首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS) instruments are used to assess the mineralogic and dust cover characteristics of landing regions proposed for the Mars Science Laboratory (MSL) mission. Candidate regions examined in this study are Eberswalde crater, Gale crater, Holden crater, Mawrth Vallis, Miyamoto crater, Nili Fossae Trough, and south Meridiani Planum. Compositional units identified in each region from TES and THEMIS data are distinguished by variations in hematite, olivine, pyroxene and high-silica phase abundance, whereas no units are distinguished by elevated phyllosilicate or sulfate abundance. Though phyllosilicate minerals have been identified in all sites using near-infrared observations, these minerals are not unambiguously detected using either TES spectral index or deconvolution analysis methods. For some of the sites, small phyllosilicate outcrop sizes relative to the TES field of view likely hinder phyllosilicate mineral detection. Porous texture and/or small particle size (<∼60 μm) associated with the phyllosilicate-bearing surfaces may also contribute to non-detections in the thermal infrared data sets, in some areas. However, in Mawrth Vallis and Nili Fossae, low phyllosilicate abundance (<10-20 areal %, depending on the phyllosilicate composition) is the most likely explanation for non-detection. TES data over Mawrth Vallis indicate that phyllosilicate-bearing surfaces also contain significant concentrations (>15%, possibly up to ∼40%) of a high-silica phase such as amorphous silica or zeolite. High-silica phase abundance over phyllosilicate-bearing surfaces in Mawrth Vallis is higher than that of surrounding surfaces by 10-15%. With the exception of these high-silica surfaces in Mawrth Vallis, regions examined in this study exhibit similar bulk mineralogical compositions to that of most low-albedo regions on Mars; the MSL scientific payload will thus be able to provide important information on surface materials typical of low-albedo regions in addition to investigating the origin of phyllosilicate and/or sulfate deposits. With the exception of Gale crater, all of the landing sites have relatively low dust cover compared to classic high-albedo regions (Tharsis, Arabia and Elysium) and to previous landing sites in Gusev Crater, Utopia Planitia, and Chryse Planitia.  相似文献   

2.
Diverse phyllosilicate deposits discovered previously in the Nili Fossae region with near infrared reflectance data are a window into the complex history of aqueous alteration on Mars. In this work, we used thermal infrared data from the Thermal Emission Spectrometer (TES) in combination with near infrared data from the Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) to better constrain the mineralogy and geologic origin of these deposits. We developed a TES spectral index for identification of clay minerals, which correctly identifies the phyllosilicates in the Nili Fossae area and points to several other interesting deposits in the Syrtis Major region. However, detailed inspection of the TES spectral features of Nili Fossae phyllosilicates shows a feature at low wavenumbers (350-550 cm−1) that is not an exact match to any specific Fe3+-, Al-, or Mg-rich phyllosilicate phase. Instead, the feature is more similar to basaltic glass and may indicate that the phyllosilicates in this region are: (1) rich in Fe2+ (based on similarity to trends seen in laboratory data of clay minerals), (2) poorly crystalline/extremely disordered, and/or (3) present within a matrix of actual basalt glass. This feature is similar to spectral features seen in altered rocks in the Columbia Hills region of Gusev Crater by previous authors. By calibrating measured spectral index values against mathematical spectral mixtures of typical martian dark surfaces and known abundances of alteration minerals, we are able to estimate an enrichment in abundance of alteration minerals in the altered surfaces. Many dark, Noachian deposits in the Nili Fossae area are enriched phyllosilicates by 20-30% (±10-15%) relative to dark, volcanic surfaces in the same region. The distribution and abundance of these phases indicates that alteration in the region was pervasive, but did not completely erase the original mineralogy of what was likely an Fe-rich basalt protolith. As a group, the Nili Fossae phyllosilicate deposits are fundamentally different from those found in the Mawrth Vallis region. Nili Fossae deposits have strong thermal infrared features related to admixed pyroxene, plagioclase, and occasionally olivine, whereas the Mawrth Vallis deposits contain no mafic minerals. Comparison of TES and OMEGA data also illustrates some more general differences between the datasets, including the impact of physical character of the martian surface on detectability of minerals in each spectral range.  相似文献   

3.
The region surrounding the Mawrth Vallis outflow channel on Mars hosts thick layered deposits containing diverse phyllosilicate minerals. Here we report detection of the Ca-sulfate bassanite on the outflow channel floor, requiring a more complex aqueous chemistry than previously inferred for this region. The sulfate-bearing materials underlie phyllosilicate-bearing strata, and provide an opportunity for testing proposed models of martian geochemical evolution with a future landed mission.  相似文献   

4.
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m−2 K−1s−1/2 at mid-latitudes (60° S to 60° N) and 600 J m−2 K−1s−1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.  相似文献   

5.
The Thermal Emission Spectrometer (TES) on the Mars Global Surveyor spacecraft has detected deposits of coarse-grained, gray crystalline hematite in Sinus Meridiani, Aram Chaos, and Vallis Marineris. We argue that the key to the origin of gray hematite is that it requires crystallization at temperatures in excess of about 100 °C. We discuss thermal crystallization (1) as diagenesis at a depth of a few kilometers of sediments originally formed in low-temperature waters, or (2) as precipitation from hydrothermal solution. In Aram Chaos, a combination of TES data, Mars Orbiter Camera images, and Mars Orbiter Laser Altimeter (MOLA) topography suggests that high concentrations of hematite were formed in planar strata and have since been exposed by erosion of an overlying light-toned, caprock. Lesser concentrations of hematite are found adjacent to these strata at lower elevations, which we interpret as perhaps due to accumulation from physical weathering. The topography and the collapsed nature of the chaotic terrain favor a hydrothermally charged aquifer as the original setting where the hematite formed. Concentration of iron into such an ore-like body would be chemically favored by saline, Cl-rich hydrothermal fluids. An alternative sedimentary origin requires post-depositional burial to a depth of ∼3-5 km to induce thermally driven recrystallization of fine-grained iron oxides to coarse-grained hematite. This depth of burial and re-exposure is difficult to reconcile with commonly inferred martian geological processes. However, shallow burial accompanied by post-burial hydrothermal activity remains plausible. When the hematite regions originally formed, redox balance requires that much hydrogen must have been evolved to complement the extensive oxidation. Finally, we suggest that the coexistence of several factors required to form the gray hematite deposits would have produced a favorable environment for primitive life on early Mars, if it ever existed. These factors include liquid water, abundant electron donors in the form of H2, and abundant electron acceptors in the form of Fe3+.  相似文献   

6.
We examine hypotheses for the formation of light-toned layered deposits in Juventae Chasma using a combination of data from Mars Global Surveyor's Mars Orbiter Camera (MOC), Mars Orbiter Laser Altimeter (MOLA), and Thermal Emission Spectrometer (TES), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). We divide Juventae Chasma into geomorphic units of (i) chasm wall rock, (ii) heavily cratered hummocky terrain, (iii) a mobile and largely crater-free sand sheet on the chasm floor, (iv) light-toned layered outcrop (LLO) material, and (v) chaotic terrain. Using surface temperatures derived from THEMIS infrared data and slopes from MOLA, we derive maps of thermal inertia, which are consistent with the geomorphic units that we identify. LLO thermal inertias range from ∼400 to 850 J m−2 K−1 s−1/2. Light-toned layered outcrops are distributed over a remarkably wide elevation range () from the chasm floor to the adjacent plateau surface. Geomorphic features, the absence of small craters, and high thermal inertia show that the LLOs are composed of sedimentary rock that is eroding relatively rapidly in the present epoch. We also present evidence for exhumation of LLO material from the west wall of the chasm, within chaotic and hummocky terrains, and within a small depression in the adjacent plateau. The data imply that at least some of the LLO material was deposited long before the adjacent Hesperian plateau basalts, and that Juventae Chasma underwent, and may still be undergoing, enlargement along its west wall due to wall rock collapse, chaotic terrain evolution, and exposure and removal of LLO material. The new data allow us to reassess possible origins of the LLOs. Gypsum, one of the minerals reported elsewhere as found in Juventae Chasma LLO material, forms only at low temperatures () and thus excludes a volcanic origin. Instead, the data are consistent with either multiple occurrences of lacustrine or airfall deposition over an extended period of time prior to emplacement of Hesperian lava flows on the plateau above the chasm.  相似文献   

7.
Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe3(SO4)2(OH)6). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Mawrth Vallis layered terrains include a basal sequence of layers containing Fe-Mg smectites and an upper set of layers of hydrated silica and aluminous phyllosilicates. In terms of its fine scale morphology revealed by MRO HiRISE imagery, the jarosite-bearing unit has fracture patterns very similar to that observed in Fe-Mg smectite-bearing layers, but unlike that observed in the Al-bearing phyllosilicate unit. The ovoid-shaped landform is situated in an east-west bowl-shaped depression superposed on a north sloping surface. Spectra of the ovoid-shaped jarosite-bearing landform also display an anomalously high 600 nm shoulder, which may be consistent with the presence of goethite and a 1.92 μm absorption which could indicate the presence of ferrihydrite. Goethite, jarosite, and ferrihydrite can be co-precipitated and/or form through transformation of schwertmannite, both processes generally occurring under low pH conditions (pH 2-4). To date, this location appears to be unique in the Mawrth Vallis region and could represent precipitation of jarosite in acidic, sulfur-rich ponded water during the waning stages of drying.  相似文献   

8.
The Mawrth Vallis region contains an extensive (at least 300 km × 400 km) and thick (?300 m), finely layered (at meter scale), clay-rich unit detected by OMEGA. We use OMEGA, HRSC DTMs derived from stereoscopic imagery, HRSC color imagery and high resolution imagery such as MOC, CTX and HiRISE to characterize the geometry and the composition of the clay-rich unit at the regional scale. Our results show that the clay-bearing unit can be divided into sub-units on the basis of differences in color and composition. In false-color visible imagery, alternating white/bluish and orange/red colored units correspond to a compositional succession of, respectively, Al- and Fe- or Mg-phyllosilicate rich material. Geological cross-sections are presented along the principal outcrops of the region in order to define the stratigraphy of these sub-units. This method shows that the dips of the sub-units are frequently close to the slopes of the present topography, except for scarps visible at the dichotomy boundary, inside impact craters walls, and outcrops inside Mawrth Vallis. In addition to the Al- and Fe- or Mg-phyllosilicate rich sub-units, an altered surface is identified as the lower basement unit. We propose two possible end-member scenarios to explain the derived stratigraphy: (1) alteration of volcaniclastic, aeolian or aqueous layered deposits of various compositions by groundwater, resulting in distinct altered rocks; or (2) Alteration coeval with the deposition of sediments under varying chemical conditions, in wet pedodiagenetic environment.  相似文献   

9.
HiRISE images together with other recent orbital data from Mars define new characteristics of enigmatic Hesperian-aged deposits in Sirenum Fossae that are mostly 100-200 m thick, drape kilometers of relief, and often display generally low relief surfaces. New characteristics of the deposits, previously mapped as the “Electris deposits,” include local detection of meter-scale beds that show truncating relationships, a generally light-toned nature, and a variably blocky, weakly indurated appearance. Boulders shed by erosion of the deposits are readily broken down and contribute little to talus. Thermal inertia values for the deposits are ∼200 J m−2 K−1 s−1/2 and they may incorporate hydrated minerals derived from weathering of basalt. The deposits do not contain anomalous amounts of water or water ice. Deflation may dominate degradation of the deposits over time and points to an inventory of fine-grained sediment. Together with constraints imposed by the regional setting on formation processes, these newly resolved characteristics are most consistent with an eolian origin as a loess-like deposit comprised of redistributed and somewhat altered volcanic ash. Constituent sediments may be derived from airfall ash deposits in the Tharsis region. An origin directly related to airfall ash or similar volcanic materials is less probable and emplacement by alluvial/fluvial, impact, lacustrine, or relict polar processes is even less likely.  相似文献   

10.
Aluminous clay deposits on Mars are recognized from remotely sensed infrared spectral features similar to those of montmorillonite, beidellite, and/or kaolinite. The nature of aluminous clay deposits on Mars is of interest because they likely indicate a different formation mechanism than that of Fe–Mg clays, which are widespread on Mars and likely alteration products of the Fe–Mg-rich basaltic crust. The near-infrared reflectance spectra of aluminous martian clay deposits frequently display characteristics typical of both montmorillonite and kaolinite. The question arises whether such mixed character is due to the existence of end-member phases or to kaolinite–smectite mixed-layer (K–S). The issue is relevant because K–S implies the existence of a smectite precursor that alters into kaolinite, and thus constrains the timing and intensity of the alteration processes that generates it. A mixture of kaolinite and smectite end-members may indicate locally heterogeneous alteration processes, or alternatively, could result from the physical mixing of altered materials of different provenance. A group of natural K–S samples and synthetic kaolinite/smectite mixtures of known proportion, all of which had been thoroughly characterized in previous work using several analytical techniques, were investigated here using near-infrared (NIR) spectroscopy. The NIR spectral features correlate well with their kaolinite–smectite relative proportions. The shape of spectral features attributed to Al–OH in K–S is subtly different from those in physical mixtures of kaolinite and smectite. Based on qualitative comparison, some regions on Mars appear to have spectral signatures similar to K–S. We also applied a quantitative technique using the second derivative of spectra. In this technique, plots of the height of the features at (λ=) 2.21 μm (band present in kaolinite and montmorillonite) and 2.17 μm (kaolinite only) were able to discriminate between K–S and kaolinite–smectite physical mixtures, as they generated correlations with different slopes. The method of discrimination was applied to Mars spectra, which resulted in reasonable evidence for the existence of K–S in Nili Fossae and Mawrth Vallis, and mixtures of end-members in Mawrth Vallis and Leighton Crater. This is one of the first times that evidence for mixed-layer clay minerals, and particularly K–S, on Mars has been gathered. The ability to detect mixed-layer clays is an important step forward for further development of our understanding of the processes that generated clay on Mars.  相似文献   

11.
David Horne  Michael D. Smith 《Icarus》2009,200(1):118-128
The Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument has returned over 200 million thermal infrared spectra of Mars taken between March 1999 and August 2004. This represents one of the most complete records of spatial and temporal changes of the martian atmosphere ever recorded by an orbiting spacecraft. Previous reports of the standard TES retrieval of aerosol optical depth have been limited to those observations taken over surfaces with temperatures above 210 K, limiting the spatiotemporal coverage of Polar Regions with TES. Here, we present an extension to the standard TES retrieval that better models the effects of cold surfaces below 200 K. This modification allows aerosol optical depth to be retrieved from TES spectra over a greater spatiotemporal range than was previously possible, specifically in Polar Regions. This new algorithm is applied to the Polar Regions to show the seasonal variability in dust and ice optical depth for the complete temporal range of the TES database (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 24, Ls=82°, 31 August 2004).  相似文献   

12.
Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m−2 K−1 s−1/2) diurnal and seasonal variations in apparent thermal inertia even for small (∼10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.  相似文献   

13.
The extensive light-toned deposits in canyons and troughs in Valles Marineris provide evidence of formation through water-related processes. As such, these deposits offer a window to past conditions on Mars. We study a small outcrop of light-toned deposits in a closed trough in Coprates Catena, a chain of collapse pits to the south-east of the main Valles Marineris system. A well-exposed sequence of deposits on the base of the north wall of the trough offers a 220 m section for geochemical and morphologic analysis. Using CRISM data we identify the presence of both phyllosilicates and sulfates and/or opaline silica in the light toned deposits, which vary in relative strength with elevation. We observe a trend in the dominant mineralogical signal, with Al phyllosilicates occurring near the base of the deposits, both below and above a band of Fe/Mg phyllosilicates, before a transition to more sulfate- or opaline silica-rich material near the top of the section. This trend likely reflects a change in the chemistry of the water in which the deposits formed. Using a HiRISE Digital Elevation Model, we find that the layers in the light-toned deposits on both sides of the trough dip gently towards the center of the trough, with a dip direction that aligns with the strike of the trough, suggesting that the light-toned deposits formed after the trough. Our general morphologic and mineralogical observations fit well with significant amounts of water in the trough. The deposits are too small to be dated using crater counting techniques, however, our crater analysis suggests that the plains in which the trough formed are probably Late Hesperian in age. If the chemistry of the light-toned deposits reflects the primary depositional mineralogy, then this and other small troughs in Coprates Catena might provide evidence of limited phyllosilicate formation in this region towards the end of the Hesperian era on Mars.  相似文献   

14.
Prelaunch planetary protection protocols on spacecraft are designed to reduce the numbers and diversity of viable bioloads on surfaces in order to mitigate the forward contamination of planetary surfaces. In addition, there is a growing appreciation that prelaunch spacecraft cleaning protocols will be required to reduce the levels of biogenic signature molecules on spacecraft to levels that will not compromise life-detection experiments on landers. The biogenic molecule, adenosine triphosphate (ATP) was tested for long-term stability under simulated Mars surface conditions of high UV flux, low temperature, low pressure, Mars atmosphere, and clear-sky dust loading conditions. Data on UV-induced ATP degradation rates were then extrapolated to a diversity of global conditions using a radiative transfer model for UV on Mars. The UV-induced degradation of ATP tested at 4.1 W m−2 UVC (200-280 nm), −10 °C, 7.1 mb, 95% CO2 gas composition, and an atmospheric opacity of τ=0.1 yielded a half-life for ATP of 1342 kJ m−2; or extrapolated to approximately 22 sols on equatorial Mars with an atmospheric opacity of τ=0.5. Temperature was found to moderately affect ATP degradation rates under martian conditions; tests at −80 or 20 °C yielded ATP half-lives of 2594 or 1183 kJ m−2, respectively. The ATP degradation rates reported here are over 10 orders of magnitude slower than the UV-induced biocidal rates reported in the literature on the inactivation of strongly UV-resistant bacterial spores from Bacillus pumilus SAFR-032 [Schuerger, A.C., Richards, J.T., Newcombe, D.A., Venkateswaran, K.J., 2006. Icarus 181, 52-62]. Extrapolating results to global Mars conditions, residence times for a 99% reduction of ATP on spacecraft surfaces ranged from 158 sols on Sun-exposed surfaces to approximately 32,000 sols for the undersides of landers similar to Viking. However, spacecraft materials greatly affected the survival times of ATP under martian conditions. Stainless steel was found to enhance the UV degradation of ATP by over 2 orders of magnitude compared to ATP-doped iridited aluminum, graphite, and astroquartz coupons. Extrapolating these results to global conditions, ATP on stainless steel might be expected to persist between 2 and 320 sols for upper and lower surfaces of landers. Liquid chromatography-mass spectrometry data supported the conclusion that UV irradiation acted to remove the γ-phosphate group from ATP, and no evidence was observed for the UV-degradation of d-ribose or adenine moieties. Long residence times for ATP on spacecraft materials under martian conditions suggest that prelaunch cleaning protocols may need to be strengthened to mitigate against possible ATP contamination of life-detection experiments on Mars landers.  相似文献   

15.
The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ∼0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions.  相似文献   

16.
Mark A. Wieczorek 《Icarus》2008,196(2):506-517
The polar caps of Mars have long been acknowledged to be composed of unknown proportions of water ice, solid CO2 (dry ice), and dust. Gravity and topography data are here analyzed over the southern cap to place constraints on its density, and hence composition. Using a localized spectral analysis combined with a lithospheric flexure model of ice cap loading, the best fit density of the volatile-rich south polar layered deposits is found to be 1271 kg m−3 with 1-σ limits of 1166 and 1391 kg m−3. The best fit elastic thickness of this geologically young deposit is 140 km, though any value greater than 102 km can fit the observations. The best fit density implies that about 55% dry ice by volume could be sequestered in these deposits if they were completely dust free. Alternatively, if these deposits were completely free of solid CO2, the dust content would be constrained to lie between about 14 and 28% by volume. The bulk thermal conductivity of the polar cap is not significantly affected by these maximum allowable concentrations of dust. However, even if a moderate quantity of solid CO2 were present as horizontal layers, the bulk thermal conductivity of the polar cap would be significantly reduced. Reasonable estimates of the present day heat flow of Mars predict that dry ice beneath the thicker portions of the south polar cap would have melted. Depending on the quantity of solid CO2 in these deposits today, it is even possible that water ice could melt where the cap is thickest. If independent estimates for either the dust or CO2 content of the south polar cap could be obtained, and if radar sounding data could determine whether this polar cap is presently experiencing basal melting or not, it would be possible to use these observations to place tight constraints on the present day heat flow of Mars.  相似文献   

17.
We characterize the lithospheric structure of Isidis Planitia on Mars by analyzing Mars Global Surveyor and Mars Odyssey gravity and topography data using a flexural model of a thin elastic shell including bending and membrane stresses. Isidis Planitia is a circular, relatively flat plain formed near the end of the Early Noachian, at the edge of the highlands-lowlands boundary and the site of a large free-air gravity anomaly, features consistent with modification and filling of an impact basin. Our results suggest that the bulk density of the fill material inside Isidis must be more than 2600 kg m−3 and higher densities are probable. A comparison of the faulting observed at Nili Fossae to the predicted zone of extensional strain northwest of Isidis constrains the thickness of the elastic lithosphere to be 100-180 km thick beneath the basin at the time of loading. We also find that loads outside of the basin play a significant role in the interpretation of the tectonics; simplified models tend to overestimate the lithospheric thickness. We place relatively narrow bounds on the thermal gradient (3.4-6.5 K km−1) and heat flux (13.6-26 mW m−2) at Isidis at the time of loading.  相似文献   

18.
Yan Tang  Yujie Huang 《Icarus》2006,180(1):88-92
The detection of gray crystalline hematite deposits on Mars by Thermal Emission Spectrometer (TES) has been used to argue for the presence of liquid water on Mars in the distant past. By methanol-thermal treatment of anhydrous FeCl3 at low temperatures (70-160 °C), crystalline gray hematite with layered structure was synthesized, based on this result an alternative explanation for the origin of martian hematite deposits is suggested. Methane could be abundant in the early martian atmosphere; process such as photochemical oxidation of methane could result in the formation of ocean or pool of organic compounds such as methanol, which provides an environment for the formation of large-scale hematite deposits on Mars.  相似文献   

19.
I. Pat-El 《Icarus》2009,201(1):406-411
From recent close encounters with Comets Wild-2 and Tempel 1 we learned that their surfaces are very rugged and no simple uniform layers model can be applied to them. Rather, a glaciological approach should be applied for describing their surface features and behavior. Such intrinsically rugged surface is formed in our large scale experiments, where an agglomerate of ∼200 μm gas-laden amorphous ice particles is accumulated to form a 20 cm diameter and few cm high ice sample. The density, tensile strength and thermal inertia of our ice sample were found to be very close to those found by Deep Impact for Comet Tempel 1: density 250-300 kg m−3 vs DI 350-400 kg m−3; tensile strength 2-4 kPa vs DI 1-10 kPa; thermal inertia 80 W K−1 m−2 s1/2 vs <100 W K−1 m−2 s1/2 and <50 W K−1 m−2 s1/2. From the close agreement between the thermal inertias measured in our ice sample, which had no dust coverage and that of Comet Tempel 1, we deduce that the low thermal inertia is an intrinsic property of the fluffy structure of the ice as a result of its low density, with an addition by the broken terrain and not due to the formation of a dust layer. Upon warming up of the ice, water vapor migrates both outward into the coma and inward. Reaching cooler layers, the water vapor condenses, forming a denser ice crust, as we show experimentally. We also demonstrate the inward and outward flow of water vapor in the outer ice layers through the exchange between layers of D2O ice and H2O ice, to form HDO.  相似文献   

20.
Mars was observed near the peak of the strongest SO2 band at 1364-1373 cm−1 with resolving power of 77,000 using the Texas Echelon Cross Echelle Spectrograph on the NASA Infrared Telescope Facility. The observation covered the Tharsis volcano region which may be preferable to search for SO2. The spectrum shows absorption lines of three CO2 isotopomers and three H2O isotopomers. The water vapor abundance derived from the HDO lines assuming D/H = 5.5 times the terrestrial value is 12±1.0 pr. μm, in agreement with the simultaneous MGS/TES observations of 14 pr. μm at the latitudes (50° S to 10° N) of our observation. Summing of spectral intervals at the expected positions of sixteen SO2 lines puts a 2σ upper limit on SO2 of 1 ppb. SO2 may be emitted into the martian atmosphere by seepage and is removed by three-body reactions with OH and O. The SO2 lifetime, 2 years, is longer than the global mixing time 0.5 year, so SO2 should be rather uniformly distributed across Mars. Seepage of SO2 is less than 15,000 tons per year on Mars which is smaller than the volcanic production of SO2 on the Earth by a factor of 700. Because CH4/SO2 is typically 10−4-10−3 in volcanic gases on the Earth, our results show seepage is unlikely to be the source of the recently discovered methane on Mars and therefore strengthen its biogenic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号