首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
M. Grott  D. Breuer 《Icarus》2008,193(2):503-515
Estimates of the martian elastic lithosphere thickness Te imply that Te increased from around 20 km in the Noachian to about 70 km in the Amazonian period. A phase of rapid lithospheric growth is observed during the Hesperian and we propose that this elastic thickness history is a consequence of the martian crustal rheology and its thermal evolution. A wet crustal rheology is found to generate a mechanically incompetent layer in the lower crust during the early evolution and the rapid growth of Te during the Hesperian results from the disappearance of this layer due to planetary cooling. The incompetent layer and the related rapid lithospheric growth are absent for a dry basaltic crustal rheology, which is therefore incompatible with the observations. Furthermore, we find that the observed elastic thickness evolution is best compatible with a wet mantle rheology, although a dry mantle cannot be ruled out. It therefore seems likely that rheologically significant amounts of water were retained in the Martian crust and mantle after planetary accretion.  相似文献   

2.
A. Morschhauser  D. Breuer 《Icarus》2011,212(2):541-400
We have reinvestigated the coupled thermal and crustal evolution of Mars taking new laboratory data concerning the flow behavior of iron-rich olivine into account. The low mantle viscosities associated with the relatively higher iron content of the martian mantle as well as the observed high concentrations of heat producing elements in a crust with a reduced thermal conductivity were found to promote phases of crustal recycling in many models. As crustal recycling is incompatible with an early separation of geochemical reservoirs, models were required to show no episodes of crustal recycling. Furthermore, admissible models were required to reproduce the martian crust formation history, to allow for the formation of partial melt under present day mantle conditions and to reproduce the measured concentrations of potassium and thorium on the martian surface. Taking dehydration stiffening of the mantle viscosity by the extraction of water from the mantle into account, we found that admissible models have low initial upper mantle temperatures around 1650 K, preferably a primordial crustal thickness of 30 km, and an initially wet mantle rheology. The crust formation process on Mars would then be driven by the extraction of a primordial crust after core formation, cooling the mantle to temperatures close to the peridotite solidus. According to this scenario, the second stage of global crust formation took place over a more extended period of time, waning at around 3500 Myr b.p., and was driven by heat produced by the decay of radioactive elements. Present-day volcanism would then be driven by mantle plumes originating at the core-mantle boundary under regions of locally thickened, thermally insulating crust. Water extraction from the mantle was found to be relatively efficient and close to 40% of the total inventory was lost from the mantle in most models. Assuming an initial mantle water content of 100 ppm and that 10% of the extracted water is supplied to the surface, this amount is equivalent to a 14 m thick global surface layer, suggesting that volcanic outgassing of H2O could have significantly influenced the early martian climate and increased the planet’s habitability.  相似文献   

3.
Abstract— Radiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core‐mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present‐day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 times 10?12 W/kg, which corresponds to 39% of the Wanke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 times 10 ?12 W/kg can satisfy both the present‐day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43–50% of the Wanke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core‐mantle boundary temperature would require a larger amount of mantle radioactivity to permit present‐day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 times 106, implying that mantle convection remains moderately vigorous on present‐day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity.  相似文献   

4.
Lithospheric strength can be used to estimate the heat flow at the time when a given region was deformed, allowing us to constrain the thermal evolution of a planetary body. In this sense, the high (>300 km) effective elastic thickness of the lithosphere deduced from the very limited deflection caused by the north polar cap of Mars indicates a low surface heat flow for this region at the present time, a finding difficult to reconcile with thermal history models. This has started a debate on the current heat flow of Mars and the implications for the thermal evolution of the planet. Here we perform refined estimates of paleo-heat flow for 22 martian regions of different periods and geological context, derived from the effective elastic thickness of the lithosphere or from faulting depth beneath large thrust faults, by considering regional radioactive element abundances and realistic thermal conductivities for the crust and mantle lithosphere. For the calculations based on the effective elastic thickness of the lithosphere we also consider the respective contributions of crust and mantle lithosphere to the total lithospheric strength. The obtained surface heat flows are in general lower than the equivalent radioactive heat production of Mars at the corresponding times, suggesting a limited contribution from secular cooling to the heat flow during the majority of the history of Mars. This is contrary to the predictions from the majority of thermal history models, but is consistent with evidence suggesting a currently fluid core, limited secular contraction for Mars, and recent extensive volcanism. Moreover, the interior of Mars could even have been heating up during part of the thermal history of the planet.  相似文献   

5.
Abigail A. Fraeman 《Icarus》2010,210(1):43-57
We present a parameterized convection model of Mars by incorporating a new heat-flow scaling law for stagnant-lid convection, to better understand how the evolution of Mars may be affected by mantle melting. Melting in the mantle during convection leads to the formation of a compositionally buoyant lithosphere, which may also be intrinsically more viscous by dehydration. The consequences of these melting effects on the evolution of terrestrial planets have not been explored before. The temporal evolution of crust and lithospheric mantle is modeled in a self-consistent manner considering mantle melting, convective instability, and the rewetting of dehydrated lithosphere from below by hydrogen diffusion. Though the effect of compositional buoyancy turns out to be minimal, the introduction of viscosity contrast between wet and dry mantle can considerably slow mantle cooling and sometimes lead to non-monotonic core cooling. Furthermore, with or without dehydration stiffening, our model predicts that the martian mantle must have been degassed more extensively (>80%) than previously suggested (<10%); the loss of such a large amount of water from the mantle to surface has significant implications about the role of water in the early surface and climate evolution of Mars.  相似文献   

6.
The MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on the Mars Express spacecraft provides both local and remote measurements of electron densities and measurements of magnetic fields in the martian ionosphere. The density measurements show a persistent level of large fluctuations, sometimes as much as a factor of three or more at high altitudes. Large magnetic field fluctuations are also observed in the same region. The power spectrums of both the density and magnetic field fluctuations have slopes on a log-log plot that are consistent with the Kolmogorov spectrum for isotropic fluid turbulence. The fractional density fluctuation, Δne/ne, of the turbulence increases with altitude, and reaches saturation, Δne/ne ∼ 1, at an altitude of about 400 km, near the nominal boundary between the ionosphere and the magnetosheath. The fluctuations are usually so large that a well-defined ionopause-like boundary between the ionosphere and the solar wind is seldom observed. Of mechanisms that could be generating this turbulence, we believe that the most likely are (1) solar wind pressure perturbations, (2) an instability in the magnetosheath plasma, such as the mirror-mode instability, or (3) the Kelvin-Helmholtz instability driven by velocity shear between the rapidly flowing magnetosheath and the ionosphere.  相似文献   

7.
The stresses which must be maintained on faults bounding the rift topography at Tempe Fossae—the “North Tempe Rift” (NTR)—and Valles Marineris (VM) on Mars are estimated, using a simple elastic model and topographic data from the Mars Orbiter Laser Altimeter (MOLA). The absence of rift-flank uplift at the NTR is consistent with an elastic thickness, Te, of 20 km or greater at the time of rift formation. The maximum resolved shear stresses on bounding faults due to this topography do not therefore exceed 20 MPa, similar to the inferred strength of terrestrial faults. Elastic thickness estimates at VM are mostly around 50 km or greater. Therefore, for canyon widths of ∼400 km, the bounding faults of VM, if present, must be able to withstand stresses of up to approximately 100 MPa. However, if the fault-controlled sections of the canyons do not exceed 150 km in width, as suggested by geomorphological analysis, the fault strength required is only 20 MPa. Although the maximum resolved shear stresses required to support the topography at VM may need to be greater than the stresses which terrestrial faults can support, at least some faults on Mars are no stronger than similar features on Earth. This observation is consistent with the existence of liquid water in the shallow subsurface of Mars at the time the faults were active. On Venus, plate tectonics is probably prevented by the frictional resistance to motion across strong faults. On Mars, it is more likely that the large thickness of the elastic layer of the lithosphere and the possible positive buoyancy of the crust are responsible for the observed lack of plate tectonics.  相似文献   

8.
At martian mid-to-high latitudes, the surfaces of potentially ice-rich features, including concentric crater fill, lobate debris aprons, and lineated valley fill, typically display a complex texture known as “brain terrain,” due to its resemblance to the complex patterns on brain surfaces. In order to determine the structure and developmental history of concentric crater fill and overlying latitude-dependent mantle (LDM) material, “brain terrain” and polygonally-patterned LDM surfaces are analyzed using HiRISE images from four craters in Utopia Planitia containing concentric crater fill. “Brain terrain” and mantle surface textures are classified based on morphological characteristics: (1) closed-cell “brain terrain,” (2) open-cell “brain terrain,” (3) high-center mantle polygons, and (4) low-center mantle polygons. A combined glacial and thermal-contraction cracking model is proposed for the formation and modification of the “brain terrain” texture of concentric crater fill. A similar model, related to thermal contraction cracking and differential sublimation of underlying ice, is proposed for the formation and development of polygonally patterned mantle material. Both models require atmospheric deposition of ice, likely during periods of high obliquity, but do not require wet active layer processes. Crater dating of “brain terrain” and mantled surfaces suggests a transition at martian mid-latitudes from peak “glacial” conditions occurring within the past ∼10-100 My to a quiescent period followed by a cold-desert “periglacial” period during the past ∼1-2 My.  相似文献   

9.
We have identified two classes of crater clusters on Mars. One class is “small clusters” (crater diameter D∼ tens m, spread over few hundred m), fitting our earlier calculations for the breakup of weak stone meteoroids in the martian atmosphere [Popova, O.P., Nemtchinov, I.V., Hartmann, W.K., 2003. Meteorit. Planet. Sci. 38, 905-925]. The second class is “large clusters” (D∼ few hundred m, spread over 2 to 30 km), which do not fit any predictions for breakup of known meteoroid types. We consider a range of possible explanations. The best explanation relates to known, high-speed ejection of large, semi-coherent, fractured rock masses from the surface, as secondary debris from primary impacts. The clusters are probably due to breakup of partly fracture, few-hundred-meter scale weak blocks, especially during ascent (producing moderate lateral spreading velocities among the fragments during sub-orbital flight), and also during descent of the resulting swarm. These conclusions illuminate the launch conditions of martian meteorites, including fragmentation processes, although more work is needed on the lateral separation of fragments (during either atmosphere descent or ascent) due to the effects of volatiles in the projectiles. Martian meteorites probably come from smaller martian craters than the clusters' source craters. The latter probably have D?85 km, although we have not ruled out diameters as small as 15 km.  相似文献   

10.
F. Nimmo  B. Giese 《Icarus》2005,177(2):327-340
Stereo topography of an area near Tyre impact crater, Europa, reveals chaos regions characterised by marginal cliffs and domical topography, rising to 100-200 m above the background plains. The regions contain blocks which have both rotated and tilted. We tested two models of chaos formation: a hybrid diapir model, in which chaos topography is caused by thermal or compositional buoyancy, and block motion occurs due to the presence of near-surface (1-3 km) melt; and a melt-through model, in which chaos regions are caused by melting and refreezing of the ice shell. None of the hybrid diapir models tested generate any melt within 1-3 km of the surface, owing to the low surface temperature. A model of ocean refreezing following melt-through gives effective elastic thicknesses and ice shell thicknesses of 0.1-0.3 and 0.5-2 km, respectively. However, for such low shell thicknesses the refreezing model requires implausibly large lateral density contrasts (50-100 kg m−3) to explain the elevation of the centres of the chaos regions. Although a global equilibrium ice shell thickness of ≈2 km is possible if Europa's mantle resembles that of Io, it is unclear whether local melt-through events are energetically possible. Thus, neither of the models tested here gives a completely satisfactory explanation for the formation of chaos regions. We suggest that surface extrusion of warm ice may be an important component of chaos terrain formation, and demonstrate that such extrusion is possible for likely ice parameters.  相似文献   

11.
Javier Ruiz  Valle López 《Icarus》2010,207(2):631-637
The present-day thermal state of the martian interior is a very important issue for understanding the internal evolution of the planet. Here, in order to obtain an improved upper limit for the heat flow at the north polar region, we use the lower limit of the effective elastic thickness of the lithosphere loaded by the north polar cap, crustal heat-producing elements (HPE) abundances based on martian geochemistry, and a temperature-dependent thermal conductivity for the upper mantle. We also perform similar calculations for the south polar region, although uncertainties in lithospheric flexure make the results less robust. Our results show that the present-day surface and sublithospheric heat flows cannot be higher than 19 and 12 mW m−2, respectively, in the north polar region, and similar values might be representative of the south polar region (although with a somewhat higher surface heat flow due to the radioactive contribution from a thicker crust). These values, if representative of martian averages, do not necessarily imply sub-chondritic HPE bulk abundances for Mars (as previously suggested), since (1) chondritic composition models produce a present-day total heat power equivalent to an average surface heat flow of 14-22 mW m−2 and (2) some convective models obtain similar heat flows for the present time. Regions of low heat flow may even have existed during the last billions of years, in accordance with several surface heat flow estimates of ∼20 mW m−2 or less for terrains loaded during Hesperian or Amazonian times. On the other hand, there are some evidences suggesting the current existence of regions of enhanced heat flow, and therefore average heat flows could be higher than those obtained for the north (and maybe the south) polar region.  相似文献   

12.
We report observations of Icelandic hillside gully systems that are near duplicates of gullies observed on high-latitude martian hillsides. The best Icelandic analogs involve basaltic talus slopes at the angle of repose, with gully formation by debris flows initiated by ground water saturation, and/or by drainage of water from upslope cliffs. We report not only the existence of Mars analog gullies, but also an erosional sequence of morphologic forms, found both on Mars and in Iceland. The observations support hypotheses calling for creation of martian gullies by aqueous processes. Issues remain whether the water in each case comes only from surficial sources, such as melting of ground ice or snow, or from underground sources such as aquifers that gain surface access in hillsides. Iceland has many examples of the former, but the latter mechanism is not ruled out. Our observations are consistent with the martian debris flow mechanism of F. Costard et al. (2001c, Science295, 110-113), except that classic debris flows begin at midslope more frequently than on Mars. From morphologic observations, we suggest that some martian hillside gully systems not only involve significant evolution by extended erosive activity, but gully formation may occur in episodes, and the time interval since the last episode is considerably less than the time interval needed to erase the gully through normal martian obliteration processes.  相似文献   

13.
Javier Ruiz  Rosa Tejero 《Icarus》2006,180(2):308-313
Two independent sets of heat flow estimates provide constraints on the Hesperian-era surface and mantle heat flows, and the thickness of the heat-producing elements (HPE)-enriched upper crust, in the Solis Planum region of Mars. The calculations, which use the concentration of uppermost crust heat sources deduced from orbital gamma ray spectroscopy and soils geochemistry, are based on the effective elastic thickness of the lithosphere and the minimum depth of faults underlying winkle ridges. We find that, for the majority of analyzed settings, the HPE-enriched crust is thinner than the whole crust thickness in this region (∼65 km). Thus, our results strongly support a differentiated martian crust.  相似文献   

14.
In order to find an explanation for the origin of the martian crustal dichotomy, a number of recent papers have examined the effect of layered viscosity on the evolution of a degree-1 mantle convection, e.g. Roberts and Zhong [Roberts, J.H., Zhong, S., 2006. J. Geophys. Res. 111. E06013] and Yoshida and Kageyama [Yoshida, M., Kageyama, A., 2006. J. Geophys. Res. 111, doi:10.1029/2005JB003905. B03412]. It was found that a mid-mantle viscosity jump, combined with highly temperature- and depth-dependent rheology, are effective in developing a degree-1 convection within a short timescale. Such a layered viscosity profile could be justified by martian mineralogy. However, the effect of a degree-1 convective planform on the crustal thickness distribution has not yet been demonstrated. It is not obvious whether a thinner crust, due to sublithospheric erosion and crustal thinning, or a thicker crust, due to enhanced crustal production, would form above the hemisphere of mantle upwelling. Also, the general shape of the dichotomy, which is not strictly hemispherical, has not yet been fully investigated. Here we propose a model of the crustal patterns produced by numerical simulations of martian mantle convection, using the finite-volume multigrid code StagYY [Tackley, P.J., 2008. Phys. Earth Planet. Int. 107, 7-18, doi:10.1016/j.pepi.2008.08.005] A self-consistent treatment of melting, crustal formation and chemical differentiation has been added to models of three-dimensional thermal convection. This allows us to obtain global maps of the crustal thickness distribution as it evolves with time. The obtained results demonstrate that it is indeed possible to form a crustal dichotomy as a consequence of near degree-1 mantle convection early in Mars' history. We find that some of the observed patterns show intriguing first order similarities to the elliptical shape of the martian dichotomy. In all models, the region of thick crust is located over the region of mantle upwelling, which itself is a ridge-like structure spread over roughly one half of the planet, a planform we describe as “one-ridge convection.”  相似文献   

15.
Studies extending over three decades have concluded that the current orientation of the martian rotation pole is unstable. Specifically, the gravitational figure of the planet, after correction for a hydrostatic form, has been interpreted to indicate that the rotation pole should move easily between the present position and a site on the current equator, 90° from the location of the massive Tharsis volcanic province. We demonstrate, using general physical arguments supported by a fluid Love number analysis, that the so-called non-hydrostatic theory is an inaccurate framework for analyzing the rotational stability of planets, such as Mars, that are characterized by long-term elastic strength within the lithosphere. In this case, the appropriate correction to the gravitational figure is the equilibrium rotating form achieved when the elastic lithospheric shell (of some thickness LT) is accounted for. Moreover, the current rotation vector of Mars is shown to be stable when the correct non-equilibrium theory is adopted using values consistent with recent, independent estimates of LT. Finally, we compare observational constraints on the figure of Mars with non-equilibrium predictions based on a large suite of possible Tharsis-driven true polar wander (TPW) scenarios. We conclude, in contrast to recent comparisons of this type based on a non-hydrostatic theory, that the reorientation of the pole associated with the development of Tharsis was likely less than 15° and that the thickness of the elastic lithosphere at the time of Tharsis formation was at least ∼50 km. Larger Tharsis-driven TPW is possible if the present-day gravitational form of the planet at degree 2 has significant contributions from non-Tharsis loads; in this case, the most plausible source would be internal heterogeneities linked to convection.  相似文献   

16.
Heat flow calculations based on geological and/or geophysical indicators can help to constrain the thickness, and potentially the geochemical stratification, of the martian crust. Here we analyze the Warrego rise region, part of the ancient mountain range referred to as the Thaumasia highlands. This region has a crustal thickness much greater than the martian average, as well as estimations of the depth to the brittle-ductile transition beneath two scarps interpreted to be thrust faults. For the local crustal density (2900 kg m−3) favored by our analysis of the flexural state of compensation of the local topography, the crustal thickness is at least 70 and 75 km at the scarp locations. However, for one of the scarp locations our nominal model does not obtain heat flow solutions permitting a homogeneous crust as thick as required. Our results, therefore, suggest that the crust beneath the Warrego rise region is chemically stratified with a heat-producing enriched upper layer thinner than the whole crust. Moreover, if the mantle heat flow (at the time of scarp formation) was higher than 0.3 of the surface heat low, as predicted by thermal history models, then a stratified crust rise seems unavoidable for this region, even if local heat-producing element abundances lower than average or hydrostatic pore pressure are considered. This finding is consistent with a complex geological history, which includes magmatic-driven activity.  相似文献   

17.
J.S. Halekas  D.A. Brain 《Icarus》2010,206(1):64-73
We present the results of the first systematic survey of current sheets encountered by Mars Global Surveyor in its ∼400 km mapping orbit. We utilize an automated procedure to identify over 10,000 current sheet crossings during the ∼8 year mapping mission. The majority of these lie on the nightside and in the polar regions, but we also observe over 1800 current sheets at solar zenith angle <60°. The distribution and orientation of current sheets and their dependence on solar wind drivers suggests that most magnetotail current sheets have a local induced magnetospheric origin caused by magnetic field draping. On the other hand, most current sheets observed on the day side likely result from solar wind discontinuities advected through the martian system. However, the clustering of low altitude dayside current sheet crossings around the perimeters of strongly magnetized crustal regions, and the smaller than expected rotations in the IMF draping direction, suggest that crustal magnetic fields may also play an indirect role in their formation. The apparent thicknesses of martian current sheets, and the characteristics of electrons observed in and around the current sheets, suggest one of two possibilities. Martian current sheets at low altitudes are either stationary, with thicknesses of a few hundred km and currents carried by low energy (<10 eV) electrons, or they move at tens of km/s, with thicknesses of a few thousand km and currents carried by ions.  相似文献   

18.
C.C. Reese  C.P. Orth 《Icarus》2011,213(2):433-442
We show that a sufficiently energetic impact can generate a melt volume which, after isostatic adjustment and differentiation, forms a spherical cap of crust with underlying depleted mantle. Depending on impact energy and initial crustal thickness, a basin may be retained or impact induced crust may be topographically elevated. Retention of a martian lowland scale impact basin at impact energies ∼3 × 1028-3 × 1029 J requires an initial crustal thickness greater than 10 km. Formation of impact induced crust with size comparable to the martian highlands requires a larger impact energy, ∼1-3 × 1030 J, and initial crustal thickness <20 km. Furthermore, we show that the boundary of impact induced crust can be elliptical due to a spatially asymmetric impact melt volume caused by an oblique impact. We suggest the term “impact megadome” for topographically elevated, impact induced crust and propose that processes involved in megadome formation may play an important role in the origin of the martian crustal dichotomy.  相似文献   

19.
Long-term MGS drag density observations at 390 km reveal variations of the density with season LS (by a factor of 2) and solar activity index F10.7 (by a factor of 3 for F10.7 = 40-100). According to Forbes et al. (Forbes, J.M., Lemoine, F.G., Bruinsma, S.L., Smith, M.D., Zhang, X. [2008]. Geophys. Res. Lett. 35, L01201, doi:10.1029/2007GL031904), the variation with F10.7 reflects variations of the exospheric temperature from 192 to 284 K. However, the derived temperature range corresponds to variation of the density at 390 km by a factor of 8, far above the observed factor of 3. The recent thermospheric GCMs agree with the derived temperatures but do not prove their adequacy to the MGS densities at 390 km. A model used by Forbes et al. neglects effects of eddy diffusion, chemistry and escape on species densities above 138 km. We have made a 1D-model of neutral and ion composition at 80-400 km that treats selfconsistently chemistry and transport of species with F10.7, T, and [CO2]80 km as input parameters. Applying this model to the MGS densities at 390 km, we find variation of T from 240 to 280 K for F10.7 = 40 and 100, respectively. The results are compared with other observations and models. Temperatures from some observations and the latest models disagree with the MGS densities at low and mean solar activity. Linear fits to the exospheric temperatures are T = 122 + 2.17F10.7 for the observations, T = 131 + 1.46F10.7 for the latest models, and T = 233 + 0.54F10.7 for the MGS densities at 390 km. Maybe the observed MGS densities are overestimated near solar minimum when they are low and difficult to measure. Seasonal variations of Mars’ thermosphere corrected for the varying heliocentric distance are mostly due to the density variations in the lower and middle atmosphere and weakly affect thermospheric temperature. Nonthermal escape processes for H, D, H2, HD, and He are calculated for the solar minimum and maximum conditions.Another problem considered here refers to Mars global photochemistry in the lower and middle atmosphere. The models gave too low abundances of CO, smaller by an order of magnitude than those observed. Our current work shows that modifications in the boundary conditions proposed by Zahnle et al. (Zahnle, K., Haberle, R.M., Catling, D.C., Kasting, J.F. [2008]. J. Geophys. Res. 113, E11004, doi:10.1029/2008JE003160) are reasonable but do not help to solve the problem.  相似文献   

20.
Measurements of the elastic thickness under ancient lunar terrain   总被引:1,自引:0,他引:1  
Alistair Crosby  Dan McKenzie 《Icarus》2005,173(1):100-107
The part of a planet's gravity that is coherent with its topography provides information about the deflection of its crust after loading, and hence the resistance of its lithosphere to bending at the time the load was emplaced. We used observed line of sight accelerations from Lunar Prospector, together with the accelerations we would have expected if anomalies in the gravity field were only caused by topography, to estimate the admittance and coherence between topography and gravity over several regions of the lunar nearside. We then compared our estimates to what we would expect if the lithosphere behaved as a floating elastic plate or shell, assuming a linear relationship between topography and gravity. We found in the region surrounding the southern highland crater Clavius that the data can be modeled using a thin plate with Te=12±5 km and uncorrelated loads at the surface and base of the upper crust. A spherical shell model with surface loading is less satisfactory: to fit the admittance adequately requires topography with wavelengths over 400 km to be formed when Te≈ 1 km and the remainder when Te≈7.5 km. By contrast, the apparent lack of compensation around the youngest giant impact basins requires a plate with Te>80 km or a shell with Te>25 km. Our results indicate the thickness of the lunar lithosphere increased from ≈12 km in the pre-Nectarian to >25 km in the Nectarian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号