首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P.G.J. Irwin  N.A. Teanby 《Icarus》2009,203(1):287-302
Long-slit spectroscopy observations of Uranus by the United Kingdom Infrared Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s northern spring equinox in December 2007.The observed reflectance spectra in the Long J (1.17-1.31 μm) and H (1.45-1.65 μm) bands, obtained with the slit aligned along Uranus’ central meridian, have been fitted with an optimal estimation retrieval model to determine the vertical cloud profile from 0.1 to 6-8 bar over a wide range of latitudes. Context images in a number of spectral bands were used to discriminate general zonal cloud structural changes from passing discrete clouds. From 2006 to 2007 reflection from deep clouds at pressures between 2 and 6-8 bar increased at all latitudes, although there is some systematic uncertainty in the absolute pressure levels resulting from extrapolating the methane coefficients of Irwin et al. (Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Teanby, N.A., Bowles, N., Calcutt, S.B., Remedios, J.J. [2006] Icarus, 181, 309-319) at pressures greater than 1 bar, as noted by Tomasko et al. and Karkoschka and Tomasko (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. [2008] Planet. Space Sci., 56, 624-647; Karkoschka, E., Tomasko, M. [2009] Icarus). However, from 2007 to 2008 reflection from these clouds throughout the southern hemisphere and from both northern and southern mid-latitudes (30° N,S) diminished. As a result, the southern polar collar at 45°S has diminished in brightness relative to mid-latitudes, a similar collar at 45°N has become more prominent (e.g. Rages, K.A., Hammel, H.B., Sromovsky, L. [2007] Bull. Am. Astron. Soc., 39, 425; Sromovsky, L.A., Fry, P.M., Ahue, W.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M.A. [2008] vol. 40 of AAS/Division for Planetary Sciences Meeting Abstracts, pp. 488-489; Sromovsky, L.A., Ahue, W.K.M., Fry, P.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R. [2009] Icarus), and the lowering reflectivity from mid-latitudes has left a noticeable brighter cloud zone at the equator (e.g. Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557;Karkoschka, E., Tomasko, M. [2009] Icarus). For such substantial cloud changes to have occurred in just two years suggests that the circulation of Uranus’ atmosphere is much more vigorous and/or efficient than is commonly thought. The composition of the main observed cloud decks between 2 and 6-8 bar is unclear, but the absence of the expected methane cloud at 1.2-1.3 bar (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987] J. Geophys. Res., 92, 14987-15001) is striking (as previously noted by, among others, Sromovsky, L.A., Irwin, P.G.J., Fry, P.M. [2006] Icarus, 182, 577-593; Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557; Sromovsky, L.A., Fry, P.M. [2008] Icarus, 193, 252-266; Karkoschka, E., Tomasko, M. [2009] Icarus) and suggests that cloud particles may be considerably different from pure condensates and may be linked with stratospheric haze particles drizzling down from above, or that tropospheric hazes are generated near the methane condensation level and then drizzle down to deep pressures as suggested by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus).The retrieved cloud structures were also tested for different assumptions of the deep methane mole fraction, which Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus) find may vary from ∼1-2% in polar regions to perhaps as much as 4% equatorwards of 45°N,S. We found that such variations did not significantly affect our conclusions.  相似文献   

2.
We present results regarding the dynamical meteorology of Jupiter’s White Ovals at different points in their evolution. Starting from the era with three White Ovals FA, BC, and DE (Galileo), continuing to the post-merger epoch with only one Oval BA (Cassini), and finally to Oval BA’s current reddened state (New Horizons), we demonstrate that the dynamics of their flow have similarly evolved along with their appearance. In the Galileo epoch, Oval DE had an elliptical shape with peak zonal wind speeds of ∼90 m s−1 in both its northern and southern peripheries. During the post-merger epoch, Oval BA’s shape was more triangular and less elliptical than Oval DE; in addition to widening in the north-south direction, its northern periphery was 20 m s−1 slower, and its southern periphery was 20 m s−1 faster than Oval DE’s flow during the Galileo era. Finally, in the New Horizons era, the reddened Oval BA had evolved back to a classical elliptical form. The northern periphery of Oval BA increased in speed by 20 m s−1 from Cassini to New Horizons, ending up at a speed nearly identical to that of the northern periphery of Oval DE during Galileo. However, the peak speeds along the southern rim of the newly formed Oval BA were consistently faster than the corresponding speeds in Oval DE, and they increased still further between Cassini and New Horizons, ending up at ∼140-150 m s−1. Relative vorticity maps of Oval BA reveal a cyclonic ring surrounding its outer periphery, similar to the ring present around the Great Red Spot. The cyclonic ring around Oval BA in 2007 appears to be moderately stronger than observed in 1997 and 2001, suggesting that this may be associated with the coloration of the vortex. The modest strengthening of the winds in Oval BA, the appearance of red aerosols, and the appearance of a turbulent, cyclonic feature to Oval BA’s northwest create a strong resemblance with the Great Red Spot from both a dynamical and morphological perspective.In addition to the White Ovals, we also measure the winds within two compact cyclonic regions, one in the Galileo data set and one in the Cassini data set. In the images, these cyclonic features appear turbulent and filamentary, but our wind field reveals that the flow manifests as a coherent high-speed collar surrounding relatively quiescent interiors. Our relative vorticity maps show that the vorticity likewise concentrates in a collar near the outermost periphery, unlike the White Ovals which have peak relative vorticity magnitudes near the center of the vortex. The cyclones contain several localized bright regions consistent with the characteristics of thunderstorms identified in other studies. Although less studied than their anticyclonic cousins, these cyclones may offer crucial insights into the planet’s cloud-level energetics and dynamical meteorology.  相似文献   

3.
L.A. Sromovsky  P.M. Fry  J.H. Kim 《Icarus》2011,215(1):292-312
Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92 (11), 14987-15001) presented a range of temperature and methane profiles for Uranus that were consistent with 1986 Voyager radio occultation measurements of refractivity versus altitude. A localized refractivity slope variation near 1.2 bars was interpreted to be the result of a condensed methane cloud layer. However, models fit to near-IR spectra found particle concentrations much deeper in the atmosphere, in the 1.5-3 bar range (Sromovsky, L.A., Irwin, P.G.J., Fry, P.M. [2006]. Icarus 182, 577-593; Sromovsky, L.A., Fry, P.M. [2010]. Icarus 210, 211-229; Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2010]. Icarus 208, 913-926), and a recent analysis of STIS spectra argued for a model in which aerosol particles formed diffusely distributed hazes, with no compact condensation layer (Karkoschka, E., Tomasko, M. [2009]. Icarus 202, 287-309). To try to reconcile these results, we reanalyzed the occultation observations with the He volume mixing ratio reduced from 0.15 to 0.116, which is near the edge of the 0.033 uncertainty range given by Conrath et al. (Conrath, B., Hanel, R., Gautier, D., Marten, A., Lindal, G. [1987]. J. Geophys. Res. 92 (11), 15003-15010). This allowed us to obtain saturated mixing ratios within the putative cloud layer and to reach above-cloud and deep methane mixing ratios compatible with STIS spectral constraints. Using a 5-layer vertical aerosol model with two compact cloud layers in the 1-3 bar region, we find that the best fit pressure for the upper compact layer is virtually identical to the pressure range inferred from the occultation analysis for a methane mixing ratio near 4% at 5°S. This strongly argues that Uranus does indeed have a compact methane cloud layer. In addition, our cloud model can fit the latitudinal variations in spectra between 30°S and 20°N, using the same profiles of temperature and methane mixing ratio. But closer to the pole, the model fails to provide accurate fits without introducing an increasingly strong upper tropospheric depletion of methane at increased latitudes, in rough agreement with the trend identified by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009]. Icarus 202, 287-309).  相似文献   

4.
Jon Legarreta 《Icarus》2008,196(1):184-201
Numerical simulations of jovian vortices at tropical and temperate latitudes, under different atmospheric conditions, have been performed using the EPIC code [Dowling, T.E., Fisher, A.S., Gierasch, P.J., Harrington, J., LeBeau, R.P., Santori, C.M., 1998. Icarus 132, 221-238] to simulate the high-resolution observations of motions and of the lifetimes presented in a previous work [Legarreta, J., Sánchez-Lavega, A., 2005. Icarus 174, 178-191] and infer the vertical structure of Jupiter's troposphere. We first find that in order to reproduce the longevity and drift rate of the vortices, the Brunt-Väisälä frequency of the atmosphere in the upper troposphere (pressures P∼1 to 7 bar) should have a lower limit value of 5×10−3 s−1, increasing upward up to 1.25×10−2 s−1 at pressures P∼0.5 bar (latitudes between 15° and 45° in both hemispheres). Second, the vortices drift also depend on the vertical structure of the zonal wind speed in the same range of altitudes. Simulations of the slowly drifting Southern hemisphere vortices (GRS, White Ovals and anticyclones at 40° S) require a vertically-constant zonal-wind with depth, but Northern hemisphere vortices (cyclonic “barges” and anticyclones at 19, 41 and 45° N) require decreasing winds at a rate of ∼5 m s−1 per scale height. However vortices drifting at a high speed, close to or in the peak of East or West jets and in both hemispheres, require the wind speed slightly increasing with depth, as is the case for the anticyclones at 20° S and at 34° N. We deduce that the maximum absolute vertical shear of the zonal wind from P∼1 bar up to P∼7 bar in these jets is ∼15 m s−1 per scale height. Intense vortices with tangential velocity at their periphery ∼100 m s−1 tend to decay asymptotically to velocities ∼40 to 60 m s−1 with a characteristic time that depends on the vortex intensity and static stability of the atmosphere. The vortices adjust their tangential velocity to the averaged peak to peak velocity of the opposed eastward and westward jets at their boundary. We show through our simulations that large-scale and long-lived vortices whose maximum tangential velocity is ∼100 m s−1 can survive by absorbing smaller intense vortices.  相似文献   

5.
We present results from the two radio occultations of the Cassini spacecraft by Titan in 2006, which probed mid-southern latitudes. Three of the ingress and egress soundings occurred within a narrow latitude range, 31-34°S near the surface, and the fourth at 52.8°S. Temperature-altitude profiles for all four occultation soundings are presented, and compared with the results of the Voyager 1 radio occultation (Lindal, G.F., Wood, G.E., Hotz, H.B., Sweetnam, D.N., Eshleman, V.R., Tyler, G.L. [1983]. Icarus 53, 348-363), the HASI instrument on the Huygens descent probe (Fulchignoni, M. et al. [2005]. Nature 438, 785-791), and Cassini CIRS results (Flasar, F.M. et al. [2005]. Science 308, 975-978; Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A. [2008b]. Icarus 194, 263-277). Sources of error in the retrieved temperature-altitude profiles are also discussed, and a major contribution is from spacecraft velocity errors in the reconstructed ephemeris. These can be reduced by using CIRS data at 300 km to make along-track adjustments of the spacecraft timing. The occultation soundings indicate that the temperatures just above the surface at 31-34°S are about 93 K, while that at 53°S is about 1 K colder. At the tropopause, the temperatures at the lower latitudes are all about 70 K, while the 53°S profile is again 1 K colder. The temperature lapse rate in the lowest 2 km for the two ingress (dawn) profiles at 31 and 33°S lie along a dry adiabat except within ∼200 m of the surface, where a small stable inversion occurs. This could be explained by turbulent mixing with low viscosity near the surface. The egress profile near 34°S shows a more complex structure in the lowest 2 km, while the egress profile at 53°S is more stable.  相似文献   

6.
M. Seiß  F. Spahn  Jürgen Schmidt 《Icarus》2010,210(1):298-317
Saturn’s rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges.We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am. Astron. Soc. 37, 766), can be well described by our analytical model. Our analysis yields a Hill radius of Pan of 17.5 km, which is 9% smaller than the value presented by Porco (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236), but fits well to the radial semi-axis of Pan of 17.4 km. This supports the idea that Pan has filled its Hill sphere with accreted material (Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C. [2007]. Science 318, 1602-1607). A numerical solution of a streamline is used to estimate the parameters of the Daphnis-Keeler gap system, since the close proximity of the gap edge to the moon induces strong perturbations, not allowing an application of the analytic streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge variation of 8 km, and an eccentricity for Daphnis of 1.5 × 10−5. The latter two quantities deviate by a factor of two from values gained by direct observations (Jacobson, R.A., Spitale, J., Porco, C.C., Beurle, K., Cooper, N.J., Evans, M.W., Murray, C.D. [2008]. Astron. J. 135, 261-263; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767), which might be attributed to the neglect of particle interactions and vertical motion in our model.  相似文献   

7.
A survey of 62 small near-Earth asteroids was conducted to determine the rotation state of these objects and to search for rapid rotation. Since results for 9 of the asteroids were previously published (Pravec, P., Hergenrother, C.W., Whiteley, R.J., Šarounová, L., Kušnirák, P., Wolf, M. [2000]. Icarus 147, 477-486; Pravec, P. et al. [2005] Icarus 173, 108-131; Whiteley, R.J., Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154; Hergenrother, C.W., Whiteley, R.J., Christensen, E.J. [2009]. Minor Planet Bull. 36, 16-18.), this paper will present results for the remaining 53 objects. Rotation periods significantly less than 2 h are indicative of intrinsic strength in the asteroids, while periods longer than 2 h are typically associated with gravitationally bound aggregates. Asteroids with absolute magnitude (H) values ranging from 20.4 to 27.4 were characterized. The slowest rotator with a definite period is 2004 BW18 with a period of 8.3 h, while 2000 DO8 and 2000 WH10 are the fastest with periods of 1.3 min. A minimum of two-thirds of asteroids with H > 20 are fast rotating and have periods significantly faster than 2.0 h. The percentage of rapid rotators increases with decreasing size and a minimum of 79% of H ? 24 objects are rapid rotators. Slowly-rotating objects, some with periods as long as 10-20 h, make up a small though significant fraction of the small asteroid population. There are three fast rotators with relatively large possible diameters (D): 2001 OE84 with 470 ? D ? 820 m (Pravec, P., Kušnirák, P., Šarounová, L., Harris, A.W., Binzel, R.P., Rivkin, A.S. [2002b]. Large coherent Asteroid 2001 OE84. In: Warmbein, B. (Eds.), Proceedings of Asteroids, Comets, Meteors - ACM 2002. Springer, Berlin, pp. 743-745), 2001 FE90 with 265 ? D ? 594 m (Hicks, M., Lawrence, K., Rhoades, H., Somers, J., McAuley, A., Barajas, T. [2009]. The Astronomer’s Telegrams, # 2116), and 2001 VF2 with a possible D of 145 ? D ? 665 m. Using the diameters derived from nominal absolute magnitudes and albedos, the remainder of the fast rotating population is completely consistent with D ? 200 m. Even when taking into account the largest possible uncertainties in the determination of diameters, the remainder must all have D ? 400 m. With the exceptions of 2001 OE84, this result agrees with previous upper diameter limits for fast rotators in Pravec and Harris (Pravec, P., Harris, A.W. [2000]. Icarus 148, 589-593) and Whiteley et al. (Whiteley, R.J, Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154.  相似文献   

8.
We analyze velocity fields of the Great Red Spot (GRS) and Oval BA that were previously extracted from Cassini, Galileo, and Hubble Space Telescope images (Asay-Davis, X.S., Marcus, P.S., Wong, M., de Pater, I. [2009]. Icarus 203, 164-188). Our analyses use reduced-parameter models in which the GRS, Oval BA, and surrounding zonal (east-west) flows are assumed to have piece-wise-constant potential vorticity (PV), but with finite-sized transition regions between the pieces of constant PV rather than sharp steps. The shapes of the regions of constant PV are computed such that the flow is a steady, equilibrium solution of the 2D quasigeostrophic equations when viewed in a frame translating uniformly in the east-west direction. All parameter values of the models, including the magnitudes of the PV, areas of the regions with constant PV, locations of the transition regions, widths of the transition regions, and the value of the Rossby deformation radius, are found with a genetic algorithm such that the velocity produced by the equilibrium solution is a “best-fit” to the observed velocity fields. A Monte Carlo method is used to estimate the uncertainties in the best-fit parameter values.The best-fit results show that there were significant changes (greater than the uncertainties) in the PV of the GRS between Galileo in 1996 and Hubble in 2006. In particular, the shape of the PV anomaly of the GRS became rounder, and the area of the PV anomaly of the GRS decreased by 18%, although the magnitudes of PV in the anomaly remained constant. In contrast, neither the area nor the magnitude of the PV anomaly of the Oval BA changed from 2000, when its cloud cover was white, to 2006, when its cloud cover was red. The best-fit results also show that the areas of the PV anomalies of the GRS and of the Oval BA are smaller than the areas of their corresponding cloud covers at all times. Using the best-fit values of the Rossby deformation radius, we show that the Brunt-Väisälä frequency is 15% larger at 33°S than at 23°S. As expected (Marcus, 1993), the best-fit results show that the PV of the zonal flow has “jumps” at the latitudes of the maxima of the eastward-going jet streams. However, a surprising result is that a large “jump” in the PV of the zonal flow occurs at the location of a maximum of the westward going jet stream neighboring the GRS. Another surprise is that the jumps in the PV of the zonal flow do not all have the same sign, which implies that there is not a monotonic “staircase” of zonal PV from north to south as was anticipated ( [Marcus, 1993] and [McIntyre, 2008]).  相似文献   

9.
We report new radar observations of E-class Asteroid 64 Angelina and M-class Asteroid 69 Hesperia obtained with the Arecibo Observatory S-band radar (2480 MHz, 12.6 cm). Our measurements of Angelina’s radar bandwidth are consistent with reported diameters and poles. We find Angelina’s circular polarization ratio to be 0.8 ± 0.1, tied with 434 Hungaria for the highest value observed for main-belt asteroids and consistent with the high values observed for all E-class asteroids (Benner, L.A.M., Ostro, S.J., Magri, C., Nolan, M.C., Howell, E.S., Giorgini, J.D., Jurgens, R.F., Margot, J.L., Taylor, P.A., Busch, M.W., Shepard, M.K. [2008]. Icarus 198, 294-304; Shepard, M.K., Kressler, K.M., Clark, B.E., Ockert-Bell, M.E., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J. [2008b]. Icarus 195, 220-225). Our radar observations of 69 Hesperia, combined with lightcurve-based shape models, lead to a diameter estimate, Deff = 110 ± 15 km, approximately 20% smaller than the reported IRAS value. We estimate Hesperia to have a radar albedo of , consistent with a high-metal content. We therefore add 69 Hesperia to the Mm-class (high metal M) (Shepard, M.K., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J., Harris, A.W., Warner, B.D., Stephens, R.D., Mueller, M. [2010]. Icarus 208, 221-237), bringing the total number of Mm-class objects to eight; this is 40% of all M-class asteroids observed by radar to date.  相似文献   

10.
We investigate impact basin relaxation on Iapetus by combining a 3D thermal evolution model (Robuchon, G., Choblet, G., Tobie, G., Cadek, O., Sotin, C., Grasset, O. [2010]. Icarus 207, 959-971) with a spherical axisymmetric viscoelastic relaxation code (Zhong, S., Paulson, A., Wahr, J. [2003]. Geophys. J. Int. 155, 679-695). Due to the progressive cooling of Iapetus, younger basins relax less than older basins. For an ice reference viscosity of 1014 Pa s, an 800 km diameter basin relaxes by 30% if it formed in the first 50 Myr but by 10% if it formed at 1.2 Gyr. Bigger basins relax more rapidly than smaller ones, because the inferred thickness of the ice shell exceeds the diameter of all but the largest basins considered. Stereo topography shows that all basins 600 km in diameter or smaller are relaxed by 25% or less. Our model can match the relaxation of all the basins considered, within error, by assuming a single basin formation age (4.36 Ga for our nominal viscosity). This result is consistent with crater counts, which show no detectable age variation between the basins examined.  相似文献   

11.
Sascha Kempf  Uwe Beckmann 《Icarus》2010,206(2):446-457
Pre-Cassini models of Saturn’s E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn’s icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust.Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles’ ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus’ surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105-106 years.  相似文献   

12.
P.G.J. Irwin  N.A. Teanby 《Icarus》2010,208(2):913-926
Long-slit spectroscopy observations of Uranus by the United Kingdom InfraRed Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s Northern Spring Equinox in December 2007.These spectra were analysed and presented by Irwin et al. (Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2009]. Icarus 203, 287-302), but since publication, a new set of methane absorption data has become available (Karkoschka, E., Tomasko, M. [2010]. Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data. Icarus 205, 674-694.), which appears to be more reliable at the cold temperatures and high pressures of Uranus’ deep atmosphere. We have fitted k-coefficients to these new methane absorption data and we find that although the latitudinal variation and inter-annual changes reported by Irwin et al. (2009) stand, the new k-data place the main cloud deck at lower pressures (2-3 bars) than derived previously in the H-band of ∼3-4 bars and ∼3 bars compared with ∼6 bars in the J-band. Indeed, we find that using the new k-data it is possible to reproduce satisfactorily the entire observed centre-of-disc Uranus spectrum from 1 to 1.75 μm with a single cloud at 2-3 bars provided that we make the particles more back-scattering at wavelengths less than 1.2 μm by, for example, increasing the assumed single-scattering albedo from 0.75 (assumed in the J and H-bands) to near 1.0. In addition, we find that using a deep methane mole fraction of 4% in combination with the associated warm ‘F’ temperature profile of Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001), the retrieved cloud deck using the new (Karkoschka and Tomasko, 2010) methane absorption data moves to between 1 and 2 bars.The same methane absorption data and retrieval algorithm were applied to observations of Neptune made during the same programme and we find that we can again fit the entire 1-1.75 μm centre-of-disc spectrum with a single cloud model, providing that we make the stratospheric haze particles (of much greater opacity than for Uranus) conservatively scattering (i.e. ω = 1) and we also make the deeper cloud particles, again at around the 2 bar level more reflective for wavelengths less than 1.2 μm. Hence, apart from the increased opacity of stratospheric hazes in Neptune’s atmosphere, the deeper cloud structure and cloud composition of Uranus and Neptune would appear to be very similar.  相似文献   

13.
Measuring the spatial distribution of chemical compounds in Saturn’s stratosphere is critical to better understand the planet’s photochemistry and dynamics. Here we present an analysis of infrared spectra in the range 600-1400 cm−1 acquired in limb geometry by the Cassini spacecraft between March 2005 and January 2008. We first determine the vertical temperature profiles from 3 to 0.01 hPa, at latitudes ranging from 70°N to 80°S. We infer a similar meridional temperature gradient at 1-2 hPa as in recent previous studies [Fletcher, L.N., Irwin, P.G.J., Teanby, N.A., Orton, G.S., Parrish, P.D., de Kok, R., Howett, C., Calcutt, S.B., Bowles, N., Taylor, F.W., 2007. Icarus 189, 457-478; Howett, C.J.A., Irwin, P.G.J., Teanby, N.A., Simon-Miller, A., Calcutt, S.B., Fletcher, L.N., de Kok, R., 2007. Icarus 190, 556-572]. We then retrieve the vertical profiles of C2H6 and C2H2 from 3 to 0.01 hPa and of C3H8 around 1 hPa. At 1 hPa, the meridional variation of C2H2 is found to follow the yearly averaged solar insolation, except for a strong equatorial mole fraction of 8×10-7, nearly two times higher than expected. This enhancement in abundance can be explained by the descent of hydrocarbon-rich air, with a vertical wind speed at the equator of 0.25±0.1 mm/s at 1 hPa and 0.4±0.15 mm/s at 0.1 hPa. The ethane distribution is relatively uniform at 1 hPa, with only a moderate 25% increase from 35°S to 80°S. Propane is found to increase from north to south by a factor of 1.9, suggesting that its lifetime may be shorter than Saturn’s year at 1 hPa. At high altitudes (1 Pa), C2H2 and C2H6 abundances depart significantly from the photochemical model predictions of Moses and Greathouse [Moses, J.I., Greathouse, T.K., 2005. J. Geophys. Res. 110, 9007], except at high southern latitudes (62, 70 and 80°S) and near the equator. The observed abundances are found strongly depleted in the 20-40°S region and enhanced in the 20-30°N region, the latter coinciding with the ring’s shadow. We favor a dynamical explanation for these anomalies.  相似文献   

14.
We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000-km2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 μs (∼1-km thick) underlies two-thirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444-474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318-358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182-1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375-377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust-content variation during accumulation rather than one of lag production during periods of sublimation.  相似文献   

15.
Though optimized to discover and track fast moving Near-Earth Objects (NEOs), the Near-Earth Asteroid Tracking (NEAT) survey dataset can be mined to obtain information on the comet population observed serendipitously during the asteroid survey. We have completed analysis of over 400 CCD images of comets obtained during the autonomous operations of two 1.2-m telescopes: the first on the summit of Haleakala on the Hawaiian island of Maui and the second on Palomar Mountain in southern California. Photometric calibrations of each frame were derived using background catalog stars and the near-nucleus comet photometry measured. We measured dust production and normalized magnitudes for the coma and nucleus in order to explore cometary activity and comet size-frequency distributions. Our data over an approximately two-year time frame (2001 August-2003 February) include 52 comets: 12 periodic, 19 numbered, and 21 non-periodic, obtained over a wide range of viewing geometries and helio/geocentric distances. Nuclear magnitudes were estimated for a subset of comets observed. We found that for low-activity comets (Afρ<100 cm) our model gave reasonable estimates for nuclear size and magnitude. The slope of the cumulative luminosity function of our sample of low-activity comets was 0.33 ± 0.04, consistent with the slope we measured for the Jupiter-family cometary nuclei collected by Fernández et al. [Fernández, J.A., Tancredi, G., Rickman, H., Licandro, J., 1999. Astron. Astrophys. 392, 327-340] of 0.38 ± 0.02. Our slopes of the cumulative size distribution α=1.50±0.08 agree well with the slopes measured by Whitman et al. [Whitman, K., Morbidelli, A., Jedicke, R., 2006. Icarus 183, 101-114], Meech et al. [Meech, K.J., Hainaut, O.R., Marsden, B.G., 2004. Icarus 170, 463-491], Lowry et al. [Lowry, S.C., Fitzsimmons, A., Collander-Brown, S., 2003. Astron. Astrophys. 397, 329-343], and Weissman and Lowry [Weissman, P.R., Lowry, S.C., 2003. Lunar Planet. Sci. 34. Abstract 34].  相似文献   

16.
Numerical simulations, based on the core-nucleated accretion model, are presented for the formation of Jupiter at 5.2 AU in three primordial disks with three different assumed values of the surface density of solid particles. The grain opacities in the envelope of the protoplanet are computed using a detailed model that includes settling and coagulation of grains and that incorporates a recalculation of the grain size distribution at each point in time and space. We generally find lower opacities than the 2% of interstellar values used in previous calculations (Hubickyj, O., Bodenheimer, P., Lissauer, J.J. [2005]. Icarus 179, 415-431; Lissauer, J.J., Hubickyj, O., D’Angelo, G., Bodenheimer, P. [2009]. Icarus 199, 338-350). These lower opacities result in more rapid heat loss from and more rapid contraction of the protoplanetary envelope. For a given surface density of solids, the new calculations result in a substantial speedup in formation time as compared with those previous calculations. Formation times are calculated to be 1.0, 1.9, and 4.0 Myr, and solid core masses are found to be 16.8, 8.9, and 4.7 M, for solid surface densities, σ, of 10, 6, and 4 g cm−2, respectively. For σ = 10 and σ = 6 g cm−2, respectively, these formation times are reduced by more than 50% and more than 80% compared with those in a previously published calculation with the old approximation to the opacity.  相似文献   

17.
The fragmentation of the split Comet 73P/Schwassmann-Wachmann 3 B was observed with the prime-focus camera Suprime-Cam attached to the Subaru 8.2-m telescope. The fragmentation revealed dozens of miniature comets [Fuse, T., Yamamoto, N., Kinoshita, D., Furusawa, H., Watanabe, J., 2007. Publ. Astron. Soc. Jpn. 59 (2), 381-386]. We analyzed the Subaru/Suprime-Cam images, detecting no fewer than 154 mini-comets, mostly extending to the southwest. Three were close to the projected orbit of fragment B. We applied synchrone-syndyne analysis, modified for rocket effect analysis, to the mini-fragment spatial distribution. We found that most of these mini-comets were ejected from fragment B by an outburst occurring around 1 April 2006, and three fragments on the leading side of nucleus B could have been released sunward on the previous return. Several fragments might have been released by successive outbursts around 24 April and 2 May 2006. The ratio of the rocket force to solar gravity was 7-23 times larger than that exerted on fragment B. No significant color variation was found. The mean color index, V-R = 0.50 ± 0.07, was slightly redder than that of the Sun and similar to that of the largest fragment, C, which suggests that these mini-fragments were detected mainly through sunlight reflected by dust particles and materials on the nuclei. We examined the surface brightness profiles of all detected fragments and estimated the sizes of 154 fragments. We found that the radius of these mini-fragments was in the 5- to 108-m range (equivalent size of Tunguska impactor). The power-law index of the differential size distribution was q = −3.34 ± 0.05. Based on this size distribution, we found that about 1-10% of the mass of fragment B was lost in the April 2006 outbursts. Modeling the cometary fragment dynamics [Desvoivres, E., Klinger, J., Levasseur-Regourd, A.C., Lecacheux, J., Jorda, L., Enzian, A., Colas, F., Frappa, E., Laques, P., 1999. Mon. Not. Roy. Astron. Soc. 303 (4), 826-834; Desvoivres, E., Klinger, J., Levasseur-Regourd, A.C., Jones, G.H., 2000. Icarus 144, 172-181] revealed that it is likely that mini-fragments smaller than ∼10-20 m could be depleted in water ice and become inactive, implying that decameter-sized comet fragments could survive against melting and remain as near-Earth objects. We attempted to detect the dust trail, which was clearly found in infrared wavelengths by Spitzer. No brightness enhancement brighter than 30.0 mag arcsec−2 (3σ) was detected in the orbit of fragment B.  相似文献   

18.
We combine high-resolution observations of the dynamical behavior of small vortices (diameters ?5000 km) located at latitude 60°N on Jupiter with forward modeling, using the EPIC atmospheric model, to address two open questions: the dependence of the zonal winds with depth, and the strength of vortices that are too small to apply cloud tracking to their internal structure. The observed drift rates of the vortices can only be reproduced in the model when the zonal winds increase slightly with depth below the cloud tops, with a vertical shear that is less than was measured at 7°N at the southern rim of a 5-μm hotspot by the Galileo Probe Doppler Wind Experiment (DWE). This supports the idea that Jupiter's vertical shear may vary significantly with latitude. Our simulations suggest that the morphology of the mergers between vortices mainly depends on their maximum tangential velocities, the best results occurring when the tangential velocity is close to the velocity difference of the alternating jets constraining the zone in which the vortices are embedded. We use this correlation, together with the high-resolution data available for the White Ovals, to derive an empirical relationship between the maximum tangential velocity of a jovian vortex and its size, normalized by the strength and size of the encompassing shear zone. The Great Red Spot stands out as a significant anomaly to this relationship, but interestingly it is becoming less so with time.  相似文献   

19.
《Icarus》2003,166(1):63-74
Observations of the merger of Jupiter's White Ovals BE and FA show altitude-dependent behavior that we seek to capture in numerical simulations. In particular, it was observed that the upper portions of the vortices orbited each other before merging, but the lower portions translated into each other without orbiting, a phenomenon we term the pair-orbit vertical dichotomy. To reproduce this dichotomy in the EPIC model, it is sufficient to have (i) a decrease with altitude of the background zonal winds above the cloud level with a scale height of ∼2.4, (ii) a height scale of the winds inside the vortices that is the same or larger, and (iii) a maximum tangential velocity in each vortex of ∼100 m s−1 or larger. Condition (i) is expected from thermal-wind analyses, (ii) is consistent with thermal-wind and Shoemaker-Levy 9 debris-trajectory analyses, and (iii) is consistent with cloud-top wind tracking. The model generally does not reproduce the dichotomy for vortices with smaller vertical extent or weaker circulations. Our simulated mergers correctly reproduce the observed ∼9° separation at which vortices start to orbit in the upper layers before they merge and the ∼70% area ratio of the final vortex BA to the sum of BE and FA.  相似文献   

20.
Several different trans-neptunian objects have been studied in order to investigate their physical and chemical properties. New observations in the 1.1-1.4 μm range, obtained with the ISAAC instrument, are presented in order to complete previous observations carried out with FORS1 in the visible and SINFONI in the near infrared. All of the observations have been performed at the ESO/Very Large Telescope. We analyze the spectra of six different objects (2003 AZ83, Echeclus, Ixion, 2002 AW197, 1999 DE9 and 2003 FY128) in the 0.45-2.3 μm range with the model of Hapke (Hapke, B. [1981]. J. Geophys. Res. 86, 4571-4586) and the method of Shkuratov et al. (Shkuratov, Y., Starukhina, L., Hoffmann, H., Arnold, G. [1999]. Icarus 137, 235-246). Water ice is found on two objects, and in particular it is confirmed in its amorphous and crystalline states on 2003 AZ84 surface. Upper limits on the water ice content are given for the other four TNOs investigated, confirming previous results (Barkume, K.M., Brown, M.E., Schaller, E.L. [2008]. Astron. J. 135, 55-67; Guilbert, A., Alvarez-Candal, A., Merlin, F., Barucci, M.A., Dumas, C., de Bergh, C., Delsanti, A. [2009]. Icarus 201, 272-283). Whatever the absorption features in the near infrared, all objects but one exhibit a moderate red slope in the visible, as most TNOs and Centaurs. We discuss the implications of the presence of water ice and the probable sources of the red slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号