首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan.  相似文献   

2.
All landforms on Titan that are unambiguously identifiable can be explained by exogenic processes (aeolian, fluvial, impact cratering, and mass wasting). Previous suggestions of endogenically produced cryovolcanic constructs and flows have, without exception, lacked conclusive diagnostic evidence. The modification of sparse recognizable impact craters (themselves exogenic) can be explained by aeolian and fluvial erosion. Tectonic activity could be driven by global thermal evolution or external forcing, rather than by active interior processes. A lack of cryovolcanism would be consistent with geophysical inferences of a relatively quiescent interior: incomplete differentiation, only minor tidal heating, and possibly a lack of internal convection today. Titan might be most akin to Callisto with weather: an endogenically relatively inactive world with a cool interior. We do not aim to disprove the existence of any and all endogenic activity at Titan, nor to provide definitive alternative hypotheses for all landforms, but instead to inject a necessary level of caution into the discussion. The hypothesis of Titan as a predominantly exogenic world can be tested through additional Cassini observations and analyses of putative cryovolcanic features, geophysical and thermal modeling of Titan’s interior evolution, modeling of icy satellite landscape evolution that is shaped by exogenic processes alone, and consideration of possible means for supplying Titan’s atmospheric constituents that do not rely on cryovolcanism.  相似文献   

3.
Resurfacing of Titan by ammonia-water cryomagma   总被引:1,自引:0,他引:1  
The Cassini Titan Radar Mapper observed on Titan several large features interpreted as cryovolcanic during the October 26, 2004 pass at high northern latitudes [Lopes, R.M.C., and 43 colleagues, 2007. Icarus 186, 395-412]. To date, models of ammonia-water resurfacing have not been tied to specific events or evolutionary stages of Titan. We propose a model of cryovolcanism that involves cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. As these ammonia-water pockets undergo partial freezing in the cold ice shell, the ammonia concentration in the pockets increases, decreasing the negative buoyancy of the ammonia-water mixture. If the ice shell is contaminated by silicates delivered in impacts, the liquid-solid density difference would be even less. While the liquid cannot easily become buoyant relative to the surrounding ice, these concentrated ammonia-water pockets are sufficiently close to the neutral buoyancy point that large-scale tectonic stress patterns (tides, non-synchronous rotation, satellite volume changes, solid state convection, or subsurface pressure gradients associated with topography) would enable the ammonia to erupt effusively onto the surface. Rather than suggesting steady-state volcanism over the history of the Solar System, we favor a scenario where the cryovolcanic features could have been associated with episodic (potentially late) geological activity.  相似文献   

4.
Joint Cassini VIMS and RADAR SAR data of ∼700-km-wide Hotei Regio reveal a rich collection of geological features that correlate between the two sets of images. The degree of correlation is greater than anywhere else seen on Titan. Central to Hotei Regio is a basin filled with cryovolcanic flows that are anomalously bright in VIMS data (in particular at 5 μm) and quite variable in roughness in SAR. The edges of the flows are dark in SAR data and appear to overrun a VIMS-bright substrate. SAR-stereo topography shows the flows to be viscous, 100-200 m thick. On its southern edge the basin is ringed by higher (∼1 km) mountainous terrain. The mountains show mixed texture in SAR data: some regions are extremely rough, exhibit low and spectrally neutral albedo in VIMS data and may be partly coated with darker hydrocarbons. Around the southern margin of Hotei Regio, the SAR image shows several large, dendritic, radar-bright channels that flow down from the mountainous terrain and terminate in dark blue patches, seen in VIMS images, whose infrared color is consistent with enrichment in water ice. The patches are in depressions that we interpret to be filled with fluvial deposits eroded and transported by liquid methane in the channels. In the VIMS images the dark blue patches are encased in a latticework of lighter bands that we suggest to demark a set of circumferential and radial fault systems bounding structural depressions. Conceivably the circular features are tectonic structures that are remnant from an ancient impact structure. We suggest that impact-generated structures may have simply served as zones of weakness; no direct causal connection, such as impact-induced volcanism, is implied. We also speculate that two large dark features lying on the northern margin of Hotei Regio could be calderas. In summary the preservation of such a broad suite of VIMS infrared color variations and the detailed correlation with features in the SAR image and SAR topography evidence a complex set of geological processes (pluvial, fluvial, tectonic, cryovolcanic, impact) that have likely remained active up to very recent geological time (<104 year). That the cryovolcanic flows are excessively bright in the infrared, particularly at 5 μm, might signal ongoing geological activity. One study [Nelson, R.M., and 28 colleagues, 2009. Icarus 199, 429-441] reported significant 2-μm albedo changes in VIMS data for Hotei Arcus acquired between 2004 and 2006, that were interpreted as evidence for such activity. However in our review of that work, we do not agree that such evidence has yet been found.  相似文献   

5.
A large, circular marking ∼1800 km across is seen in near-infrared images of Titan. The feature is centered at 10°S, 120°W on Titan, encompasses much of Titan’s western Xanadu region, and has an off-center, quasi-circular, inner margin about 700 km across, with lobate outer margins extending 200-500 km from the inner margin. On the feature’s southern flank is Tui Regio, an area that has very high reflectivity at 5 μm, and is hypothesized to exhibit geologically recent cryovolcanic flows (Barnes, J.W. et al. [2006]. Geophys. Res. Lett. 33), similar to flows seen in Hotei Regio, a cryovolcanic area whose morphology may be controlled by pre-existing, crustal fractures resulting from an ancient impact (Soderblom, L.A. et al. [2009]. Icarus, 204). The spectral reflectivity of the large, circular feature is quite different than that of its surroundings, making it compositionally distinct, and radar measurements of its topography, brightness temperature and volume scattering also suggest that the feature is quite distinct from its surroundings. These and several other lines of evidence, in addition to the feature’s morphology, suggest that it may occupy the site of an ancient impact.  相似文献   

6.
Future planetary exploration of Titan will require higher degrees of on-board automation, including autonomous determination of sites where the probability of significant scientific findings is the highest. In this paper, a novel Artificial Intelligence (AI) method for the identification and interpretation of sites that yield the highest potential of cryovolcanic activity is presented. We introduce the theory of fuzzy cognitive maps (FCM) as a tool for the analysis of remotely collected data in planetary exploration. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction of planetary scientists and AI experts. As an application example, we show how FCM can be employed to solve the challenging problem of recognizing cryovolcanism from Synthetic Aperture Radar (SAR) Cassini data. The fuzzy cognitive map is constructed using what is currently known about cryovolcanism on Titan and relies on geological mapping performed by planetary scientists to interpret different locales as cryovolcanic in nature. The system is not conceived to replace the human scientific interpretation, but to enhance the scientists’ ability to deal with large amounts of data, and it is a first step in designing AI systems that will be able, in the future, to autonomously make decisions in situations where human analysis and interpretation is not readily available or could not be sufficiently timely. The proposed FCM is tested on Cassini radar data to show the effectiveness of the system in reaching conclusions put forward by human experts and published in the literature. Four tests are performed using the Ta SAR image (October 2004 fly-by). Two regions (i.e. Ganesa Macula and the lobate high backscattering region East of Ganesa) are interpreted by the designed FCM as exhibiting cryovolcanism in agreement with the initial interpretation of the regions by Stofan et al. (2006). Importantly, the proposed FCM is shown to be flexible and adaptive as new data and knowledge are acquired during the course of exploration. Subsequently, the FCM has been modified to include topographic information derived from SAR stereo data. With this additional information, the map concludes that Ganesa Macula is not a cryovolcanic region. In conclusion, the FCM methodology is shown to be a critical and powerful component of future autonomous robotic spacecraft (e.g., orbiter(s), balloon(s), surface/lake lander(s), rover(s)) that will be deployed for the exploration of Titan.  相似文献   

7.
Titan’s enigmatic Xanadu province has been seen in some detail with instruments from the Cassini spacecraft. The region contains some of the most rugged, mountainous terrain on Titan, with relief over 2000 m. Xanadu contains evolved and integrated river channels, impact craters, and dry basins filled with smooth, radar-dark material, perhaps sediments from past lake beds. Arcuate and aligned mountain chains give evidence of compressional tectonism, yet the overall elevation of Xanadu is puzzlingly low compared to surrounding sand seas. Lineations associated with mountain fronts and valley floors give evidence of extension that probably contributed to this regional lowering. Several locations on Xanadu’s western and southern margins contain flow-like features that may be cryovolcanic in origin, perhaps ascended from lithospheric faults related to regional downdropping late in its history. Radiometry and scatterometry observations are consistent with a water-ice or water-ammonia-ice composition to its exposed, eroded, fractured bedrock; both microwave and visible to near-infrared (v-nIR) data indicate a thin overcoating of organics, likely derived from the atmosphere. We suggest Xanadu is one of the oldest terrains on Titan and that its origin and evolution have been controlled and shaped by compressional and then extensional tectonism in the icy crust and ongoing erosion by methane rainfall.  相似文献   

8.
Our understanding of Titan, Saturn's largest satellite, has recently been consid-erably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In par-ticular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface.  相似文献   

9.
A new model is presented on how chemically driven cryovolcanism might contribute to episodic outgassing at the icy moon Enceladus and potentially elsewhere including Europa and Kuiper Belt Objects. Exposed water ices can become oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. In contact with primordially abundant reductants such as NH3, CH4, and other hydrocarbons, the product oxidants can react exothermically to produce volatile gases driving cryovolcanism via gas-piston forces on any subsurface liquid reservoirs. Radiolytic oxidants such as H2O2 and O2 can continuously accumulate deep in icy regoliths and be conveyed by rheological flows to subsurface chemical reaction zones over million-year time scales indicated by cratering ages for active regions of Enceladus and Europa. Surface blanketing with cryovolcanic plume ejecta would further accelerate regolith burial of radiolytic oxidants. Episodic heating from transient gravitational tides, radioisotope decay, impacts, or other geologic events might occasionally accelerate chemical reaction rates and ignite the exothermic release of cumulative radiolytic oxidant energy. The time history for the suggested “Old Faithful” model of radiolytic gas-driven cryovolcanism at Enceladus and elsewhere therefore consists of long periods of chemical energy accumulation punctuated by much briefer episodes of cryovolcanic activity. The most probable sequence for detection of activity in the current epoch is a long evolutionary phase of slow but continuous oxidant accumulation over billions of years followed by continuous but variable high activity over the past 107-108 years. Detectable cryovolcanic activity could then later decline due to near-total oxidation of the rheologically accessible ice crust and depletion the accessible reductant abundances, as may have already occurred for Europa in the more intense radiation environment of Jupiter's magnetosphere. Astrobiological potential of Enceladus could correspondingly be higher than at Europa due to a less extreme state of oxidation and greater residual abundance of organics.  相似文献   

10.
The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface.  相似文献   

11.
12.
Sediment transport by surficial flow likely occurs on Titan. Titan is thought to have a volatile cycle, such as on Earth and likely in the past on Mars, which would entail surficial liquid flow. And surficial flow is implied in interpretations of Cassini-Hyugens data as showing fluvial channels, which would require sediment transport by surficial flow to form the observable features. We present calculations from basic hydraulic formulae of sediment entrainment and transport by surficial flow. First, we describe the conditions for (non-cohesive) sediment entrainment by grain size through use of the Shields' threshold curve. We then calculate settling velocities by grain size to describe the type of sediment transport—washload, suspended load, or bedload—that would follow entrainment. These calculations allow derivation of required flow depths for sediment transport by grain size over a given slope. A technique to estimate required flow velocities and unit discharges is also presented. We show the results of these calculations for organic and water ice sediment movement by liquid methane flow under Titan gravity. For comparative purposes, plots for movement of quartz sediment by water on Earth and basalt sediment by water on Mars are also included. These results indicate that (non-cohesive) material would move more easily on Titan than on Earth or Mars. Terrestrial field observations suggest that coarse grain transport is enhanced by hyperconcentration of fine-grained sediment; and the apparent availability of organic (fine grained) sediment on Titan, in conjunction with the possibility of convection-driven rainstorms, may lead to hyperconcentrated flows. Thus, significant sediment transport may occur on Titan during individual overland flow events.  相似文献   

13.
Juxtaposing images of the surface of Titan made by the Huygens probe and photos of the mud volcano region on Earth (the Taman peninsula, the Caucasus) reveals similar geomorphologic features. This has led us to suggest the existence of cryogenic mud-volcanic activity on Titan. The role of liquid methane in supporting this process on Titan can be the same as that of gaseous methane on Earth. For Titan, gas hydrates (hydrates of hydrocarbon gases) and water ice are analogs of terrestrial clay breccia. Note that gas hydrates are stable at P-T conditions typical of Titan. Assuming the existence of mud-volcanic activity on Titan allows us to explain: (i) the general view of the landscape near the Huygens probe landing site, (ii) the chains of bright “islets” noticed during the probe descent, which may be a marker of a tectonic fault line, (iii) the conic shape of the hill in the foreground of the image taken from an altitude of 8 km, (iv) the rounded pebble-like shape of the small solid blocks on the surface of Titan, and (v) the presence of long white strips, each of which seems to diverge at one of the ends (such a picture can be produced by methane wind carrying away the ejecta of a gaseous volcano from its crater).  相似文献   

14.
Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan’s north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ∼6700-10,000 Titan years (∼2.0-3.0 × 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ∼27,000-41,000 Titan years (∼8.0-12.0 × 105 Earth years) when flows in the north polar region are restricted to summer months.  相似文献   

15.
We present results of our study of the rheologies and ages of lava flows in the Elysium Mons region of Mars. Previous studies have shown that the geometric dimensions of lava flows reflect rheological properties such as yield strength, effusion rate and viscosity. In this study the rheological properties of lava flows in the Elysium Mons region were determined and compared to the rheologies of the Ascraeus Mons lava flows. We also derived new crater size-frequency distribution measurements (CSFDs) for the Elysium lava flows to identify possible changes in the rheological properties with time. In addition, possible changes in the rheological properties with the distance from the caldera of Elysium Mons were analyzed.In total, 35 lava flows on and around Elysium Mons were mapped, and divided into three groups, lava flows on the flanks of Elysium Mons, in the plains between the three volcanoes Elysium Mons, Hecates and Albor Tholus and lava flows south of Albor Tholus. The rheological properties of 32 of these flows could be determined. Based on our morphometric measurements of each individual lava flow, estimates for the yield strengths, effusion rates, viscosities, and eruption duration of the studied lava flows were made. The yield strengths of the investigated lava flows range from ~3.8 × 102 Pa to ~1.5 × 104 Pa, with an average of ~3.0 × 103 Pa. These yield strengths are in good agreement with estimates for terrestrial basaltic lava flows. The effusion rates are on average ~747 m3 s?1, ranging from ~99 to 4450 m3 s?1. The viscosities are on average ~4.1 × 106 Pa s, with a range of 1.2 × 105 Pa s to 3.1 × 107 Pa s. The eruption durations of the flows were calculated to be between 6 and 183 days, with an average of ~51 days. The determined rheological properties are generally very similar to those of other volcanic regions on Mars, such as on Ascraeus Mons in the Tharsis region. Calculated yield strengths and viscosities point to a basaltic/andesitic composition of the lava flows, similar to basaltic or andesitic a’a lava flows on Earth.Absolute model ages of all 35 lava flows on Elysium Mons were derived from crater size-frequency distribution measurements (CSFD). The derived model ages show a wide variation from about 632 Ma to 3460 Ma. Crater size-frequency distribution measurements of the Elysium Mons caldera show an age of ~1640 Ma, which is consistent with the resurfacing age of Werner (2009). Significant changes of the rheologies with time could not be observed. Similarly, we did not observe systematic changes in ages with increasing distances of lava flows from the Elysium Mons caldera.  相似文献   

16.
17.
The speed of sound in a gas can be used to identify its composition, as has been done on the Earth. We show that, unlike in terrestrial applications, the third virial coefficient cannot be neglected in cold and dense atmospheres. We derive a model for the speed of sound of pure gases and gas mixtures at low temperatures and high pressures, based on the virial equation. After comparing the results of our model to measured data, we apply our model to the atmosphere of Titan. The difference between our third-order virial expansion and the commonly used second-order expansion is significant, showing that the third virial coefficient needs to be taken into account when accurate speed-of-sound measurements are used to derive atmospheric properties under Titan conditions.  相似文献   

18.
We use a simplified terrestrial general circulation model as a nonlinear process model to investigate factors that influence the extent of equatorial superrotation in statically stable atmospheres on slowly rotating planets such as Titan and Venus. The possibility of multiple equilibria is tested by running the same model to equilibrium from vastly different initial conditions. The final state is effectively independent of initial state, reinforcing the impression that equatorial superrotation is inevitable on slowly rotating planets with stable radiative equilibrium structures. Of particular interest is the fact that at Titan rotation, the model equilibrates with strong prograde winds even when initialized with strong retrograde winds. This suggests that reliable remote sensing inferences of latitudinal temperature gradients on Titan can unambiguously be interpreted as evidence for superrotation. We also demonstrate for the first time that significant equatorial superrotation can be produced at Venus' rotation rate in such models, given sufficient numerical precision. The strength of superrotating zonal winds increases with rotation rate in the slowly rotating regime when other parameters are held fixed. However, the efficiency of superrotation relative to the angular momentum of an atmosphere corotating with the solid planet increases with decreasing rotation rate instead, because the Hadley cell strengthens and expands poleward. This allows for the formation of stronger high latitude jets, which ultimately serve as the source for equatorial superrotation via barotropic instability. Estimates of relevant parameter settings for Triton and Pluto tentatively imply that their atmospheres may marginally be in the superrotating regime, but only if temperature decreases with height near the surface.  相似文献   

19.
Inflation is an emplacement process of lava flows, where a thin visco-elastic layer, produced at an early stage, is later inflated by an underlying fluid core. The core remains hot and fluid for extended period of time due to the thermal-shield effect of the surface visco-elastic crust. Plentiful and widespread morphological fingerprints of inflation like tumuli and lava rises are found on the Payen volcanic complex (Argentina), where pahoehoe lava flows extend over the relatively flat surface of the Pampean foreland and reach at least 180 km in length.The morphology of the Argentinean Payen flows were compared with lava flows on Daedalia Planum (Mars), using Thermal Emission Imaging System (THEMIS), Mars Orbiter Laser Altimeter (MOLA), Mars Orbiter Camera (MOC), Mars Reconnaissance Orbiter (MRO)/High-Resolution Imaging Science Experiment (HiRISE). THEMIS images were used to map the main geological units of Daedalia Planum and determine their stratigraphic relationships. MOLA data were used to investigate the topographic surface over which the flows propagated and assess the thickness of lava flows. Finally, MOC and MRO/HIRISE images were used to identify inflations fingerprints and assess the cratering age of the Daedalia Planum’ s youngest flow unit which were found to predate the caldera formation on top of the Arsia Mons. The identification of similar inflation features between the Daedalia Planum and the Payen lava fields suggests that moderate and long lasting effusion rates coupled with very efficient spreading processes could have cyclically occurred in the Arsia Mons volcano during its eruptive history. Consequently the effusion rates and rheological proprieties of Daedalia lava flows, which do not take into account the inflation process, can be overestimated. These findings raise some doubts about the effusion rates and lava rheological properties calculated on Martian flows and recommends that these should be used with caution if applied on flows not checked with high-resolution images and potentially affected by inflation. Further HiRISE data acquisition will permit additional analysis of the flow surfaces and will allow more accurate estimates of effusion rates and rheological properties of the lava flows on Mars particularly if this data is acquired under a favourable illumination.  相似文献   

20.
Recent papers suggest the significant variability of conditions in Saturn’s magnetosphere at the orbit of Titan. Because of this variability, it was expected that models would generally have a difficult time regularly comparing to data from the Titan flybys. However, we find that in contrast to this expectation, it appears that there is underlying organization of the interaction features roughly above ~1800 km (1.7 Rt) altitude by the average external field due to Saturn’s dipole moment. In this study, we analyze Cassini’s plasma and magnetic field data collected at 9 Titan encounters during which the external field is close to the ideal southward direction and compare these observations to the results from a 2-fluid (1 ion, 1 electron) 7-species MHD model simulations obtained under noon SLT conditions. Our comparative analysis shows that under noon SLT conditions the Titan plasma interaction can be viewed in two layers: an outer layer between 6400 and 1800 km where interaction features observed in the magnetic field are in basic agreement with a purely southward external field interaction and an inner layer below 1800 km where the magnetic field measurements show strong variations and deviate from the model predictions. Thus the basic features inferred from the Voyager 1 flyby seem to be generally present above ~1800 km in spite of the ongoing external variations from SLT excursions, time variability and magnetospheric current systems as long as a significant southward external field component is present. At around ~1800 km kinetic effects (such as mass loading and heavy ion pickup) and below 1800 km ionospheric effects (such as drag of ionospheric plasma due to coupling with neutral winds and/or magnetic memory of Titan’s ionosphere) complicate what is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号