首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results of polarimetric and photometric observations of bright comet C/1995 O1 (Hale-Bopp) obtained at the 0.7 m telescope of Kharkov University Observatory from June 18, 1996 to April 24, 1997. The IHW and HB comet filters were used. The C2 and C3 production rates for Hale-Bopp are more than one order of magnitude larger and the dust production rates are more than two orders of magnitude larger than the Halley ones at comparable distances. Hence, Hale-Bopp was one of the most dusty comets. The average UC-BC and BC-RC colours of the dust were −0.02 and 0.13 mag, respectively. The polarization of comet Hale-Bopp at small phase angles of 4.8–13.0° was in good agreement with the date for comet P1/Halley at the same phase angles in spite of the fact that the heliocentric distances of comments differed nearly twice. However, at intermediate phase angles of 34–49° the polarization of comet Hale-Bopp was significantly larger than the polarization of the other dusty comets. It is the first case of such a large difference found in the continuum polarization of comets. The wavelength dependence of polarization for Hale-Bopp was steeper than for other dusty comets. The observed degree of polarization for the anti-sunward side of the coma was permanently higher than that for the sunward shell side. The polarization phase dependence of Hale-Bopp is discussed and compared with the polarization curves for other dusty comets. The peculiar polarimetric properties of comet Hale-Bopp are most likely caused by an over-abundance of small or/and absorbing dust particles in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Svoreň  J.  Komžík  R.  Neslušan  L.  Živňovský  J. 《Earth, Moon, and Planets》1997,78(1-3):149-154
Photometric observations of comet C/1995 O1 (Hale-Bopp) carried out at the Stará Lesná Observatory since February to April 1997 are analyzed and discussed. Emission band fluxes and continuum fluxes are presented, from which the total numbers of molecules in the columns of the coma encircled by diaphragms are calculated. The production rates are estimated from the conventional Haser model. We found that the photometric exponent of dust contribution two months prior perihelion was n = 5.2. The photometric exponent n of the cometary magnitude solely to the C2 emission alone equals 3.3 and that of CN equals 2.5. These values can be explained by a fact that the maximums of production rates of the gases were reached between March 2and 12 and not at the perihelion as it is valid for dust. These results are compared with the values of 1P/Halley (1986 III) under the similar conditions, obtained with the same method and instrument. C/Hale-Bopp exhibited 4.1 times more molecules radiating the CN-emission than 1P/Halley in the same column of the coma. The continuum flux of C/Hale-Bopp was also very strong. The ratios (to 1P/Halley) are 94:1 (Cont. 484.5) and 74:1 (Cont. 365.0). The cometary colour was the same as that of the Sun. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Polarimetric observations of the light scattered by dust have been carried out at Pic-du-Midi Observatory with the 2 m telescope in June and September–October 1996, and at Haute-Provence Observatory with the 0.80 m telescope in April 1997. They cover a total number of 11 nights and a large (6.9°–47.7°) phase angle range. The spatial resolution allows to underline structures in the coma, as well in the brightness images as in the polarization maps, with a correlation between the regions of bright structures and the regions of higher polarization. A clear difference appears between the sunward and antisunward side, with higher polarization on the antisunward side. The phase angle coverage allows us to obtain a polarimetric phase curve for the whole coma and to compare it with other cometary phase curves. The degree of polarization is higher for Hale-Bopp than for the comets previously observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The H2CO production rates measured in Comet C/1995 O1 (Hale-Bopp) from radio wavelength observations [Biver, N., and 22 colleagues, 2002a. Earth Moon Planets 90, 5-14] showed a steep increase with decreasing heliocentric distance. We studied the heliocentric evolution of the degradation of polyoxymethylene (formaldehyde polymers: (CH2O)n, also called POM) into gaseous H2CO. POM decomposition can indeed explain the H2CO density profile measured in situ by Giotto spacecraft in the coma of Comet 1P/Halley, which is not compatible with direct release from the nucleus [Cottin, H., Bénilan, Y., Gazeau, M.-C., Raulin, F., 2004. Icarus 167, 397-416]. We show that the H2CO production curve measured in Comet C/1995 O1 (Hale-Bopp) can be accurately reproduced by this mechanism with a few percents by mass of solid POM in grains. The steep heliocentric evolution is explained by the thermal degradation of POM at distances less than 3.5 AU. This study demonstrates that refractory organics present in cometary dust can significantly contribute to the composition of the gaseous coma. POM, or POM-like polymers, might be present in cometary grains. Other molecules, like CO and HNC, might also be produced by a similar process.  相似文献   

5.
We report on the reduction and analysis of UVpolarimetric images of CI (λ1657 Å) and dust continuum (2696 Å emissions from C/1995 O1 (Hale-Bopp) taken using the Wide Field Imaging Survey Polarimeter (WISP) sounding rocket on 8 April, 1997. These observations represent the first imaging polarimetry of comets in the UV, and were performed in consort with ground based measurements of gas and dust polarization and distribution. The continuum results show 9% polarization across the image field with a polarization phase angle close to the 129° prediction. Comparison with ground based data implies minimal color dependence for Hale-Bopp in either the degree of polarization and in the position angle. The carbon polarimetry implies that most production occurs in the dense inner coma, and that it leaves that area in thermodynamic equilibrium. Its radial profile further constrains the carbon outflow speed to be sufficient to travel ≥5 × 106 km without photoionization.  相似文献   

6.
Systematic and uniform sets of photometric and polarimetric observations of comet 1P/Halley have been analyzed. The phase dependence of brightness for comet Halley was obtained at phase angles α ranging from 1.4° ≤ α ≤ 65°. The following parameters were determined: the amplitude of the opposition effect Δm = 0.75m ± 0.06m; the half-width at a half-maximum of intensity HWHM = 6.4° ± 1.6°; the linear phase coefficient β = 0.0045 ± 0.0001 mag/deg for α from 30° ≤ α ≤ 65°; and the phase angle at which a nonlinear increase in brightness starts, α opp ≈ 31°. For the first time, the phase-angle dependence was obtained for the color of the dust of comet Halley: the color index BC-RC systematically decreases with increasing phase angle. Such a phase behavior of the dust color can be caused by the decrease in the mean size of dust particles that occurs when the comet approaches the Sun. For comet Halley, the negative polarization branch is almost symmetric; the minimal value of polarization is P min = −1.54% at a phase angle αmin = 10.5°, and the inversion angle is αinv = 21.7°. A comparative analysis of the phase functions of brightness and polarization has been performed for the cometary dust and atmosphereless bodies. Among the latter are low-albedo asteroids of the P and C types (102 Miriam and 47 Aglaja, respectively), as well as Deimos; high-albedo objects, such as the E-type asteroid 64 Angelina and the icy satellite of Jupiter Europa; and the Moon with its intermediate albedo. The possibility of a weak depression in the negative polarization branch of comets Halley and 47P/Ashbrook-Jackson at phase angles smaller than 2° is discussed.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 353–363.Original Russian Text Copyright © 2005 by Rosenbush.  相似文献   

7.
We present an analysis of the observations of the Deep Impact event performed by the OSIRIS narrow angle camera aboard the Rosetta spacecraft over two weeks, in an effort to characterize the cometary dust grains ejected from the nucleus of Comet 9P/Tempel 1. We adopt a Monte Carlo approach to generate calibrated synthetic images, and a linear combination of them is fitted to the calibrated images so as to determine the physical parameters of the dust cloud. Our model considers spherical olivine particles with a density of 3780 kg m−3. It incorporates constraints on the direction of the cone of emission coming from additional images obtained at Pic du Midi observatory, and constraints on the dust terminal velocities coming from the physics of the impact. We find that the slope of the differential dust size distribution of grains with radii <20 μm (β>0.008) is 3.1±0.3, a value typical of cometary dust tails. This shows that there is no evidence in our data for an enhancement in sub-micron particles in the ejecta compared to the typical dust distribution of active comets. We estimate the mass of particles with radii <1.4 μm (β>0.14) to be 1.5±0.2×105 kg. These particles represent more than 80% of the cross-section of the observed dust cloud. The mass carried by larger particles depends whether the gas significantly increases the kinetic energy of the grains in the inner coma; it lies in the range 1-14×106 kg for particles with radii <100 μm (β>0.002). We obtain the distribution of terminal velocities reached by the dust after the dust-gas interaction which is very well constrained between 10 and 600 m s−1. It is characterized by Gaussian with a maximum at about 190 m s−1 and a width at half maximum of 150 m s−1.  相似文献   

8.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

9.
A Monte Carlo model designed to compute both the input and output radiation fields from spherical-shell cometary atmospheres has been developed. The code is an improved version of that by H. Salo (1988, Icarus76, 253-269); it includes the computation of the full Stokes vector and can compute both the input fluxes impinging on the nucleus surface and the output radiation. This will have specific applications for the near-nucleus photometry, polarimetry, and imaging data collection planned in the near future from space probes. After carrying out some validation tests of the code, we consider here the effects of including the full 4×4 scattering matrix in the calculations of the radiative flux impinging on cometary nuclei. As input to the code we used realistic phase matrices derived by fitting the observed behavior of the linear polarization as a function of phase angle. The observed single scattering linear polarization phase curves of comets are fairly well represented by a mixture of magnesium-rich olivine particles and small carbonaceous particles. The input matrix of the code is thus given by the phase matrix for olivine as obtained in the laboratory plus a variable scattering fraction phase matrix for absorbing carbonaceous particles. These fractions are 3.5% for Comet Halley and 6% for Comet Hale-Bopp, the comet with the highest percentage of all those observed.The errors in the total input flux impinging on the nucleus surface caused by neglecting polarization are found to be within 10% for the full range of solar zenith angles. Additional tests on the resulting linear polarization of the light emerging from cometary nuclei in near-nucleus observation conditions at a variety of coma optical thicknesses show that the polarization phase curves do not experience any significant changes for optical thicknesses τ?0.25 and Halley-like surface albedo, except near 90° phase angle.  相似文献   

10.
The discovery of C/1995 O1 (Hale-Bopp) at 7 AU from the Sun provided the first opportunity to follow the activity of a bright comet over a large range of heliocentric distances rh. Production rates of a number of parent molecules and daughter species have been monitored both pre- and postperihelion. CO was found to be the major driver of the activity far from the Sun, surpassed by water within 3 AU whose production rate reached 1031 s−1 at perihelion. Gas production curves obtained for various species show several behaviours with rh. Gas production curves contain important information concerning the physical state of cometary ices, the structure of the nucleus and all the processes taking place inside the nucleus leading to outgassing. They are relevant to the study of several other phenomena such as the sublimation from icy grains, dust mantling or seasonal effects. For some species, such as H2CO or HNC, they permit to constrain their origin in the coma. We discuss models of subsurface gas production in distant comets and predictions of how such a source may vary as the comet moves along its orbit, approaching perihelion and receding again. Features in the observed gas production curves of comet Hale-Bopp are generally interpretable in terms of either subsurface production (typical example: CO at large rh) or free sublimation (typical example: H2O). Possible implications for the vertical stratification of the cometary ices are reviewed, and preference is found for a model with crystallization of amorphous ice close to the nuclear surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Despois  D. 《Earth, Moon, and Planets》1997,79(1-3):103-124
We present here a review of the radio observations of the remarkable comet Hale-Bopp C/1995 O1 in which most major radio astronomical facilities have been involved. These observations started in August 1995, soon after the discovery of the comet (it was then at ∼7 AU from the sun), and well before its perihelion on April 1st, 1997; they are still going on, hopefully up to end of 1998. Extended cartographies have been obtained using multibeam receivers and on-the-fly techniques. High spatial resolution (a few ″) has been achieved with interferometers. Submillimetric observations are playing an increasing role, and high resolution (R ∼ 106−107) spectroscopy of cometary lines is now performed from decimetric to submillimetric wavelengths. The number of species observed at radio wavelengths now reaches ∼28,when it was ∼14 for comet C/1996 B2 Hyakutake. Most of these species are parent molecules. However, ions have been observed for the first time at radio wavelengths, and their velocities measured. Several isotopic species (involving D,13C,34S,15N) have been sought, allowing isotopic enrichment determinations. The abundances of cometary molecules present many similarities and some differences with the abundances of interstellar molecules in regions where grain mantles are believed to be evaporated to the gas phase (hot cores, bipolar flows). They will be discussed for their implications on the origin of cometary ices and of comets themselves. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
An analysis of the spectra from the PUMA dust-impact mass spectrometers onboard the Vega-1 and Vega-2 spacecraft shows that a large number of the observed, unidentified small-amplitude peaks are produced by impacts of very-low-mass (from 10?17 to 10?20 g) particles. The mass flux of very fine particles accounts for a few percent of the total dust mass flux from comet Halley. The elemental composition of the finest cometary particles is identical to the composition of large particles (10?12–10?16 g), in agreement with present views about the nucleus of comet Halley as an aggregate of interstellar dust.  相似文献   

13.
In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about 1 μm. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the −2.6 to −3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.  相似文献   

14.
Many new cometary molecules — both parents and daughters — were detected in the exceptionally productive comet C/1995 O1 (Hale-Bopp).The space distribution of several of these species could be investigated from radio interferometry or from long-slit spectroscopy in the infrared. The distinction between parent species — directly sublimated from nucleus ices — and secondary species — resulting from chemical processing in the coma or produced by a secondary source — is not always clear. It is important to assess whether or not observed minor species (HCOOCH3, HCOOH...) could be synthesized by chemical reactions favoured by the high density of the coma of comet Hale-Bopp. Chemical modelling by Rodgers and Charnley suggests that this is notthe case. CO and H2CO are abundant cometary species which partly come from distributed sources. The nature of these sources is still a mystery. A special case, now well documented, is that of HNC, for which the abundance evolution with heliocentric distance could be observed in comet Hale-Bopp and which was observed in several much less productive comets.  相似文献   

15.
Since many years cometary ions have been observed by the authors and their coworkers in order to study the comet-solar wind interaction. Comets with water production rates ranging from 1028(46P/Wirtanen) to 6 1030molecules s−1(C/1995 O1 Hale-Bopp) have been observed. In this paper we briefly introduce the physics of the comet-solar wind interaction. New observations of comet C/1996 Q1 (Tabur) are presented, where for the first time H2O+and CO+ions have been recorded exactly simultaneously with a two-channel system. They are compared with previous observations of comets C/1989 X1 (Austin), 46P (Wirtanen) and 109P (Swift-Tuttle). We use a new method of Wegmann et al. (1998), based on the MHD scaling law, to determine the water production of comet Tabur from its H2O+column density map and obtain a value of 3.3 1028water molecules s−1. Nonstationary phenomena like tail rays and so-called tail disconnections are very briefly reviewed. A movie of plasma envelopes observed in the light of OH+in comet 1995 O1 (Hale-Bopp) is presented on the attached CD-ROM. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Licandro  J.  Bellot Rubio  L. R.  Casas  R.  Gómez  A.  Kidger  M. R.  Sabalisk  N.  Santos-Sanz  P.  Serra-Ricart  M.  Torres-Chico  R.  Oscoz  A.  Jorda  L.  Denicolo  G. 《Earth, Moon, and Planets》1997,77(3):199-206
Monitoring of the near-nucleus activity of C/1995 O1 (Hale-Bopp) began in Teide Observatory in August 1995. During 1996 the comet was observed on 72 nights between March 26 and November 13. A permanent fan structure was observed towards the north during the whole period of observation. The position angle of the axis of this fan was measured and its variations with time were used to determine the position of the North Pole of the cometary nucleus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
C.M. Lisse  K.E. Kraemer  A. Li 《Icarus》2007,187(1):69-86
Spitzer Infrared Spectrograph observations of the Deep Impact experiment in July 2005 have created a new paradigm for understanding the infrared spectroscopy of primitive solar nebular (PSN) material—the ejecta spectrum is the most detailed ever observed in cometary material. Here we take the composition model for the material excavated from Comet 9P/Tempel 1's interior and successfully apply it to Infrared Space Observatory spectra of material emitted from Comet C/1995 O1 (Hale-Bopp) and the circumstellar material found around the young stellar object HD 100546. Comparison of our results with analyses of the cometary material returned by the Stardust spacecraft from Comet 81P/Wild 2, the in situ Halley flyby measurements, and the Deep Impact data return provides a fundamental cross-check for the spectral decomposition models presented here. We find similar emission signatures due to silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides in the two ISO-observed systems but there are significant differences as well. Compared to Tempel 1, no Fe-rich olivines and few crystalline pyroxenes are found in Hale-Bopp and HD 100546. The YSO also lacks amorphous olivine, while being super-rich in amorphous pyroxene. All three systems show substantial emission due to polycyclic aromatic hydrocarbons. The silicate and PAH material in Hale-Bopp is clearly less processed than in Tempel 1, indicating an earlier age of formation for Hale-Bopp. The observed material around HD 100546 is located ∼13 AU from the central source, and demonstrates an unusual composition due to either a very different, non-solar starting mix of silicates or due to disk material processing during formation of the interior disk cavity and planet(s) in the system.  相似文献   

18.
Near-infrared photometric and polarimetric observations of comet Hale-Bopp (1995 O1) using KONIC (Kiso Observatory Near-Infrared Camera) are reported. Observations were carried out on March 18 UT and April 26 UT 1997, when the heliocentric distances of the comet were 0.94 and 1.02 AU, and the phase angles were 48.5 deg and 32.9 deg, respectively. In the J, H, and K′ bands, we obtained linear polarization of the near-nucleus region of 16.4 ± 1.2, 18.8 ± 1.3, and 15.1 ± 0.9 percent on March 18UT and 7.1 ± 1.1, 8.9 ± 1.0, and 6.9 ± 0.6 percent on April 26, respectively. These values were higher than those observed for 1P/Halley. The maximum polarization was found at H band on both dates. Polarization maps showed higher polarization regions toward the anti-solar direction in the J and H bands. No distinct correlation was found between high polarization regions and bright regions. The projected expansion velocity of the arc structure of the dust jet was 375 ± 35.7 m/s on 17–19 March. The periodicity was found to be 11.1 ± 2.8 hours. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Infrared observations of comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp) benefited from the high spectral resolution and sensitivity of échelle spectrometers now equipping ground-based telescopes and from the availability of the Infrared Space Observatory (ISO). From the ground, several hydrocarbons were unambiguously detected for the first time: CH4, C2H2, C2H6. Water was observed through several of its hot vibrational bands, escaping telluric absorption. CO, HCN, NH3 and OCS were also observed, as well as several radicals. This permitted the evaluation of molecular production rates, of rotational temperature, and — taking advantage of the 1-D imaging of long-slit spectroscopy — of the space distribution of these species. With ISO, carbon dioxide was directly observed for the second time in a comet (after its detection from the Vega probes in P/Halley). The spectrum of water was investigated in detail (several bands of vibration and far-infrared rotational lines), permitting the evaluation of the rotational temperature of water, and of it spin temperature from the ortho-to-para ratio. Water ice was identified in the grains of Hale-Bopp as far as 7 AU from the ground and possibly at 3 AU with ISO. The composition of cometary volatiles appears to be strikingly similar to that of interstellar ices. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Hanner  M. S.  Gehrz  R. D.  Harker  D. E.  Hayward  T. L.  Lynch  D. K.  Mason  C. C.  Russell  R. W.  Williams  D. M.  Wooden  D. H.  Woodward  C. E. 《Earth, Moon, and Planets》1997,79(1-3):247-264
The dust coma of comet Hale-Bopp was observed in the thermal infrared over a wide range in solar heating (R = 4.9–0.9 AU) and over the full wavelength range from 3 μm to 160 μm. Unusual early activity produced an extensive coma containing small warm refractory grains; already at 4.9 AU, the 10 μm silicate emission feature was strong and the color temperature was 30% above the equilibrium blackbody temperature. Near perihelion the high color temperature, strong silicate feature, and high albedo indicated a smaller mean grain size than in other comets. The 8–13 μm spectra revealed a silicate emission feature similar in shape to that seen in P/Halley and several new and long period comets. Detailed spectral structure in the feature was consistent over time and with different instruments; the main peaks occur at 9.3, 10.0 and 11.2 μm. These peaks can be identified with olivine and pyroxene minerals, linking the comet dust to the anhydrous chondritic aggregate interplanetary dust particles. Spectra at 16–40 μm taken with the ISO SWS displayed pronounced emission peaks due to Mg-rich crystalline olivine, consistent with the 11.2 μm peak. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号