首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Michael H. Hecht 《Icarus》2002,156(2):373-386
A simple model of local heat transport on Mars demonstrates that transient melting of ice may occur in depressions and gullies nearly anywhere on the planet where thin ice is illuminated by normal-incidence insolation. An experiment has been performed to confirm the model of evaporation rate at low pressure. Reduction of radiative cooling due to gully geometry is shown to be important. Since appropriate meteorological, topographic, and optical conditions may occur on slopes nearly anywhere on the planet, hydrological features such as gullies would likely form only where such ice might accumulate, notably in sheltered locations at high latitudes. It is suggested that cold-trapping of winter condensation could concentrate a sufficient amount of ice to allow seasonal melting in gullies.  相似文献   

2.
The Amazonian period of Mars has been described as static, cold, and dry. Recent analysis of high-resolution imagery of equatorial and mid-latitude regions has revealed an array of young landforms produced in association with ice and liquid water; because near-surface ice in these regions is currently unstable, these ice-and-water-related landforms suggest one or more episodes of martian climate change during the Amazonian. Here we report on the origin and evolution of valley systems within a degraded crater in Noachis Terra, Asimov Crater. The valleys have produced a unique environment in which to study the geomorphic signals of Amazonian climate change. New high-resolution images reveal Hesperian-aged layered basalt with distinctive columnar jointing capping interior crater fill and providing debris, via mass wasting, for the surrounding annular valleys. The occurrence of steep slopes (>20°), relatively narrow (sheltered) valleys, and a source of debris have provided favorable conditions for the preservation of shallow-ice deposits. Detailed mapping reveals morphological evidence for viscous ice flow, in the form of several lobate debris tongues (LDT). Superimposed on LDT are a series of fresh-appearing gullies, with typical alcove, channel, and fan morphologies. The shift from ice-rich viscous-flow formation to gully erosion is best explained as a shift in martian climate, from one compatible with excess snowfall and flow of ice-rich deposits, to one consistent with minor snow and gully formation. Available dating suggests that the climate transition occurred >8 Ma, prior to the formation of other small-scale ice-rich flow features identified elsewhere on Mars that have been interpreted to have formed during the most recent phases of high obliquity. Taken together, these older deposits suggest that multiple climatic shifts have occurred over the last tens of millions of years of martian history.  相似文献   

3.
The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca. >10 m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10 m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100 m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity.  相似文献   

4.
The discovery of presumably geologically recent gully features on Mars (Malin and Edgett, 2000, Science 288, 2330-2335) has spawned a wide variety of proposed theories of their origin including hypotheses of the type of erosive material. To test the validity of gully formation mechanisms, data from the Mars Global Surveyor spacecraft has been analyzed to uncover trends in the dimensional and physical properties of the gullies and their surrounding terrain. We located 106 Mars Orbiter Camera (MOC) images that contain clear evidence of gully landforms, distributed in the southern mid and high latitudes, and analyzed these images in combination with Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) data to provide quantitative measurements of numerous gully characteristics. Parameters we measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, orientations, and present-day characteristics that affect local ground temperatures. We find that the number of gully systems normalized to the number of MOC images steadily declines as one moves poleward of 30° S, reaches a minimum value between 60°-63° S, and then again rises poleward of 63° S. All gully alcove heads occur within the upper one-third of the slope encompassing the gully and the alcove bases occur within the upper two-thirds of the slope. Also, the gully alcove heads occur typically within the first 200 meters of the overlying ridge with the exception of gullies equatorward of 40° S where some alcove heads reach a maximum depth of 1000 meters. While gullies exhibit complex slope orientation trends, gullies are found on all slope orientations at all the latitudes studied. Assuming thermal conductivities derived from TES measurements as well as modeled surface temperatures, we find that 79% of the gully alcove bases lie at depths where subsurface temperatures are greater than 273 K and 21% of the alcove bases lie within the solid water regime. Most of the gully alcoves lie outside the temperature-pressure phase stability of liquid CO2. Based on a comparison of measured gully features with predictions from the various models of gully formation, we find that models involving carbon dioxide, melting ground ice in the upper few meters of the soil, dry landslide, and surface snowmelt are the least likely to describe the formation of the martian gullies. Although some discrepancies still exist between prediction and observation, the shallow and deep aquifer models remain as the most plausible theories. Interior processes involving subsurface fluid sources are generally favored over exogenic processes such as wind and snowfall for explaining the origin of the martian gullies.  相似文献   

5.
Advances in dating gullies on Mars using superposition relationships and a stratigraphic marker horizon link gully chronostratigraphy to recent climate cycles. New observations of gully morphology show the close association of gully source regions, channels, and fan deposits with well-documented ice-rich latitude-dependent mantle deposits, the deposition of which is interpreted to be coincident with recent ice ages. On the basis of these close correlations, we interpret the formative processes for mid-latitude gullies to involve melting of these ice-rich mantling deposits and the generation of an aqueous phase leading to fluvial activity. Continued monitoring of gullies by spacecraft in the current “interglacial” climate period (∼0.4 Ma to the present) will permit assessment of changing rates and styles of gully activity in the now largely depleted source areas.  相似文献   

6.
The formation process(es) responsible for creating the observed geologically recent gully features on Mars has remained the subject of intense debate since their discovery. We present new data and analysis of northern hemisphere gullies from Mars Global Surveyor data which is used to test the various proposed mechanisms of gully formation. We located 137 Mars Orbiter Camera (MOC) images in the northern hemisphere that contain clear evidence of gully landforms and analyzed these images in combination with Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) data to provide quantitative measurements of numerous gully characteristics. Parameters we measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, orientations, and present-day characteristics that affect local ground temperatures. Northern hemisphere gullies are clustered in Arcadia Planitia, Tempe Terra, Acidalia Planitia, and Utopia Planitia. These gullies form in craters (84%), knobby terrain (4%), valleys (3%), other/unknown terrains (9%) and are found on all slope orientations although the majority of gullies are equator-facing. Most gullies (63%) are associated with competent rock strata, 26% are not associated with strata, and 11% are ambiguous. Assuming thermal conductivities derived from TES measurements as well as modeled surface temperatures, we find that 95% of the gully alcove bases with adequate data coverage lie at depths where subsurface temperatures are greater than 273 K and 5% of the alcove bases lie within the solid water regime. The average alcove length is 470 m and the average channel length is 690 m. Based on a comparison of measured gully features with predictions from the various models of gully formation, we find that models involving carbon dioxide, melting ground ice in the upper few meters of the soil, dry landslide, and surface snowmelt are the least likely to describe the formation of the martian gullies. Although some discrepancies still exist between prediction and observation, the shallow and deep aquifer models remain as the most plausible theories. Interior processes involving subsurface fluid sources are generally favored over exogenic processes such as wind and snowfall for explaining the origin of the martian gullies. These findings gleaned from the northern hemisphere data are in general agreement with analyses of gullies in the southern hemisphere [Heldmann, J.L., Mellon, M.T., 2004. Icarus 168, 285-304].  相似文献   

7.
We use Viking and new MGS and Odyssey data to characterize the lobate deposits superimposed on aureole deposits along the west and northwest flanks of Olympus Mons, Mars. These features have previously been interpreted variously as landslide, pyroclastic, lava flow or glacial features on the basis of Viking images. The advent of multiple high-resolution image and topography data sets from recent spacecraft missions allow us to revisit these features and assess their origins. On the basis of these new data, we interpret these features as glacial deposits and the remnants of cold-based debris-covered glaciers that underwent multiple episodes of advance and retreat, occasionally interacting with extrusive volcanism from higher on the slopes of Olympus Mons. We subdivide the deposits into fifteen distinctive lobes. Typical lobes begin at a theater-like alcove in the escarpment at the base of Olympus Mons, interpreted to be former ice-accumulation zones, and extend outward as a tongue-shaped or fan-shaped deposit. The surface of a typical lobe contains (moving outward from the basal escarpment): a chaotic facies of disorganized hillocks, interpreted as sublimation till in the accumulation zone; arcuate-ridged facies characterized by regular, subparallel ridges and interpreted as the ridges of surface debris formed by the flow of underlying ice; and marginal ridges interpreted as local terminal moraines. Several lobes also contain a hummocky facies toward their margins that is interpreted as a distinctive type of sublimation till shaped by structural dislocations and preferential loss of ice. Blocky units are found extending from the escarpment onto several lobes; these units are interpreted as evidence of lava-ice interaction and imply that ice was present at a time of eruptive volcanic activity higher on the slopes of Olympus Mons. Other than minor channel-like features in association with lava-ice interactions, we find no evidence for the flow of liquid water in association with these lobate features that might suggest: (1) near-surface groundwater as a source for ice in the alcoves in the lobe source region at the base of the scarp, or (2) basal melting and drainage emanating from the lobes that might indicate wet-based glacial conditions. Instead, the array of features is consistent with cold-based glacial processes. The glacial interpretations outlined here are consistent with recent geological evidence for low-latitude ice-rich features at similar positions on the Tharsis Montes as well as with orbital dynamic and climate models indicating extensive snow and ice accumulation associated with episodes of increased obliquity during the Late Amazonian period of the history of Mars.  相似文献   

8.
Recent gully deposits on Mars have been attributed to both wet and dry mass wasting processes. In this paper frosted granular flow (FGF) is presented as a new hypothesis for recent mass wasting activity in martian gullies. FGF is a rare type of granular flow observed on a talus slope in the Province of Québec, Canada [Hétu, B., van Steijn, H., Vandelac, P., 1994. Géogr. Phys. Quat. 48, 3-22]. Frost reduces dynamic inter-particle friction, enabling flows to mobilize onto relatively low slope gradients (25-30°) compared to those involving dry granular flow of the same material (35-41°). Resulting erosional and depositional features include straight to sinuous channels, levees and digitate to branching arrangements of terminal deposits. Similar features are commonly found in association with geologically-young gully systems on Mars. Based on terrestrial observations of FGF processes the minimum criteria required for their occurrence on Mars include: (i) readily mobilized, unconsolidated sediment at the surface; (ii) an upper slope gradient at or near the angle of repose; (iii) frost accumulation at the surface; and (iv) triggering by rock fall. All four conditions appear to be met in many areas on present-day Mars though triggering mechanisms may vary. Compared to terrestrial FGFs, which are lubricated by thin liquid films at inter-particle contacts, those occurring on Mars are more likely lubricated by vaporization of CO2 and small amounts of H2O frost that becomes incorporated in the translating mass. Some recent mass wasting activity in martian gullies, therefore, could be interpreted as the product of FGF.  相似文献   

9.
We report observations of Icelandic hillside gully systems that are near duplicates of gullies observed on high-latitude martian hillsides. The best Icelandic analogs involve basaltic talus slopes at the angle of repose, with gully formation by debris flows initiated by ground water saturation, and/or by drainage of water from upslope cliffs. We report not only the existence of Mars analog gullies, but also an erosional sequence of morphologic forms, found both on Mars and in Iceland. The observations support hypotheses calling for creation of martian gullies by aqueous processes. Issues remain whether the water in each case comes only from surficial sources, such as melting of ground ice or snow, or from underground sources such as aquifers that gain surface access in hillsides. Iceland has many examples of the former, but the latter mechanism is not ruled out. Our observations are consistent with the martian debris flow mechanism of F. Costard et al. (2001c, Science295, 110-113), except that classic debris flows begin at midslope more frequently than on Mars. From morphologic observations, we suggest that some martian hillside gully systems not only involve significant evolution by extended erosive activity, but gully formation may occur in episodes, and the time interval since the last episode is considerably less than the time interval needed to erase the gully through normal martian obliteration processes.  相似文献   

10.
In this work we consider when and how much liquid water during present climate is possible within the gullies observed on the surface of Mars. These features are usually found on poleward directed slopes. We analyse the conditions for melting of H2O ice, which seasonally condenses within the gullies. We follow full annual cycle of condensation and sublimation of atmospheric CO2 and H2O, accounting for the heat and mass transport in the soil. During the summer, once the facets of the gullies are exposed to the Sun the water ice can melt and evaporate. Two mid latitude locations in both hemispheres are considered. The model includes both the rough geometry of the gullies as well as the slope of the surface where the gullies appear. It is an extension of the model developed to calculate condensation of CO2 ice in troughs of different sizes, including polygonal features on Mars (Kossacki and Markiewicz, 2002, Icarus 160, 73; Kossacki et al., 2003, Planet. Space Sci. 51, 569). We have found, that water ice accumulated during winter can undergo transition to the liquid phase after complete sublimation of CO2 ice. The amount of liquid water depends on water content in the atmosphere and on the local wind speed. It is probably not enough to destabilise the slope and cause flow of the surface material. However, even the small amounts of liquid water predicted, can play an important role in surface chemistry, in increasing the cohesive strength of the soil's surface layer and possibly may have some exobiological implications.  相似文献   

11.
Recent geomorphic, remote sensing, and atmospheric modeling studies have shown evidence for abundant ground ice deposits in the martian mid-latitudes. Numerous potential water/ice-rich flow features have been identified in craters in these regions, including arcuate ridges, gullies, and small flow lobes. Previous studies (such as in Newton Basin) have shown that arcuate ridges and gullies are mainly found in small craters (∼2-30 km in diameter). These features are located on both pole-facing and equator-facing crater walls, and their orientations have been found to be dependent on latitude. We have conducted surveys of craters >20 km in diameter in two mid-latitude regions, one in the northern hemisphere in Arabia Terra, and one in the southern hemisphere east of Hellas basin. In these regions, prominent lobes, potentially ice-rich, are commonly found on the walls of craters with diameters between ∼20-100 km. Additional water/ice-rich features such as channels, valleys, alcoves, and debris aprons have also been found in association with crater walls. In the eastern Hellas study region, channels were found to be located primarily on pole-facing walls, whereas valleys and alcoves were found primarily on equator-facing walls. In the Arabia Terra study region, these preferences are less distinct. In both study regions, lobate flows, gullies, and arcuate ridges were found to have pole-facing orientation preferences at latitudes below 45° and equator-facing orientation preferences above 45°, similar to preferences previously found for gullies and arcuate ridges in smaller craters. Interrelations between the features suggest they all formed from the mobilization of accumulated ice-rich materials. The dependencies of orientations on latitude suggest a relationship to differences in total solar insolation along the crater walls. Differences in slope of the crater wall, differences in total solar insolation with respect to wall orientation, and variations in topography along the crater rim can explain the variability in morphology of the features studied. The formation and evolution of these landforms may best be explained by multiple cycles of deposition of ice-rich material during periods of high obliquity and subsequent modification and transport of these materials down crater walls.  相似文献   

12.
It is investigated whether conditions for melting can be temporarily created in the upper sub-surface parts of snow/ice-packs on Mars at subzero surface temperatures by means of the solid-state greenhouse effect, as occurs in snow- and ice-covered regions on Earth. The conditions for this possible temporary melting are quantitatively described for bolometric albedo values A = 0.8 and A = 0.2, and with model parameters typical for the thermo-physical conditions at snow/ice sites on the surface of present Mars. It is demonstrated by numerical modelling that there are several sets of parameters which will lead to development of layers of liquid water just below the top surface of snow- and ice-packs on Mars. This at least partial liquefaction occurs repetitively (e.g. diurnally, seasonally), and can in some cases lead to liquid water persisting through the night-time in the summer season. This liquid water can form in sufficient amounts to be relevant for macroscopic physical (rheology, erosion), for chemical, and eventually also for biological processes. The creation of temporary pockets of sub-surface water by this effect requires pre-existing snow or ice cover, and thus is more likely to take place at high latitudes, since the present deposits of snow/ice can mainly be found there. Possible rheologic and related erosion consequences of the appearance of liquid sub-surface water in martian snow/ice-packs are discussed in view of current observations of recent rheologic processes.  相似文献   

13.
A survey of craters in the vicinity of Newton Basin, using high-resolution images from Mars Global Surveyor and Mars Odyssey, was conducted to find and analyze examples of gullies and arcuate ridges and assess their implications for impact crater degradation processes. In the Phaethontis Quadrangle (MC-24), we identified 225 craters that contain these features. Of these, 188 had gullies on some portion of their walls, 118 had arcuate ridges at the bases of the crater walls, and 104 contained both features, typically on the same crater wall. A major result is that the pole-facing or equator-facing orientation of these features is latitude dependent. At latitudes >44° S, equator-facing orientations for both ridges and gullies are prevalent, but at latitudes <44° S, pole-facing orientations are prevalent. The gullies and arcuate ridges typically occupy craters between ∼2 and 30 km in diameter, at elevations between −1 and 3 km. Mars Orbiter Laser Altimeter (MOLA) elevation profiles indicate that most craters with pole-facing arcuate ridges have floors sloping downward from the pole-facing wall, and some of these craters show asymmetry in crater rim heights, with lower pole-facing rims. These patterns suggest viscous flow of ice-rich materials preferentially away from gullied crater walls. Clear associations exist between gullies and arcuate ridges, including (a) geometric congruence between alcoves and sinuous arcs of arcuate ridges and (b) backfilling of arcuate ridges by debris aprons associated with gully systems. Chronologic studies suggest that gullied walls and patterned crater floor deposits have ages corresponding to the last few high obliquity cycles. Our data appear consistent with the hypothesis that these features are associated with periods of ice deposition and subsequent erosion associated with obliquity excursions within the last few tens of millions of years. Arcuate ridges may form from cycles of activity that also involve gully formation, and the ridges may be in part due to mass-wasted, ice-rich material transported downslope from the alcoves, which then interacts with previously emplaced floor deposits. Most observed gullies may be late-stage features in a degradational cycle that may have occurred many times on a given crater wall.  相似文献   

14.
The unusual 80 km diameter Noachian-aged Asimov crater in Noachis Terra (46°S, 5°E) is characterized by extensive Noachian-Hesperian crater fill and a younger superposed annulus of valleys encircling the margins of the crater floor. These valleys provide an opportunity to study the relationships of gully geomorphology as a function of changing slope orientation relative to solar insolation. We found that the level of development of gullies was highly correlated with slope orientation and solar insolation. The largest and most complex gully systems, with the most well-developed fluvial landforms, are restricted to pole-facing slopes. In contrast, gullies on equator-facing slopes are smaller, more poorly developed and integrated, more highly degraded, and contain more impact craters. We used a 1D version of the Laboratoire de Météorologie Dynamique GCM, and slope geometries (orientation and angle), driven by predicted spin-axis/orbital parameter history, to assess the distribution and history of surface temperatures in these valleys during recent geological history. Surface temperatures on pole-facing slopes preferential for water ice accumulation and subsequent melting are predicted to occur as recently as 0.5-2.1 Ma, which is consistent with age estimates of gully activity elsewhere on Mars. In contrast, the 1D model predicts that water ice cannot accumulate on equator-facing slopes until obliquities exceed 45°, suggesting they are unlikely to have been active over the last 5 Ma. The correlation of the temperature predictions and the geological evidence for age differences suggests that there were two phases of gully formation in the last few million years: an older phase in which top-down melting occurred on equator-facing slopes and a younger more robust phase on pole-facing slopes. The similarities of small-scale fluvial erosion features seen in the gullies on Mars and those observed in gullies cut by seasonal and perennial snowmelt in the Antarctic Dry Valleys supports a top-down melting origin for these gullies on Mars.  相似文献   

15.
The mode of formation of gullies on Mars, very young erosional–depositional landforms consisting of an alcove, channel, and fan, is one of the most enigmatic problems in martian geomorphology. Major questions center on their ages, geographic and stratigraphic associations, relation to recent ice ages, and, if formed by flowing water, the sources of the water to cause the observed erosion/deposition. Gasa (35.72°S, 129.45°E), a very fresh 7-km diameter impact crater and its environment, offer a unique opportunity to explore these questions. We show that Gasa crater formed during the most recent glacial epoch (2.1–0.4 Ma), producing secondary crater clusters on top of the latitude-dependent mantle (LDM), interpreted to be a layered ice-dust-rich deposit emplaced during this glacial epoch. High-resolution images of a pre-Gasa impact crater ~100 km northeast of Gasa reveal that portions of the secondary-crater-covered LDM have been removed from pole-facing slopes in crater interiors near Gasa; gullies are preferentially located in these areas and channels feeding alcoves and fans can be seen to emerge from the eroding LDM layers to produce multiple generations of channel incision and fan lobes. We interpret these data to mean that these gullies formed extremely recently in the post-Gasa-impact time-period by melting of the ice-rich LDM. Stratigraphic and topographic relationships are interpreted to mean that under favorable illumination geometry (steep pole-facing slopes) and insolation conditions, melting of the debris-covered ice-rich mantle took place in multiple stages, most likely related to variations in spin-axis/orbital conditions. Closer to Gasa, in the interior of the ~18 km diameter LDM-covered host crater in which Gasa formed, the pole-facing slopes display two generations of gullies. Early, somewhat degraded gullies, have been modified by proximity to Gasa ejecta emplacement, and later, fresh appearing gullies are clearly superposed, cross-cut the earlier phase, and show multiple channels and fans, interpreted to be derived from continued melting of the LDM on steep pole-facing slopes. Thus, we conclude that melting of the ice-rich LDM is a major source of gully activity both pre-Gasa crater and post-Gasa crater formation. The lack of obscuration of Gasa secondary clusters formed on top of the LDM is interpreted to mean that the Gasa impact occurred following emplacement of the last significant LDM layers at these low latitudes, and thus near the end of the ice ages. This interpretation is corroborated by the lack of LDM within Gasa. However, Gasa crater contains a robustly developed set of gullies on its steep, pole-facing slopes, unlike other very young post-LDM craters in the region. How can the gullies inside Gasa form in the absence of an ice-rich LDM that is interpreted to be the source of water for the other adjacent and partly contemporaneous gullies? Analysis of the interior (floor and walls) of the host crater suggest that prior to the Gasa impact, the pole-facing walls and floor were occupied by remnant debris-covered glaciers formed earlier in the Amazonian, which are relatively common in crater interiors in this latitude band. We suggest that the Gasa impact cratering event penetrated into the southern portion of this debris-covered glacier, emplaced ejecta on top of the debris layer covering the ice, and caused extensive melting of the buried ice and flow of water and debris slurries on the host crater floor. Inside Gasa, the impact crater rim crest and wall intersected the debris-covered glacier deposits around the northern, pole-facing part of the Gasa interior. We interpret this exposure of ice-rich debris-covered glacial material in the crater wall to be the source of meltwater that formed the very well-developed gullies along the northern, pole-facing slopes of Gasa crater.  相似文献   

16.
J.S. Levy  J.W. Head  J.L. Dickson 《Icarus》2009,201(1):113-126
We describe the morphology and spatial relationships between composite-wedge polygons and Mars-like gullies (consisting of alcoves, channels, and fans) in the hyper-arid Antarctic Dry Valleys (ADV), as a basis for understanding possible origins for martian gullies that also occur in association with polygonally patterned ground. Gullies in the ADV arise in part from the melting of atmospherically-derived, wind-blown snow trapped in polygon troughs. Snowmelt that yields surface flow can occur during peak southern hemisphere summer daytime insolation conditions. Ice-cemented permafrost provides an impermeable substrate over which meltwater flows, but does not significantly contribute to meltwater generation. Relationships between contraction crack polygons and sedimentary fans at the distal ends of gullies show deposition of fan material in polygon troughs, and dissection of fans by expanding polygon troughs. These observations suggest the continuous presence of meters-thick ice-cemented permafrost beneath ADV gullies. We document strong morphological similarities between gullies and polygons on Mars and those observed in the ADV Inland Mixed microclimate zone. On the basis of this morphological comparison, we propose an analogous, top-down melting model for the initiation and evolution of martian gullies that occur on polygonally-patterned, mantled surfaces.  相似文献   

17.
Recent detection of methane (CH4) on Mars has generated interest in possible biological or geological sources, but the factors responsible for the reported variability are not understood. Here we explore one potential sink that might affect the seasonal cycling of CH4 on Mars - trapping in ices deposited on the surface. Our apparatus consisted of a high-vacuum chamber in which three different Mars ice analogs (water, carbon dioxide, and carbon dioxide clathrate hydrates) were deposited in the presence of CH4 gas. The ices were monitored for spectroscopic evidence of CH4 trapping using transmission Fourier-Transform Infrared (FT-IR) spectroscopy, and during subsequent sublimation of the ice films the vapor composition was measured using mass spectrometry (MS). Trapping of CH4 in water ice was confirmed at deposition temperatures <100 K which is consistent with previous work, thus validating the experimental methods. However, no trapping of CH4 was observed in the ice analogs studied at warmer temperatures (140 K for H2O and CO2 clathrate, 90 K for CO2 snow) with approximately 10 mTorr CH4 in the chamber. From experimental detection limits these results provide an upper limit of 0.02 for the atmosphere/ice trapping ratio of CH4. If it is assumed that the trapping mechanism is linear with CH4 partial pressure and can be extrapolated to Mars, this upper limit would indicate that less than 1% is expected to be trapped from the largest reported CH4 plume, and therefore does not represent a significant sink for CH4.  相似文献   

18.
Springtime low albedo features, called Dark Dune Spots, on the seasonal frost covered dunes on Mars between 77°N and 84°N latitude have been analyzed. Two groups of these spots have been identified: “small” and “large” ones, where large spots have diameters above 4 m, and complex internal structure. From these “large” spots branching seepage-like features emanate and grow on the steep slopes. They show a characteristic sequence of changes: first only wind-blown features emanate from them, while later a bright circular and elevated ring forms, and dark seepage-features start from the spots. These streaks grow with a speed between 0.3 m/day and 7 m/day respectively, first only from the spots, later from all along the dune crest.During this “seepage period” the temperature is between 150 K and 180 K at a 3-9 km spatial resolution scale, indicating that CO2 ice-free parts must be present at the observed dark spots. Around the receding northern seasonal CO2 cap, an annulus of water ice lags behind, which is probably present in the spots too where the CO2 frost has sublimated. Our model estimates show in the present work and in Kereszturi et al. (Kereszturi, A., Möhlmann, D., Berczi, Sz., Ganti, T., Kuti, A., Sik, A., Horvath, A. [2009b]. Icarus 201, 492-503) that the warming driven by solar insolation may produce not only interfacial water, but also bulk brines around the dune grains. The brine can support the movement of liquids and dune grains, enhances the sublimation of CO2 frost, and produce the dark features, as well as liquid modifies the optical properties of the surface.Signs of movement of dune material after the total defrosting of the terrain is also visible but it is uncertain because of the limit of resolution. In our previous work (Kereszturi et al., 2009b) we showed that resembling seepage-like streaks at the southern hemisphere might have been formed by ephemeral interfacial water, as well as these northern features. Such wet environments may have astrobiological importance too.  相似文献   

19.
K.E. Williams  O.B. Toon  C. McKay 《Icarus》2008,196(2):565-577
Christensen [2003. Nature 422, 45-48] suggested that runoff from melting snowpacks on martian slopes might be responsible for carving gullies. He also suggested that snowpacks currently exist on Mars, for example on the walls of Dao Valles (approximately 33° S). Such snowpacks were presumably formed during the last obliquity cycle, which occurred about 70,000 years ago. In this paper we investigate a specific scenario under conditions we believe are favorable for snowpack melting. We model the rate at which a snowpack located at 33° S on a poleward-facing slope sublimates and melts on Mars, as well as the temperature profile within the snowpack. Our model includes the energy and mass balance of a snowpack experiencing diurnal variations in insolation. Our results indicate that a dirty snowpack would quickly sublimate and melt under current martian climate conditions. For example a 1 m thick dusty snowpack of moderate density (550 kg/m3) and albedo (0.39) would sublimate in less than two seasons, producing a small amount of meltwater runoff. Similarly, a cleaner snowpack (albedo 0.53) would disappear in less than 9 seasons. These results suggest that the putative snowpack almost certainly could not have survived for 70,000 years. For most of the parameter settings snowpack interior temperatures at this latitude and slope do reach the melting point. Under most conditions melting occurs when the snowpack is less than 10 cm thick. The modeled snowpack will not melt if it is covered by a 1 cm dust lag. In general, these findings raise interesting possibilities regarding gully formation, but perhaps mostly during a past climate regime when snowfall was expected to have occurred. If there currently are exposed snowpacks on martian mid-latitude slopes, then these ice sheets cannot last long. Hence they might be time variable features on Mars and should be searched for.  相似文献   

20.
Hydrogeological modification of Meteor Crater produced a spectacular set of gullies throughout the interior wall in response to rainwater precipitation, snow melting, and possible groundwater discharge. The crater wall has an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels, and fans. Some of the gullies originate from the rim crest and others from the middle crater wall where a lithologic transition occurs; broad gullies occur along the crater corner radial faults. Deeply incised alcoves are well developed on the soft Coconino Sandstone exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of erosion due to preferential rock breakup from faulting, and groundwater flow/discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing erosion and crater degradation. Channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. Caves exposed on the lower crater level point to percolation of surface runoff and selective discharge through fractures on the crater wall. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when the water table was higher, and groundwater may have seeped from springs on the crater wall. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift. This climate shift and the hydrological modifications observed at Meteor Crater provide insights for landscape sculpturing on Mars during various parts of its history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号