite) and 8 kbar––700 °C (garnet gneiss), corresponding to the retrograde path of a Franciscan-type loop. Sm–Nd geochronology on minerals and laser ablation ICP-MS on garnet show the mobility of REE, particularly LREE, during the retrograde greenschist facies that affects, although slightly, some of these rocks. The amphibolite-facies metamorphism has been dated at 685 ± 19 Ma and the greenschist facies at 522 ± 27 Ma. During the thrust phase, the Archaean–Palaeoproterozoic basement was only locally affected by the Pan-African tectonics. LATEA behaved as a craton. Other juvenile terranes were also thrust early onto LATEA: the Iskel island arc at ≈850 Ma to the west of LATEA, the Serouenout terrane in the 700–620 Ma age range to the east. No subduction-related magmas have intruded LATEA during this epoch, which behaved as a passive margin.During the main Pan-African phase (625–580 Ma), LATEA was dissected by mega-shear zones that induced several hundreds km of relative displacement and allowed the emplacement of high-K calc-alkaline batholiths. Smaller movements continued till 525 Ma, accompanied by the emplacement of subcircular plutons with alkaline affinity. Here is dated the Ounane granodiorite (624 ± 15 Ma; 87Sr/86Sri=0.70839 ± 0.00016; 6WR, MSWD=0.87) and the Tisselliline granite (552 ± 15 Ma; 87Sr/86Sri=0.7074 ± 0.0001; 5WR, MSWD=1.4). Nd isotopes indicate a preponderant Palaeoproterozoic crustal source for these two plutons: Nd=−14 to −21 at 624 Ma and TDM=1650–2320 Ma for Ounane and Nd=−13 to −15 at 555 Ma and TDM=1550–1720 Ma for Tisselliline. Our model links these intrusions to a linear lithospheric delamination along mega-shear zones, allowing the hot asthenosphere to rise, melt by adiabatic pressure release and inducing the melting of the Palaeoproterozoic and Archaean lower crust.The LATEA cratonic microcontinent remained however sufficiently rigid to preserve Archaean and Palaeoproterozoic lithologies as well as Middle Neoproterozoic oceanic thrust sheets. This corresponds to the notion of metacraton [J. African Earth Sci. 34 (2002) 119], i.e. a craton that has been remobilized during an orogenic event but is still recognizable dominantly through its rheological, geochronological, isotopic and sometimes petrological characteristics.  相似文献   

19.
For a detailed palaeomagnetic research on Upper Permian red beds in the Wardha Valley (Central India) 265 samples from 47 sites at 6 localities were investigated.The samples from 3 localities (17 sites) appeared to be completely remagnetized during Early Tertiary times by the vast Deccan Trap flood basalts effusions. The samples from 22 sites of the other three localities (results from 8 sites rejected) could become cleaned from hard secondary Deccan Trap components by detailed thermal demagnetization.The resulting primary magnetization component reveals a mean direction (regardless of polarity, 7 sites normal, 15 sites reversed): D = 101.5°, I = +58.5°, α95 = 6.5°, N = 3. This mean direction corresponds to a pole position at 129° W 4° N (dp = 7°, dm = 9.5°). This pole position fits well with other acceptable Late Permian—Early Triassic pole positions for the Indian subcontinent. From these acceptable results, a mean Permo-Triassic pole for the Indian subcontinent was computed at: 125° W 6°N. This Indian Permo-Triassic pole position, when compared with data from other Gondwanaland continents, suggests the hypothesis of an early movement between India and Africa before Permo-Triassic times.The partial or total remagnetization of some Indian red beds, mainly of Gondwana age, during Deccan Trap times is explained as acquisition of viscous Partial Thermoremanent Magnetization. This mechanism was advanced by Briden (1965), Chamalaun (1964) and Irving and Opdyke (1965).  相似文献   

20.
Eleven sites comprising 76 core samples of Lower (sandstone) and Middle (limestone) Miocene age were collected from the northeastern tip of the Qattara depression in the north of the Western Desert of Egypt. The majority of samples showed weak to very weak remanent magnetization with geothite, haematite and titanomagnetite as the main magnetic carriers. However, with a careful detailed thermal demagnetization, they yielded stable, probably primary, magnetization. The resultant overall mean direction of 2.9°/31.2° with α95=2.3° corresponds to a palaeomagnetic pole position of 76.5°N and 198.0°E with A95=2.0°, which seems to agree with other known African Miocene poles. This result implies that the Qattara area has been stable at least since Early Miocene. The presence of goethite as the main magnetic carrier supports the assumption that weathering has been playing an important role in the development and shaping of the depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号