首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Saturn's southern pole was observed at high resolution by the Cassini Imaging Science Subsystem (ISS) during the spacecraft insertion orbit in July 2004. Cloud tracking of individual features on images taken at a wavelength of 938 nm reveal the existence of a strong polar vortex enclosed by a jet with maximum speed of relative to System III rotation frame, and peak at 87 °S planetographic latitude. Radiative transfer models of the reflected light, based on the Cassini images complemented by Hubble Space Telescope images from March 2004, indicate that the aerosol particles in the vortex are structured vertically in three detached layers. We find two hazes and one dense cloud distributed in altitude between ∼500 mbar (top of the dense cloud) and few mbar (top of the stratospheric haze), spanning a vertical altitude range of ∼200 km. The vortex area coincides with a thermal hot spot recently reported, indicating that winds decrease with altitude above polar clouds.  相似文献   

2.
R.D. Lorenz  R.D. West 《Icarus》2008,195(2):812-816
The Cassini RADAR instrument made a dedicated cloud backscatter observation near Titan's north pole, presently in winter darkness, to constrain the precipitation of material onto the surface. The detection limit is ∼5 orders of magnitude above that expected in methane rainstorms, and rules out ‘drizzle’ of more than , placing constraints on the winter accumulation of material on Titan's surface during polar winter.  相似文献   

3.
David A. Minton  Renu Malhotra 《Icarus》2010,207(2):744-7225
The cumulative effects of weak resonant and secular perturbations by the major planets produce chaotic behavior of asteroids on long timescales. Dynamical chaos is the dominant loss mechanism for asteroids with diameters in the current asteroid belt. In a numerical analysis of the long-term evolution of test particles in the main asteroid belt region, we find that the dynamical loss history of test particles from this region is well described with a logarithmic decay law. In our simulations the loss rate function that is established at persists with little deviation to at least . Our study indicates that the asteroid belt region has experienced a significant amount of depletion due to this dynamical erosion—having lost as much as ∼50% of the large asteroids—since 1 Myr after the establishment of the current dynamical structure of the asteroid belt. Because the dynamical depletion of asteroids from the main belt is approximately logarithmic, an equal amount of depletion occurred in the time interval 10-200 Myr as in 0.2-4 Gyr, roughly ∼30% of the current number of large asteroids in the main belt over each interval. We find that asteroids escaping from the main belt due to dynamical chaos have an Earth-impact probability of ∼0.3%. Our model suggests that the rate of impacts from large asteroids has declined by a factor of 3 over the last 3 Gyr, and that the present-day impact flux of objects on the terrestrial planets is roughly an order of magnitude less than estimates currently in use in crater chronologies and impact hazard risk assessments.  相似文献   

4.
We present observations of Titan taken on November 17, 2000, with the near-infrared spectro-imaging system OASIS, mounted downstream of the CFHT/PUEO adaptive optics system. We have spatially resolved Titan's disk at Greatest Eastern Elongation. Our spectra cover the 0.86- range with a spectral resolution of 1800. By studying Titan at these wavelengths, we have recovered several pieces of information on the vertical and latitudinal structure of the atmosphere and surface of the satellite. The observing conditions were sufficiently good (AO-corrected seeing of 0.34”) so as to allow us to separate the disk into 7 independent elements. From the flux contained in the methane band, we find that at higher altitudes on Titan, the North-South asymmetry is undergoing changes with respect to previous years when the South was much brighter than the North. This asymmetry still prevails in the troposphere, but at higher levels the well-known “Titan smile”—previously reported—disappears. We believe that we even have evidence for a reversal. The year 2000 may then represent the beginning of a seasonal change in Titan's haze distribution in the near-infrared, something which has been confirmed since but was not visible in the previous years. By comparing regions on Titan's disk with similar surface and stratospheric characteristics, we find an differences in the latitudinal distribution of the aerosol content in the intermediate altitude levels. Reflectivity measurements derived in the window (and hence pertaining to the surface conditions) show that the equatorial regions of the leading side are brighter than the surrounding areas, due to the presence of the large bright zone observed since 1994. Given our spatial resolution, we find this region to be 6% brighter than northern latitudes, 7% brighter than the South pole and in total we have a contrast of 9% between the darker and the brighter areas distinguishable on our images. The methane window yields a geometric albedo of about 0.26 for the bright center of Titan's disk. This region is affected by a strong H2O telluric absorption and therefore we could not derive any precise information on the surface composition from the original spectrum. We have, however, been able to correct for the telluric lines by using a stellar spectrum taken just before our Titan observations. We were then able to apply our radiative transfer code and after modeling surface albedo values of about 0.37 and 0.29 for the brightest and darkest areas respectively were found. We investigate possible surface components, compatible with our data, such as water ice, hydrocarbon liquid, tholin deposits or silicates.  相似文献   

5.
Darrell F. Strobel 《Icarus》2006,182(1):251-258
Tidal waves driven by Titan's orbital eccentricity through the time-dependent component of Saturn's gravitational potential attain nonlinear, saturation amplitudes (|T|>10 K, , and ) in the upper atmosphere (?500 km) due to the approximate exponential growth as the inverse square root of pressure. The gravitational tides, with vertical wavelengths of ∼100-150 km above 500 km altitude, carry energy fluxes sufficient in magnitude to affect the energy balance of the upper atmosphere with heating rates in the altitude range of 500-900 km.  相似文献   

6.
The VIMS instrument onboard Cassini observed the north polar region of Titan at 113° phase angle, 28 December 2006. On this spectral image, a vast polar cloud can be seen northward to 62°N, and elsewhere, the haze appears as the dominant source of scattering. Because the surface does not appear in the wavelength range between 0.3 and , this spectro-image is ideal to study airborn scatterers both in methane bands and windows. In this work, we study this image, along with another image taken at 13° phase angle. This image probe both the atmosphere and the surface from pole to pole. First, we characterise the spatial distribution of the haze layer above 100 km between 80°S and 70°N. We find a north south asymmetry with a haze opacity increasing by a factor 3 from the south pole to the equator, then a constant value up to about 30°N and a decrease of a factor 2 between 30°N and about 60°N. Beyond 60°N, we can see the influence of the north polar cloud, even in the band, but no polar haze accumulation. The fact that the north polar region is still in the polar night is a possible explanation. No haze accumulation is observed in the southern polar region. Secondly, we partly identify the origin of spectral features in the 2.8-μm methane window, which are found to be due to deuterated methane (CH3D). This allows the analyse of this window and to retrieve the opacity of scatterers layer below 80 km (presumably made of aerosols and condensate droplets) between 35°N and 60°N. Finally, we constrained the values and the spectral behaviour of the imaginary part of the aerosol refractive index in the range between 0.3 and . To do so, we studied the 2.8-μm window with the image taken at 113° phase angle. To complete the analysis, we studied the transmission through the haze layer in the 3.4-μm band observed in solar occultation mode with VIMS, and we analysed the single scattering albedo retrieved with DISR instrument between 0.4 and . The imaginary part of the refractive index that we find for Titan aerosols follows Khare et al. (Khare, B.N. et al. [1984]. Icarus 60, 127-137) optical constant up to and becomes constant beyond this wavelength at least up to . It also has a prominent peak at and a secondary peak at , which indicates material rich in C-H bonds, with much less N-H bonds than in Khare et al. (1984) tholins.  相似文献   

7.
We describe a model for crater populations on planets and satellites with dense atmospheres, like those of Venus and Titan. The model takes into account ablation (or mass shedding), pancaking, and fragmentation. Fragmentation is assumed to occur due to the hydrodynamic instabilities promoted by the impactors’ deceleration in the atmosphere. Fragments that survive to hit the ground make craters or groups thereof. Crater sizes are estimated using standard laws in the gravity regime, modified to take into account impactor disruption. We use Monte Carlo methods to pick parameters from appropriate distributions of impactor mass, zenith angle, and velocity. Good fits to the Venus crater populations (including multiple crater fields) can be found with reasonable values of model parameters. An important aspect of the model is that it reproduces the dearth of small craters on Venus: this is due to a cutoff on crater formation we impose, when the expected crater would be smaller than the (dispersed) object that would make it. Hydrodynamic effects alone (ablation, pancaking, fragmentation) due to the passage of impactors through the atmosphere are insufficient to explain the lack of small craters. In our favored model, the observed number of craters (940) is produced by ∼5500 impactors with masses , yielding an age of (1-σ uncertainty) for the venusian surface. This figure does not take into account any uncertainties in crater scaling and impactor population characteristics, which probably increase the uncertainty to a factor of two in age.We apply the model with the same parameter values to Titan to predict crater populations under differing assumptions of impactor populations that reflect present conditions. We assume that the impactors (comets) are made of 50% porous ice. Predicted crater production rates are ≈190 craters . The smallest craters on Titan are predicted to be in diameter, and ≈5 crater fields are expected. If the impactors are composed of solid ice (density ), crater production rates increase by ≈70% and the smallest crater is predicted to be in diameter. We give cratering rates for denser comets and atmospheres 0.1 and 10 times as thick as Titan's current atmosphere. We also explicitly address leading-trailing hemisphere asymmetries that might be seen if Titan's rotation rate were strictly synchronous over astronomical timescales: if that is the case, the ratio of crater production on the leading hemisphere to that on the trailing hemisphere is ≈4:1.  相似文献   

8.
9.
We present spectroscopic and photometric observations, spanning the optical UV to the far red, before, during, and after the NASA Deep Impact event of July 4, 2005. The inner 2000 km of the pre- and post-impact coma was about 0.3 magnitude redder in B-R than in the outer coma. The pre-impact spectrum was a faint reflected solar spectrum dominated by molecular emissions extending >40,000 km from the nucleus. The post-impact light curve in R and I showed a rapid rise consistent with an expanding optically thick cloud during the first 18 min after impact. During the next 8 min the cloud became optically thin. Sixty minutes after impact the impact R-band flux reached a plateau at , the comet brightening by a factor of ∼4.3 above its pre-impact value observed in a 15″ aperture. The mean expansion velocity of the grains during the first 49 min was . The spectrum became dominated by scattered sunlight during the first hour after impact. The volume scattering function (VSF) observed 32 min after impact shows strong reddening. At 49 min, however, the VSF shows an additional twofold increase in the blue but only a 20% increase at 5500 Å. Post-impact spectra and R-I photometry showed rapid reddening. The particle size distribution, dominated by 1-2.5 μm particles shortly after impact, changed dramatically during the first hour due to sublimation of water-ice particles of this size. On the night following impact the comet was still substantially brighter than before impact, but R-I had returned to its pre-impact value. B-R remained significantly redder. The ejecta 25 h after impact was fan-shaped subtending ∼180° roughly symmetrical about position angle 225°. The mean expansion velocity 90° from the direction to the Sun was .  相似文献   

10.
11.
12.
Porous internal structure is common among small bodies in the planetary systems and possible range of porosity, strength, and scale of in-homogeneity is wide. Icy agglomerates, such as icy dust aggregates in the proto-planetary disks or icy re-accumulated bodies of fragments from impact disruption beyond snow-line would have stronger bulk strength once the component particles physically connect each other due to sintering.In this study, in order to get better understanding of impact disruption process of such bodies, we first investigated the critical tensile (normal) and bending (tangential) forces to break a single neck, the connected part of the sintered particles, using sintered dimer of macro glass particles of ∼5 mm in diameter. We found that the critical tensile force is proportional to the cross-section of the neck when the neck grows sufficiently larger than the surface roughness of the original particles. We also found that smaller force is required to break a neck when the force is applied tangentially to the neck than normally applied. Then we measured the bulk tensile strength of sintered glass agglomerates consisting of 90 particles and showed that the average tensile stress to break a neck of agglomerates in static loading is consistent with the measured value for dimers.Impact experiments with velocity from 40 to 280 m/s were performed for the sintered agglomerates with ∼40% porosity, of two different bulk tensile strengths. The size ratio of the beads to the target was 0.19. The energy density required to catastrophically break the agglomerate was shown to be much less than those required for previously investigated sintered glass beads targets with ∼40% porosity, of which the size of component bead is 10−2 times smaller and the size ratio of the bead to target is also ∼10−2 times smaller than the agglomerates in this study. This is probably due to much smaller number of necks for the stress wave to travel through the agglomerates and therefore the energy dissipation at the necks is minimal. Also, the much larger fraction of the surface particles enables the particles to move more freely and thus be broken more easily. The catastrophic disruption of the agglomerates is shown to occur when the projectile kinetic energy is a few times of the total energy to break all of the necks of the agglomerates. The result implies that finer fragments from sintered agglomerates may have smaller catastrophic disruption energy threshold for shattering than other larger fragments with similar porosity and bulk tensile strength but much larger number of constituent particles. If this is the case, size-dependence of (smaller is weaker) is opposite to those usually considered for the bodies in the strength regime.  相似文献   

13.
Darrell F. Strobel 《Icarus》2009,202(2):632-641
In Strobel [Strobel, D.F., 2008. Icarus, 193, 588-594] a mass loss rate from Titan's upper atmosphere, , was calculated for a single constituent, N2 atmosphere by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating due to CH4 absorption. It was estimated, but not proven, that the hydrodynamic mass loss is essentially CH4 and H2 escape. Here the individual conservation of momentum equations for the three major components of the upper atmosphere (N2, CH4, H2) are solved in the low Mach number limit and compared with Cassini Ion Neutral Mass Spectrometer (INMS) measurements to demonstrate that light gases (CH4, H2) preferentially escape over the heavy gas (N2). The lightest gas (H2) escapes with a flux 99% of its limiting flux, whereas CH4 is restricted to ?75% of its limiting flux because there is insufficient solar power to support escape at the limiting rate. The respective calculated H2 and CH4 escape rates are 9.2×1027 and 1.7×1027 s−1, for a total of . From the calculated densities, mean free paths of N2, CH4, H2, and macroscopic length scales, an extended region above the classic exobase is inferred where frequent collisions are still occurring and thermal heat conduction can deliver power to lift the escaping gas out of the gravitational potential well. In this region rapid acceleration of CH4 outflow occurs. With the thermal structure of Titan's thermosphere inferred from INMS data by Müller-Wodarg et al. [Müller-Wodarg, I.C.F., Yelle, R.V., Cui, J., Waite Jr., J.H., 2008. J. Geophys. Res. 113, doi:10.1029/2007JE003033. E10005], in combination with calculated temperature profiles that include sputter induced plasma heating at the exobase, it is concluded that on average that the integrated, globally average, orbit-averaged, plasma heating rate during the Cassini epoch does not exceed ().  相似文献   

14.
15.
We present high-speed CCD photometry of Comet 9P/Tempel 1 during the Deep Impact event on 2005 July 4 UT. Approximately 2 h and 50 min of R-band data were acquired at Mount Laguna Observatory with a temporal resolution of 5.5 s. The flux increased by 9% in the first minute after impact. This was followed by a more gradual two-part linear rise, with a change in slope at 9.2 min post-impact, at which time the rate of brightening increased from ∼ to ∼. An analysis of the light curve obtained with the guide camera on the United Kingdom Infrared Telescope and yields very similar results. These findings are mildly in disagreement with the 3-part linear rise found by Fernández et al. (2007) in that we do not find any evidence for a change at 4 min post-impact. We interpret the linear rise phase as due to solar illumination of the edge of an expanding optically thick dust ejecta plume. After approximately 20 min, the light curves begin to flatten out, perhaps coincident with the start of the transition to becoming optically thin. In the large apertures (>10) the light curve continues to gradually rise until the end of the observations. In smaller apertures, the light curves reach a peak at approximately 50 min, then decrease back towards the pre-impact flux level. The drop in flux in the smaller apertures may be caused by the ejecta expanding beyond the edge of the photometric aperture, and if so, we can use this timescale to infer an expansion velocity of ∼, consistent with previous published estimates.  相似文献   

16.
It is suggested that aerosol particles forming the detached and main haze layers of Titan's atmosphere do not originate in the same atmospheric levels. Particles present above approximately 350 km could be formed of polyacetylenes synthetized in the 500-800 km altitude range through successive insertion reactions involving the C2H radical under the action of solar ultraviolet photons (Yung et al., Astrophys. J. Suppl. 55, 465, 1984). They might contain C-N oligomers in comparable amounts, as well as C-H-N oligomers synthetized at high altitude (900-1000 km) by the action of suprathermal Saturn plasma electrons. Physically, they are expected to consist of fluffy aggregates of density approximately 0.01-0.1 g cm-3. Their mass production rate is small (10(-15)-10(-14) kg m-2 s-1), that is typically 10% or less of the main haze production rate. Due to their low fall velocity, they are very sensitive to large scale horizontal motions and one substantial part of them may be swept away by meridional circulation at the detached haze level. The altitude range where these aerosols are created is well above the range proposed by Cabane et al. (Planet. Space Sci. 41, 257, 1993) for aerosols of the main haze layer, on the basis of a new fractal microphysical modeling of Titan's aggregates, that is approximately 350-400 km. A natural outcome of this apparent discrepancy is to suppose that there is a second formation region, below approximately 400 km altitude, giving rise to the main haze layer. The aim of the present paper is to review the different possible formation mechanisms of this main haze layer and assess their ability to account for the observed characteristics of the haze. Several conditions are established. The first one, called "condition A", concerns the formation altitude range imposed by fractal modeling. Possible chemical and energy sources are examined. Two additional constraints, relative to the minimum gas mass ("condition B") and input energy ("condition C") required for efficient conversion of gas into aerosols, are defined. By comparing the production rates of the haze, as derived from microphysical models, and of gaseous chemical species, as derived from photochemical models, five possible source constituents are identified: N2, CH4, C2H2, C2H6 and HCN. Polymerization of C2H2 into (C2H2)n through action of solar ultraviolet photons is shown to be rather improbable (condition A is hardly satisfied). From both our current knowledge of the gaseous phase photochemistry, through modeling and laboratory experiments, and existing models of the interaction between Saturn magnetosphere and Titan atmosphere, the formation of C-H-N polymers through action of Saturn magnetospheric energetic particles (E approximately 100 keV), is proposed as the basic polymerization mechanism in the lower formation region (conditions A,B and C are jointly satisfied).  相似文献   

17.
We have derived a model of the Kuiper belt luminosity function exhibited by a broken power-law size distribution. This model allows direct comparison of the observed luminosity function to the underlying size distribution. We discuss the importance of the radial distribution model in determining the break diameter. We determine a best-fit break-diameter of the Kuiper belt size-distribution of 30<Db<90 km via a maximum-likelihood fit of our model to the observed luminosity function. We also confirm that the observed luminosity function for m(R)∼21-28 is consistent with a broken power-law size distribution, and exhibits a break at .  相似文献   

18.
19.
The giant planets of our solar system possess envelopes consisting mainly of hydrogen and helium but are also significantly enriched in heavier elements relatively to our Sun. In order to better constrain how these heavy elements have been delivered, we quantify the amount accreted during the so-called “late heavy bombardment”, at a time when planets were fully formed and planetesimals could not sink deep into the planets. On the basis of the “Nice model”, we obtain accreted masses (in terrestrial units) equal to for Jupiter, and for Saturn. For the two other giant planets, the results are found to depend mostly on whether they switched position during the instability phase. For Uranus, the accreted mass is with an inversion and without an inversion. Neptune accretes in models in which it is initially closer to the Sun than Uranus, and otherwise. With well-mixed envelopes, this corresponds to an increase in the enrichment over the solar value of 0.033±0.001 and 0.074±0.007 for Jupiter and Saturn, respectively. For the two other planets, we find the enrichments to be 2.1±1.4 (w/ inversion) or 1.2±0.7 (w/o inversion) for Uranus, and 2.0±1.2 (w/ inversion) or 2.7±1.6 (w/o inversion) for Neptune. This is clearly insufficient to explain the inferred enrichments of ∼4 for Jupiter, ∼7 for Saturn and ∼45 for Uranus and Neptune.  相似文献   

20.
Saturn's diffuse E ring is the largest ring of the Solar System and extends from about (Saturn radius RS=60,330 km) to at least encompassing the icy moons Mimas, Enceladus, Tethys, Dione, and Rhea. After Cassini's insertion into her saturnian orbit in July 2004, the spacecraft performed a number of equatorial as well as steep traversals through the E ring inside the orbit of the icy moon Dione. Here, we report about dust impact data we obtained during 2 shallow and 6 steep crossings of the orbit of the dominant ring source—the ice moon Enceladus. Based on impact data of grains exceeding 0.9 μm we conclude that Enceladus feeds a torus populated by grains of at least this size along its orbit. The vertical ring structure at agrees well with a Gaussian with a full-width-half-maximum (FWHM) of ∼4200 km. We show that the FWHM at is due to three-body interactions of dust grains ejected by Enceladus' recently discovered ice volcanoes with the moon during their first orbit. We find that particles with initial speeds between 225 and 235 m s−1 relative to the moon's surface dominate the vertical distribution of dust. Particles with initial velocities exceeding the moon's escape speed of 207 m s−1 but slower than 225 m s−1 re-collide with Enceladus and do not contribute to the ring particle population. We find the peak number density to range between 16×10−2 m−3 and 21×10−2 m−3 for grains larger 0.9 μm, and 2.1×10−2 m−3 and 7.6×10−2 m−3 for grains larger than 1.6 μm. Our data imply that the densest point is displaced outwards by at least with respect of the Enceladus orbit. This finding provides direct evidence for plume particles dragged outwards by the ambient plasma. The differential size distribution for grains >0.9 μm is described best by a power law with slopes between 4 and 5. We also obtained dust data during ring plane crossings in the vicinity of the orbits of Mimas and Tethys. The vertical distribution of grains >0.8 μm at Mimas orbit is also well described by Gaussian with a FWHM of ∼5400 km and displaced southwards by ∼1200 km with respect to the geometrical equator. The vertical distribution of ring particles in the vicinity of Tethys, however, does not match a Gaussian. We use the FWHM values obtained from the vertical crossings to establish a 2-dimensional model for the ring particle distribution which matches our observations during vertical and equatorial traversals through the E ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号