首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Mafic rocks are widespread on the Liaodong Peninsula and adjacent regions of the North China Craton. The majority of this magmatism was originally thought to have occurred during the Pre-Sinian, although the precise geochronological framework of this magmatism was unclear. Here, we present the results of more than 60 U–Pb analyses of samples performed over the past decade, with the aim of determining the spatial and temporal distribution of mafic magmatism in this area. These data indicate that Paleoproterozoic–Mesoproterozoic mafic rocks are not as widely distributed as previously thought. The combined geochronological data enabled the subdivision of the mafic magmatism into six episodes that occurred during the middle Paleoproterozoic, the late Paleoproterozoic, the Mesoproterozoic, the Late Triassic, the Middle Jurassic, and the Early Cretaceous. The middle Paleoproterozoic (2.1–2.2 Ga) mafic rocks formed in a subduction-related setting and were subsequently metamorphosed during a ca. 1.9 Ga arc–continent collision event. The late Paleoproterozoic (ca. 1.87–1.82 Ga) bimodal igneous rocks mark the end of a Paleoproterozoic tectono-thermal event, whereas Mesoproterozoic mafic dike swarms record global-scale Mesoproterozoic rifting associated with the final breakup of the Columbia supercontinent. The Late Triassic mafic magmatism is part of a Late Triassic magmatic belt that was generated by post-collisional extension. The Middle Jurassic mafic dikes formed in a compressive tectonic setting, and the Early Cretaceous bimodal igneous rocks formed in an extensional setting similar to a back-arc basin. These latter two periods of magmatism were possibly related to subduction of the Paleo-Pacific plate.  相似文献   

2.
The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and mineralization. This paper reports zircon chronology, zircon Hf isotope data, whole-rock Sr–Nd isotope data, and geochemistry data of Balazha porphyry ores in the northern Lhasa block. Geochemical features show that Balazha ore-bearing porphyries in the northern Lhasa block belong to high-Mg# adakitic rocks with a formation age of ~90 Ma; this is consistent with the Late Cretaceous magmatic activity that occurred at around 90 Ma in the region. The age of adakitic rocks is similar to the molybdenite Re–Os model age of the ore-bearing porphyries in the northern Lhasa block, indicating that the diagenesis and mineralization of both occurred during the same magmatism event in the Late Cretaceous. The Hf and Sr–Nd isotope data indicate that these magmatic rocks are the product of crust–mantle mixing. Differing proportions of materials involved in such an event form different types of medium-acid rocks, including ore-bearing porphyries. Based on regional studies, it has been proposed that Late Cretaceous magmatism and porphyry mineralization in the northern Lhasa block occurred during collision between the Lhasa and Qiangtang blocks.  相似文献   

3.
Studies of the Pb, Sr and Nd isotopic composition of Mesozoic intrusive rocks indicate that the basement of the copper-gold metallogenic belt of the middle and lower reaches of the Yangtze River has "two-layer structure" and partly has "multi-layered structure", and is inhomogeneous and shows the distinct feature of E-W provincialism. The calculated model lead ages (t1) are mostly greater than 2600 Ma, and the model neodymium ages (TDM) vary from 953 to 2276 Ma and concentrate in two time intervals: 1800-2000 Ma and 1200-1600 Ma. It is concluded that the basement of the MBYR is composed of the Late Archaeozoic to Middle Proterozoic metamorphic series and that the crust was initiated in the Archaean and continued to grow in the Early and Middle Proterozoic, and the proportion of new crust formed by mantle differentiation during the Late Proterozoic is low.  相似文献   

4.
During the Late Carboniferous to Early Permian, a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean (PAO) subduction in the Xi Ujimqin area. Nevertheless, the closure time of the PAO is still under debate. Thus, to identify the origin of the PAO, the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine, polymict clastic boulders and sandstones in the Shoushangou Formation within the basin. The analyses revealed magmatic activity and tectonic evolution. The conglomerates include megaclasts of granite (298.8 ± 9.1?Ma) and granodiorite porphyry (297.1 ± 3.1?Ma), which were deposited by muddy debris flow. Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite, characterized by low Zr + Nb + Ce + Y and low Ga/Al values. The granitoid boulders were formed in island arc setting, indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin. Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks. Detrital zircon U-Pb age cluster of 330–280?Ma was obtained, indicating input from granite, ophiolite, Xilin Gol complex, and Carboniferous sources to the south. The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc. The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO. The backarc basin and intrusive rocks, in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol, confirm the presence of an Early Permian trench-arc-basin system in the region, represented by the Baolidao arc and Xi Ujimqin backarc basin. This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.  相似文献   

5.
A great deal of early-to-mid Early Cretaceous magmatic activities have been recorded in the Zhalantun area of Inner Mongolia,while the late Early to Late Cretaceous magmatic rocks have been barely reported(Guo et al.,2018;Zhang Xiangxin et al.,2017).At present,only a few Late Cretaceous magmatic activities were reported in the Arongqi area,such as volcanic rocks of the Gushanzhen Formation.However,the Gushanzhen Formation lacks accurate isotopic age,and contemporaneous intrusive rocks has not been reported yet.In this work,we collected the volcanic rocks from the Gushanzhen Formation and contemporaneous intrusive rocks in the Zhanlantun and nearby,and aim to figure out the formation ages of volcanic rocks of the Gushanzhen Formation and accompanied intrusive rocks by analyzing zircon U-Pb isotopes(Fig.1).  相似文献   

6.
The Dabie orogenic belt underwent deep subduc-tion of continent, rapid exhumation, and huge amount of erosion during the Mesozoic. Its tectonic evolution, especially how that was recorded in sedimentary ba-sins at the flanks of the Dabie orogenic belt is one of the most important issues. The overall distribution of different basin types in the orogenic belt indicates that shortening and thrusting at the margins of the orogenic belt from the Late Triassic to the Early Cretaceous controlled the foreland basins, and extension, doming and rifting were initiated in the core of the orogenic belt from the Jurassic to the Early Cretaceous, and were expanded to the whole orogenic belt after the Late Cretaceous.  相似文献   

7.
《地学前缘(英文版)》2020,11(3):895-914
A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the lithospheric evolution of the eastern North China Craton(NCC).Zircon U-Pb data showed that low-Mg adakitic monzogranites and granodiorite intrusions were emplaced during the Late Jurassic(~145 Ma) and late Early Cretaceous(112-107 Ma),respectively;high-Mg adakitic diorite and mafic dikes were also emplaced during the Early Cretaceous at~139 Ma and ~118 Ma,and 125-145 Ma and 115-120 Ma,respectively.The geochemical data,including whole-rock major and trace element compositions and Sr-Nd-Pb isotopes,imply that the mafic dikes originated from the partial melting of a lithospheric mantle metasomatised through hydrous fluids from a subducted oceanic slab.Low-Mg adakitic monzogranites and granodiorite intrusions originated from the partial melting of the thickened lower crust of the NCC,while high-Mg adakitic diorite dikes originated from the mixing of mafic and felsic melts.Late Mesozoic magmatism showed that lithosphere-derived melts showed a similar source depth and that crust-derived felsic melts originated from the continuously thickened lower crust of the Jiaodong Peninsula from the Late Jurassic to Early Cretaceous.We infer that the lower crust of the eastern NCC was thickened through compression and subduction of the Palaeo-Pacific plate beneath the NCC during the Middle Jurassic.Slab rollback of the plate from ~160 Ma resulted in lithospheric thinning and accompanied Late Mesozoic magmatism.  相似文献   

8.
Central Asian Orogenic Belt(CAOB) is one of the largest accretionary orogenic belts in the world. The eastern segment of CAOB is dominated by Paleozoic Paleo Asian Ocean tectonic regime, Mesozoic Paleo-Pacific tectonic regime and Mongolian-Okhotsk tectonic regime. The Songliao and Jiamusi blocks are located in the easternmost part of the CAOB and are the key region to solve the problem about overprinting processes of multiple tectonic regimes. It is generally believed that the Mudanjiang Ocean between the two blocks was finally closed in the Mesozoic, but the Paleozoic magmatism also developed along the Mudanjiang suture zone, while on both sides of the suture zone, there were comparable Paleozoic strata, indicating that the two blocks had converged during the Paleozoic, and the evolution history of the two blocks in the Late Paleozoic remains controversial. The Carboniferous-Permian terrestrial strata mainly developed in Binxian, Wuchang and Tieli on Songliao Block, Baoqing and Mishan on Jiamusi Block. Samples from the Songliao and Jiamusi blocks in the Late Carboniferous-Early Permian and Late Permian are collected for comparative analysis. The LAICP-MS zircon U-Pb dating results show that the maximum depositional age of Middle Permian Tumenling Formation and Late Permian Hongshan Formation in Songliao Block is ~260 Ma, while that of Tatouhe Formation and Carboniferous strata in Jiamusi Block are ~290 Ma and ~300 Ma, respectively, which supports the previous stratigraphic division scheme. The age peaks of ~290–300 Ma, ~400 Ma, ~500 Ma appeared in the Late Carboniferous to Early Permian strata of Jiamusi Block and the Middle Permian strata of Songliao Block. The age peak of ~500 Ma in the Middle Permian strata of Songliao Block may come from the Cambrian basement, Mashan Complex, of Jiamusi Block, while the age peaks of ~420–440 Ma in the Carboniferous strata of Jiamusi Block may come from the Silurian magmatic arc in Zhangguangcai Range in the eastern margin of Songliao Block, reflects the history that they had been potential sources of each other, indicating that they may have combined in the Paleozoic. The Hongshan Formation of Songliao Block in the Late Permian lacks the age peak of ~500 Ma, which indicate that Jiamusi Block was not the provenance of Songliao Block in the Late Permian, that is, there was a palaeogeographic isolation between the two blocks. Combined with the ~210 Ma bimodal volcanic rocks developed along the Mudanjiang suture zone reported previously, we believe that the oceanic basin between the Songliao and Jiamusi blocks should have been connected in Late Permian and reopened during Late Permian to Late Triassic.  相似文献   

9.
The hydrocarbon potential of the Hangjinqi area in the northern Ordos Basin is not well known, compared to the other areas of the basin, despite its substantial petroleum system.Restoration of a depth-converted seismic profile across the Hangjinqi Fault Zone(HFZ) in the eastern Hangjinqi area shows one compression that created anticlinal structures in the Late Triassic, and two extensions in ~Middle Jurassic and Late Early Cretaceous, which were interrupted by inversions in the Late Jurassic–Early Early Cretaceous and Late Cretaceous, respectively.Hydrocarbon generation at the well locations in the Central Ordos Basin(COB) began in the Late Triassic.Basin modeling of Well Zhao-4 suggests that hydrocarbon generation from the Late Carboniferous–Early Permian coal measures of the northern Shanbei Slope peaked in the Early Cretaceous, predating the inversion in the Late Cretaceous.Most source rocks in the Shanbei Slope passed the main gas-migration phase except for the Hangjinqi area source rocks(Well Jin-48).Hydrocarbons generated from the COB are likely to have migrated northward toward the anticlinal structures and traps along the HFZ because the basin-fill strata are dipping south.Faulting that continued during the extensional phase(Late Early Cretaceous) of the Hangjinqi area probably acted as conduits for the migration of hydrocarbons.Thus, the anticlinal structures and associated traps to the north of the HFZ might have trapped hydrocarbons that were charged from the Late Carboniferous–Early Permian coal measures in the COB since the Middle Jurassic.  相似文献   

10.
In this paper we present new zircon U–Pb ages, whole-rock major and trace element analyses, and zircon Hf isotopic data for magmatic rocks in the Tuotuohe region of the western segment of the Jinshajiang suture. Our aim is to constrain the Early Permian–Late Triassic tectonic evolution of the region. Zircons from the magmatic rocks of the Tuotuohe region are euhedral–subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios(0.4–4.6), indicating a magmatic origin. The zircon U–Pb ages obtained using LA–ICP–MS are 281 ± 1 Ma, 258 ± 1 Ma, 244 ± 1 Ma, and 216 ± 1 Ma, which indicate magmatism in the Early Permian–Late Triassic. A diorite from Bashihubei(BSHN) has SiO2 = 57.18–59.97 wt%, Al2O3 = 15.70–16.53 wt%, and total alkalis(Na2O + K2O) = 4.46–6.34 wt%, typical of calc-alkaline and metaluminous series. A gabbro from Bashibadaoban(BSBDB) belongs to the alkaline series, and is poor in SiO2(45.46–54.03 wt%) but rich in Al2O3(16.19–17.39 wt%) and total alkalis(Na2O + K2O = 5.48–6.26 wt%). The BSHN diorite and the BSBDB gabbro both display an enrichment of LREEs and LILEs and depletion of HFSEs, and they have no obvious Eu anomaly; they have relatively low MgO contents(2.54–4.93 wt%), Mg# values of 43 to 52, and low Cr and Ni contents(8.07–33.6 ppm and 4.41–14.2 ppm, respectively), indicating they differentiated from primitive mantle magmas. They have low Nb/U, Ta/U, and Ce/Pb ratios(1.3–9.6, 0.2–0.8, and 0.1–18.1, respectively), and their initial Hf isotopic ratios range from +9.6 to +16.9(BSHN diorite) and +6.5 to +12.6(BSBDB gabbro), suggesting their primary magmas were derived mainly from the partial melting of a mantle wedge that had been metasomatized by subduction fluids. Taking all the new data together, we conclude that the western and eastern segment of the Jinshajiang suture regions underwent identical processes of evolution in the Early Permian–Late Triassic: oceanic crust subduction before the Early Permian, continental collision during the Early–Middle Triassic, and post-collisional extension from the Late Triassic.  相似文献   

11.
高永宝  李文渊  李侃  钱兵 《矿床地质》2017,36(2):463-482
东昆仑祁漫塔格地区位于青藏高原北缘,为典型的大陆边缘增生造山带,经历了漫长的古生代—早中生代增生造山过程,其中以早中生代岩浆活动与成矿作用最为发育。文章系统总结了区内早中生代侵入岩分布及成因,对与其相关矿床地质、成矿流体特征及成矿物质来源进行分析,进一步探讨了祁漫塔格地区早中生代大陆地壳增生过程中的壳幔混合岩浆活动与成矿作用的关联。研究结果认为,中二叠世—早三叠世以俯冲阶段的侧向增生为主,中-晚三叠世以碰撞-后碰撞阶段的垂向增生为主,与成矿有关的岩浆岩主要为中-晚三叠世石英闪长岩、花岗闪长岩、二长花岗岩、正长花岗岩、花岗斑岩等,以I型、A型花岗岩为主,且多见暗色包体,Sr-Nd-Hf同位素组成表明其源于古陆壳物质的重熔,有地幔物质的参与,由地幔底侵古老陆壳,幔源基性岩浆与壳源花岗质岩浆发生不同程度混合作用而形成。与该时期岩浆活动关系密切的主要为斑岩型铜钼矿床、矽卡岩型铁多金属矿床、层控矽卡岩型铅锌矿床、与碱性花岗岩有关稀有金属矿化等。成矿时代集中于248~210 Ma,成矿流体主要来源于岩浆热液,成矿物质具有壳幔混合来源,区内中-晚三叠世大陆垂向增生过程中的壳-幔岩浆混合作用为区域大规模金属成矿提供大量热能、成矿流体及成矿物质。  相似文献   

12.
王枫  许文良  葛文春  杨浩  裴福萍  吴韦 《岩石学报》2016,32(4):1129-1140
敦化-密山断裂带是郯庐断裂北段的重要分支之一,其大规模左行走滑发生的时限以及平移距离一直存在较大争议。本文系统地总结了松嫩-张广才岭地块东缘、佳木斯地块以及兴凯地块之上古生代-中生代火成岩的锆石U-Pb年代学资料,结合其空间分布特征,对敦化-密山断裂带的平移时限及距离提供了制约。研究表明,松嫩-张广才岭地块东缘与兴凯地块在古生代-中生代期间具有类似的岩浆活动历史,两个地块之上该时期的岩浆作用可以划分为8个主要期次:中-晚寒武世(ca.500~516Ma)、早奥陶世(ca.480~486Ma)、晚奥陶世(ca.450~456Ma)、中志留世(ca.426~430Ma)、早二叠世(ca.285~292Ma)、晚二叠世(ca.255~260Ma)、晚三叠世(ca.202~210Ma)和早侏罗世(ca.185~186Ma)。相比之下,佳木斯地块中的古生代-中生代早期岩浆事件则集中在晚寒武世(~492Ma)、晚泥盆世(~388Ma)、早二叠世(~288Ma)、晚二叠世(~259Ma)和早侏罗世(~176Ma),而晚奥陶世-志留纪和晚三叠世的岩浆活动在佳木斯地块未见报道。早白垩世晚期(ca.105~110Ma)和晚白垩世(ca.90~94Ma)的岩浆活动在三个地块均存在。上述结果表明兴凯地块东缘与松嫩-张广才岭地块东缘在早古生代经历了共同的地质演化历史,而中生代早期,兴凯地块西缘与松嫩-张广才岭地块东缘经历了同样的岩浆作用历史。上述结果暗示,敦化-密山断裂可能经历了至少两次平移,分别发生在中-晚二叠世-早三叠世和中-晚侏罗世-早白垩世,推测其总的平移距离约400km。结合研究区中生代期间的构造演化历史,敦化-密山断裂中生代的左行平移应与中-晚侏罗世-早白垩世期间古太平洋板块(Izanagi板块)的斜向俯冲相联系。  相似文献   

13.
燕山构造带北缘喀喇沁地区发育了晚古生代一中生代多期岩浆活动,记录了多期构造变形事件,是认识该构造带大地构造演化的理想地区。本文通过对该地区岩浆岩的系统定年及各期构造变形事件的研究,结合区域地质资料,综合分析了晚古生代一中生代的大地构造演化历史。分析结果表明,燕山构造带在早石炭世晚期一早二叠世处于古亚洲洋俯冲背景下的活动陆缘环境,出现了弧岩浆活动。中二叠世古亚洲洋沿索伦克缝合线关闭,使得燕山构造带成为周缘前陆挤压变形带,并对应着岩浆活动的平静期。之后燕山构造带分别出现了晚二叠世一三叠纪、中侏罗世、晚侏罗世与早白垩世4期伸展背景下的岩浆活动。在这些岩浆活动之间的平静期,先后发生了早侏罗世、晚侏罗世初、早白垩世初3期挤压事件。这些现象还表明,岩浆活动与构造演化具有明显的耦合关系,板内环境下岩浆活动发生在伸展背景中,而岩浆活动平静期多对应区域挤压活动。  相似文献   

14.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

15.
兴蒙造山带属于中亚造山带的东段,关于其演化过程存在两种主要观点:一种观点认为它是由古亚洲洋经历整个古生代的连续俯冲-碰撞过程后在早三叠世形成;另一种观点则认为古亚洲洋在晚泥盆世之前就通过俯冲-碰撞过程闭合,形成早-中古生代造山带,随后在石炭-二叠纪又经历了从陆内伸展到再次闭合的过程,并形成陆内造山带。蒙古国东南部扎门乌德地区出露各类古生代沉积岩和岩浆岩,可以为解决上述争议提供典型研究实例。本文通过沉积学、年代学和地球化学等多种手段综合研究,取得以下研究成果:(1)根据年代学和岩性特征,在该地区识别出三类古生代岩石组合,第一类是以黑云母二长花岗岩为代表的中志留世侵入岩,第二类是中泥盆世大套的粗碎屑岩-火山岩沉积旋回,第三类是不整合地沉积于早期造山带之上的二叠纪巨厚火山-沉积岩系。这三类岩石组合分别属于俯冲阶段的大陆边缘岛弧带岩浆岩、碰撞造山后期的上叠盆地以及叠加在早期造山带岩石圈之上的晚古生代陆内伸展时期的裂谷盆地的沉积。(2)利用研究区所有古生代碎屑锆石和岩浆岩全岩资料,揭示了该地区古生代时期地壳厚度变化趋势如下:500~425Ma的俯冲-碰撞过程造成地壳加厚;425~375Ma的碰撞造山后伸展过程使地壳变薄;375~350Ma地壳再次加厚,可能与造山带物质堆叠有关;350~275Ma地壳再次减薄,对应于广泛而强烈的晚石炭世-早二叠世火山岩,证明此时期岩浆活动的构造背景是区域伸展而不是挤压作用。(3)根据研究区出现的三类岩石组合特点,结合研究区以南的艾力格庙地区已有的研究成果,可以划分出五个早-中古生代造山带构造单元和两个叠加其上的晚古生代陆内造山带构造单元,揭示蒙古国扎门乌德地区经历了早-中古生代加积造山带和晚古生代陆内造山带等两个构造演化过程。本文研究为认识兴蒙造山带的两阶段构造发展提供了新资料。  相似文献   

16.
兴蒙陆内造山带   总被引:21,自引:9,他引:12  
徐备  王志伟  张立杨  王智慧  杨振宁  贺跃 《岩石学报》2018,34(10):2819-2844
本文提出了"兴蒙陆内造山带"的新概念(Xing-Meng Intracontinent Orogenic Belt,XMIOB),从大地构造、沉积建造、岩浆作用和变质作用等方面论述了XMIOB从晚古生代到中生代初的陆内伸展及陆内造山过程,为探讨晚古生代构造演化提供了新模式。根据对内蒙古中西部晚古生代构造格局的总体认识,可将XMIOB划分为五个构造单元即:早石炭世二连-贺根山裂谷带、晚石炭世陆表海盆地、早二叠世艾力格庙-二连伸展构造带、早-中二叠世盆岭构造带和晚二叠世索伦山-乌兰沟伸展构造带。晚石炭世末-二叠纪在兴蒙造山带基底上发育三期伸展构造:第一期见于内蒙古北部二连-艾力格庙地区,形成陆内裂谷盆地及其盆缘三角洲沉积,发育时代为302~298Ma;第二期在内蒙古中西部广泛分布,以隆起与凹陷相间分布的盆岭构造为特征,发育时代为290~260Ma;第三期见于内蒙古南部索伦山到温都尔庙乌兰沟一带,形成主动裂谷背景下的红海型小洋盆,发育时代为260~250Ma。晚古生代与伸展过程有关的岩浆活动可分四期:1)早石炭世贺根山期:以蛇绿岩为主,发育于具有前寒武纪古老基底和早古生代造山带年轻基底的陆壳伸展区; 2)晚石炭世达青牧场期:主要沿北造山带分布,以基性和酸性岩浆构成的双峰式侵火成岩为特征; 3)早二叠世大石寨期:形成的岩石种类多样,分布广泛,包括双峰式火山岩、双峰式侵入岩和碱性岩; 4)二叠纪末-三叠纪初索伦山期:形成陆缘型蛇绿岩或基性岩-超基性岩组合,产生于软流圈上涌造成的主动裂谷背景。兴蒙陆内造山带的构造变形可分为两期,第一期为晚古生代地层大范围褶皱变形,造成盆-岭构造带的缩短;第二期为沿盆-岭构造的边界强烈剪切变形,产生向东逃逸的挤出构造,其构造背景是北部蒙古-鄂霍茨克造山带和南部大别-秦岭中央造山带的远距离效应引起的被动闭合作用。兴蒙陆内造山带的变质作用分为两个阶段,早期变质作用主要表现为石炭纪期间与陆内伸展有关的低压高温变质,晚期为二叠纪末到三叠纪初区域大面积的低压绿片岩相变质以及沿构造边界的局部中-低压型低温变质。  相似文献   

17.
华北地块北缘广泛发育石炭纪-三叠纪岩浆岩,岩浆岩的时空展布及反映的构造背景对研究古亚洲洋的俯冲增生作用具有重要的意义.然而,目前的研究集中在华北地块北缘中东部,该期岩浆活动的向西延伸有待深入研究.通过对狼山地区近年来获得的晚古生代-早中生代岩浆岩岩石学、地球化学、锆石U-Pb年龄及Hf同位素数据的综合分析,结果表明该区经历了早石炭世-晚二叠世、中-晚三叠世两期构造岩浆作用.其中,早石炭世-晚二叠世岩浆活动时限在338~251 Ma,岩性主要为辉长岩、角闪辉长岩、闪长岩、石英闪长岩、花岗闪长岩及二长花岗岩,辉长岩类的微量元素蛛网图及稀土元素配分型式与岛弧火山岩的曲线类似,花岗岩类具高Sr(>250×10-6,平均值为425×10-6)低Y(6.89×10-6~24.30×10-6)的特点.中-晚三叠世岩浆活动时限在245~228 Ma,岩性主要为正长花岗岩,花岗岩具高K2O/Na2O(1.48~1.58)、低Sr(154×10-6~49×10-6)低Yb(1.01×10-6~1.38×10-6)的特点,稀土配分曲线表现为轻稀土略富集、Eu负异常中等-强(Eu*=0.54~0.23)、重稀土平坦的近似海鸥型,总体反映了后造山花岗岩的地球化学特征.结合构造判别图解及区域地质资料,结果表明狼山地区早石炭世-晚二叠世为俯冲挤压的构造背景,中-晚三叠世则进入了后造山伸展的构造阶段.狼山地区晚古生代-早中生代发育的两期构造岩浆作用与华北陆块北缘中东部(330~265 Ma及250~200 Ma)类似,古亚洲洋的向南俯冲形成了华北陆块北缘近东西向延伸的晚古生代岩浆岩带,华北陆块与其北缘增生造山带拼贴作用的时限为二叠纪末-三叠纪初.   相似文献   

18.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

19.
Regional mapping (1:50,000) and U-Pb and K-Ar geochronology in the El Indio region refines the knowledge of the distribution, lithostratigraphy, and age of the sedimentary, volcanic, and intrusive rocks that comprise the regionally extensive Pastos Blancos Group which is equivalent to the Choiyoi Group of the Argentine Frontal Cordillera. The Pastos Blancos Group (which we elevate to Group status herein) includes at least two diachronous volcanic–sedimentary sequences: an older felsic volcanic and volcaniclastic unit, the Guanaco Sonso sequence, that is Permian in age, and a younger bimodal volcanic and volcaniclastic unit, the Los Tilos sequence that is Middle Triassic to Early Jurassic. Sedimentary rocks of the Los Tilos sequence are transitional upward into the overlying Early to Middle Jurassic shallow marine limestones of the Lautaro Formation.Intrusions that make up the regionally extensive Permian to Early Jurassic plutons of the Chollay and Elqui-Limarı́ batholiths that were previously mapped as a single plutonic association, the Ingaguás Complex, include in the El Indio region at least three discrete intrusive units. These include: Early Permian (280–270 Ma) biotite granites, Early to Middle Triassic (242–238 Ma) silica-rich leucocratic granites and rhyolitic porphyries that made up the bulk of the Chollay Batholith, and a younger Late Triassic–Early Jurassic unit (221–200 Ma) of mainly intrusive rhyolitic porphyries, extrusive domes, and subordinate mafic intrusions and both felsic and mafic dikes, which are coeval with volcanic rocks of the Los Tilos sequence.Our data show that latest Paleozoic to Early Jurassic intrusive, volcanic, and sedimentary rocks in the El Indio region of the High Andes of Chile between 29–30°S likely formed during extension driven processes after the cessation of Carboniferous–Early Permian subduction along the western edge of Gondwana. These processes began by Late Permian time, but instead of recording a single and protracted magmatic event, as has been previously suggested, rocks that belong to the Pastos Blancos Group and the Ingaguás Intrusive Complex record at least three discrete periods of silicic to bimodal magmatism which occurred during the Middle Permian to Early Jurassic interval.  相似文献   

20.
内蒙古突泉—科尔沁右翼中旗地区位于大兴安岭中南段,中生代岩浆活动较为频繁,岩浆作用形成的岩石类型主要包括花岗闪长岩、正长花岗岩、二长花岗岩和花岗斑岩等。鉴于目前研究区地质资料缺乏对整个突泉—科右中旗地区中生代花岗岩较为完善的研究和论述,笔者旨在对全区范围内的中生代花岗岩进行LA-ICP-MS锆石U-Pb年龄测定,同时在总结前人资料的基础上划分该地区不同的中生代岩浆作用期次,进而讨论本区不同花岗岩所代表的地质意义。花岗岩锆石U-Pb年龄测试结果表明,孟恩陶勒盖花岗闪长岩的形成时代为(241.2±2.8) Ma,杜尔基镇南部正长花岗岩的形成时代为(148.2±1.0) Ma,宝格吐岩体的花岗闪长岩的形成时代为(226.0±1.1) Ma,马家屯花岗斑岩的形成时代为(124.6±1.1) Ma,这与广泛分布于本区中生代火山岩的形成时代较为一致。结合前人研究成果以及邻区的地质资料,认为本区岩浆活动可以划分为中—晚三叠世、晚侏罗世和早白垩世;中—晚三叠世花岗岩可能属于古亚洲洋闭合造山后岩石圈伸展作用的产物,而晚侏罗世花岗岩的形成可能与中侏罗世蒙古—鄂霍茨克洋闭合后岩石圈伸展作用有关,早白垩世花岗岩可能反映了板内拉张的构造背景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号