首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Gaudin  E. Dehouck  N. Mangold 《Icarus》2011,216(1):257-268
Phyllosilicates on Mars are widespread in the ancient crust suggesting the presence of liquid water at the martian surface and therefore warmer conditions during its early history. However, the role of the ancient climate in the alteration process, which produced these phyllosilicates, remains under debate, because similar mineral assemblages can be produced by hydrothermal alteration at depth. This paper focuses on the origin of coincident outcrops of Fe/Mg bearing phyllosilicates and Al-bearing phyllosilicates, which are observed in several regions of Mars. We performed a detailed mineralogical comparison between a section in Nili Fossae, Mars, and a weathering profile located at Murrin Murrin, Western Australia. The Murrin Murrin profile is developed in Archaean serpentinized peridotite massifs over a ∼40 m thick sequence. It has three alteration zones: the serpentine mineral saprolite is found at the bottom, immediately overlain by Fe/Mg-bearing smectites and then Al-bearing phyllosilicates (kaolinite) mixed with iron hydroxides. This example illustrates how Al-dominated minerals can derive from the alteration of initially Al-poor ultramafic rocks by the intense leaching of Mg2+. This mineralogical sequence is very similar to that detected locally in Nili Fossae by orbital spectroscopy. By analogy, we propose that the mineral assemblage detected on Mars is the result of long-term weathering, and thus could be the best evidence of past weathering as a direct result of a climate significantly warmer than at present.  相似文献   

2.
James L. Gooding 《Icarus》1978,33(3):483-513
Chemical weathering on Mars is examined theoretically from the standpoint of heterogeneous equilibrium between solid mineral phases and gaseous O2, H2O, and CO2 in the Martian atmosphere. Thermochemical calculations are performed in order to identify important gas-solid decomposition reactions involving the major mineral constituents of mafic igneous rocks. Where unavailable in the thermochemical literature, Gibbs free energy and enthalpy of formation are estimated for certain minerals and details of these estimation procedures are given. Partial pressure stability diagrams are presented to show pertinent mineral reaction boundaries at 298 and at 240°K. In the present Martian environment, the thermodynamically stable products of gas-solid weathering of individual minerals at 240°K should be Fe2O3, as hematite or maghemite (from fayalite, magnetite, and Fe-bearing pyroxenes), quartz (from all silicates), calcite (from Ca-bearing pyroxenes and plagioclase), magnesite (from forsterite and Mg-bearing pyroxenes), corundum (from all Al-bearing silicates), Ca-beidellite (from anorthite), and szomolnokite, FeSO4 or FeSO4·H2O (from iron sulfides). Albite, microcline, and apatite should be stable with respect to gas-solid decomposition, suggesting that gas-solid weathering products on Mars may be depleted in Na, K, and P (and, possibly, Cl and F). Certain montmorillonite-type clay minerals are thermodynamically favorable intermediate gas-solid decomposition products of Al-bearing pyroxenes and may be metastable intermediate products of special mineral surface reaction mechanisms. However, the predicted high thermodynamic susceptibility of these clay minerals to subsequent gas-solid decomposition implies that they should ultimately decompose in the present Martian surface environment. Kaolinite is apparently the only clay mineral which should be thermodynamically stable over all ranges of temperature and water vapor abundance in the present environment at the Martian surface. Considering thermodynamic criteria, including possible gas-solid decomposition reactions, it is doubtful that significant amounts of goethite and clay minerals can be currently forming on Mars by mechanisms known to operate to Earth. If major amounts of goethite and clay minerals occur on Mars, they probably owe their existence to formation in an environment characterized by the presence of liquid water or by mechanism possibly unique to Mars. In any case, any goethite or montmorillonite-type clay mineral on Mars must ultimately decompose.  相似文献   

3.
In order to study the stability of martian climate, we constructed a two-dimensional (horizontal-vertical) energy balance model. The long-term CO2 mass exchange process between the atmosphere and CO2 ice caps is investigated with particular attention to the effect of planetary ice distribution on the climate stability. Our model calculation suggests that high atmospheric pressure presumed for past Mars would be unstabilized if H2O ice widely prevailed. As a result, a cold climate state might have been achieved by the condensation of atmospheric CO2 onto ice caps. On the other hand, the low atmospheric pressure, which is buffered by the CO2 ice cap and likely close to the present pressure, would be unstabilized if the CO2 ice albedo decreased. This may have led the climate into a warm state with high atmospheric pressure owing to complete evaporation of CO2 ice cap. Through the albedo feedback mechanisms of H2O and CO2 ices in the atmosphere-ice cap system, Mars may have experienced warm and cold climates episodically in its history.  相似文献   

4.
Abstract— Mössbauer spectra of martian meteorites are currently of great interest due to the Mössbauer spectrometers on the Athena mission MER rovers as well as the European Space Agency Mars Express mission, with its Beagle 2 payload. Also, considerable current effort is being made to understand the oxygen fugacity of martian magmas because of the effect of fO2 on mineral chemistry and crystallization processes. For these 2 reasons, the present study was conceived to acquire room temperature Mössbauer spectra of mineral separates and whole rock samples of 10 SNC meteorites. The results suggest that mineral identification using remote application of this technique will be most useful when the phases present have distinctive parameters arising from Fe in very different coordination polyhedra; for example, pyroxene coexisting with olivine can be discriminated easily, but opx versus cpx cannot. The MER goal of using Mössbauer spectroscopy to quantify the relative amounts of individual mineral species present will be difficult to satisfy if silicates are present because the lack of constraints on wt% FeO contents of individual silicate phases present will make modal calculations impossible. The remote Mössbauer spectroscopy will be most advantageous if the rocks analyzed are predominantly oxides with known stoichiometries, though these phases are not present in the SNCs. As for the detection of martian oxygen fugacity, no evidence exists in the SNC samples studied of a relationship between Fe3+ content and fO2 as calculated by independent methods. Possibly, all of the Fe3+ observed in olivine is the result of dehydrogenation rather than oxidation, and this process may also be the source of all the Fe3+ observed in pyroxene. The observed Fe3+ in pyroxene also likely records an equilibrium between pyroxene and melt at such low fO2 that little or no Fe3+ would be expected.  相似文献   

5.
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite–marcasite‐bearing vug at the ~23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65–1.1 μm) and samples in the laboratory (0.4–2.5 μm), point spectroscopy (0.35–2.5 μm), major element chemistry, and X‐ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat‐lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite‐rich host rock formed gypsum‐bearing red coatings. These results have implications for understanding water–rock interactions and habitabilities at this site and on Mars.  相似文献   

6.
Water is not currently stable in liquid form on the martian surface due to the present mean atmospheric pressure of ~7 mbar and mean global temperature of ~220 K. However, geomorphic features and hydrated mineral assemblages suggest that Mars’ climate was once warmer and liquid water flowed on the surface. These observations may indicate a substantially more massive atmosphere in the past, but there have been few observational constraints on paleoatmospheric pressures. Here we show how the 40Ar/36Ar ratios of trapped gases within martian meteorite ALH 84001 constrain paleoatmospheric pressure on Mars during the Noachian era [~4.56–3.8 billion years (Ga)]. Our model indicates that atmospheric pressures did not exceed ~1.5 bar during the first 400 million years (Ma) of the Noachian era, and were <400 mbar by 4.16 Ga. Such pressures of CO2 are only sufficient to stabilize liquid water on Mars’ surface at low latitudes during seasonally warm periods. Other greenhouse gases like SO2 and water vapor may have played an important role in intermittently stabilizing liquid water at higher latitudes following major volcanic eruptions or impact events.  相似文献   

7.
Clay minerals, although ubiquitous on the ancient terrains of Mars, have not been observed in Martian meteorite Allan Hills (ALH) 84001, which is an orthopyroxenite sample of the early Martian crust with a secondary carbonate assemblage. We used a low‐temperature (20 °C) one‐dimensional (1‐D) transport thermochemical model to investigate the possible aqueous alteration processes that produced the carbonate assemblage of ALH 84001 while avoiding the coprecipitation of clay minerals. We found that the carbonate in ALH 84001 could have been produced in a process, whereby a low‐temperature (~20 °C) fluid, initially equilibrated with the early Martian atmosphere, moved through surficial clay mineral and silica‐rich layers, percolated through the parent rock of the meteorite, and precipitated carbonates (thereby decreasing the partial pressure of CO2) as it evaporated. This finding requires that before encountering the unweathered orthopyroxenite host of ALH 84001, the fluid permeated rock that became weathered during the process. We were able to predict the composition of the clay minerals formed during weathering, which included the dioctahedral smectite nontronite, kaolinite, and chlorite, all of which have been previously detected on Mars. We also calculated host rock replacement in local equilibrium conditions by the hydrated silicate talc, which is typically considered to be a higher temperature hydrothermal phase on Earth, but may have been a common constituent in the formation of Martian soils through pervasive aqueous alteration. Finally, goethite and magnetite were also found to precipitate in the secondary alteration assemblage, the latter associated with the generation of H2. Apparently, despite the limited water–rock interaction that must have led to the formation of the carbonates ~ 3.9 Ga ago, in the vicinity of the ALH 84001 source rocks, clay formation would have been widespread.  相似文献   

8.
Aluminous clay deposits on Mars are recognized from remotely sensed infrared spectral features similar to those of montmorillonite, beidellite, and/or kaolinite. The nature of aluminous clay deposits on Mars is of interest because they likely indicate a different formation mechanism than that of Fe–Mg clays, which are widespread on Mars and likely alteration products of the Fe–Mg-rich basaltic crust. The near-infrared reflectance spectra of aluminous martian clay deposits frequently display characteristics typical of both montmorillonite and kaolinite. The question arises whether such mixed character is due to the existence of end-member phases or to kaolinite–smectite mixed-layer (K–S). The issue is relevant because K–S implies the existence of a smectite precursor that alters into kaolinite, and thus constrains the timing and intensity of the alteration processes that generates it. A mixture of kaolinite and smectite end-members may indicate locally heterogeneous alteration processes, or alternatively, could result from the physical mixing of altered materials of different provenance. A group of natural K–S samples and synthetic kaolinite/smectite mixtures of known proportion, all of which had been thoroughly characterized in previous work using several analytical techniques, were investigated here using near-infrared (NIR) spectroscopy. The NIR spectral features correlate well with their kaolinite–smectite relative proportions. The shape of spectral features attributed to Al–OH in K–S is subtly different from those in physical mixtures of kaolinite and smectite. Based on qualitative comparison, some regions on Mars appear to have spectral signatures similar to K–S. We also applied a quantitative technique using the second derivative of spectra. In this technique, plots of the height of the features at (λ=) 2.21 μm (band present in kaolinite and montmorillonite) and 2.17 μm (kaolinite only) were able to discriminate between K–S and kaolinite–smectite physical mixtures, as they generated correlations with different slopes. The method of discrimination was applied to Mars spectra, which resulted in reasonable evidence for the existence of K–S in Nili Fossae and Mawrth Vallis, and mixtures of end-members in Mawrth Vallis and Leighton Crater. This is one of the first times that evidence for mixed-layer clay minerals, and particularly K–S, on Mars has been gathered. The ability to detect mixed-layer clays is an important step forward for further development of our understanding of the processes that generated clay on Mars.  相似文献   

9.
《Icarus》1987,70(1):153-161
Viking XRF analyses of the Martian regolith are compared with typical igneous rocks of the Earth, the Moon, the eucrite parent asteroid, and especially the shergottites, nakhlites, and Chassigny (SNC) meteorites, which are suspected to be basalts and mafic cumulates from Mars. A striking feature of the Martian regolith, compared to igneous rocks with similar molar (Mg + Fe)/Si ratios, is its extraordinarily low Ca/Si ratio. The regolith's low Ca/Si ratio is probably not a result of simple mixing (isochemical weathering) of SNC-like rocks with other igneous rocks, unless the regolith contains a large component of rock with an improbable combination of extremely low Ca/Si and (Mg + Fe)/Si, and yet low K2O and Zr. Several other models might conceivably account for the low Ca/Si ratio, but I suggest that most of the “missing” Ca was removed from the regolith as Ca-carbonate. Formation of a mass of carbonate equivalent to a global shell 20 m thick would suffice to remove 1000 mbar of CO2 from the Martian atmosphere. Thus, the peculiar Ca/Si ratio of the Martian regolith tends to support the hypothesis that the climate of Mars was once far warmer and wetter than it is today.  相似文献   

10.
Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<−70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100 °C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model.  相似文献   

11.
Lakes on Mars were formed under periglacial to glacial climates. Extreme conditions prevailed including freezing temperatures, low atmospheric pressure, high evaporation/sublimation rates, and liquid water reservoirs locked in aquifers below a thick cryosphere. Although many of the Martian paleolakes display evidence of a short period of activity consistent with these conditions, others display clear evidence of lifetimes ranging from 104 to 105 years. The discovery of young seeping processes in impact craters and pole-facing valley slopes along with young volcanic activity raise questions about the conditions and limitations of liquid water flow and potential lacustrine activity today on Mars. Current climate models show that in today's conditions there exist regions on Mars of sols above the triple point and below boiling point of water that could provide hydrogeological conditions comparable to these of the Antarctic Dry Valley lakes (with the exception of the atmosphere pressure). The locations of the most recent Martian paleolakes are correlated with these regions. Throughout the history of Mars, lakes generated diversified environments, which could have provided potential habitats for life. The recent discovery of young energy sources from volcanism and the potential for liquid water reinforces the possibility of extant life on Mars, and suggests recent ponds and ancient paleolakes as primary targets for rover and sample return missions.  相似文献   

12.
The Dry Valleys of Antarctica are an excellent analog of the environment at the surface of Mars. Soil formation histories involving slow processes of sublimation and migration of water-soluble ions in polar desert environments are characteristic of both Mars and the Dry Valleys. At the present time, the environment in the Dry Valleys is probably the most similar to that in the mid-latitudes on Mars although similar conditions may be found in areas of the polar regions during their respective Mars summers. It is thought that Mars is currently in an interglacial period, and that subsurface water ice is sublimating poleward. Because the Mars sublimation zones seem to be the most similar to the Antarctic Dry Valleys, the Dry Valleys-type Mars climate is migrating towards the poles. Mars has likely undergone drastic obliquity changes, which means that the Dry Valleys analog to Mars may be valid for large parts of Mars, including the polar regions, at different times in geologic history. Dry Valleys soils contain traces of silicate alteration products and secondary salts much like those found in Mars meteorites. A martian origin for some of the meteorite secondary phases has been verified previously; it can be based on the presence of shock effects and other features which could not have formed after the rocks were ejected from Mars, or demonstrable modification of a feature by the passage of the meteorite through Earth's atmosphere (proving the feature to be pre-terrestrial). The martian weathering products provide critical information for deciphering the near-surface history of Mars. Definite martian secondary phases include Ca-carbonate, Ca-sulfate, and Mg-sulfate. These salts are also found in soils from the Dry Valleys of Antarctica. Results of earlier Wright Valley work are consistent with what is now known about Mars based on meteorite and orbital data. Results from recent and current Mars missions support this inference. Aqueous processes are active even in permanently frozen Antarctic Dry Valleys soils, and similar processes are probably also occurring on Mars today, especially at the mid-latitudes. Both weathering products and life in Dry Valleys soils are distributed heterogeneously. Such variations should be taken into account in future studies of martian soils and also in the search for possible life on Mars.  相似文献   

13.
Currently, and throughout much of the Amazonian, the mean annual surface temperatures of Mars are so cold that basal melting does not occur in ice sheets and glaciers and they are cold-based. The documented evidence for extensive and well-developed eskers (sediment-filled former sub-glacial meltwater channels) in the south circumpolar Dorsa Argentea Formation is an indication that basal melting and wet-based glaciation occurred at the South Pole near the Noachian–Hesperian boundary. We employ glacial accumulation and ice-flow models to distinguish between basal melting from bottom-up heat sources (elevated geothermal fluxes) and top-down induced basal melting (elevated atmospheric temperatures warming the ice). We show that under mean annual south polar atmospheric temperatures (?100 °C) simulated in typical Amazonian climate experiments and typical Noachian–Hesperian geothermal heat fluxes (45–65 mW/m2), south polar ice accumulations remain cold-based. In order to produce significant basal melting with these typical geothermal heat fluxes, the mean annual south polar atmospheric temperatures must be raised from today’s temperature at the surface (?100 °C) to the range of ?50 to ?75 °C. This mean annual polar surface atmospheric temperature range implies lower latitude mean annual temperatures that are likely to be below the melting point of water, and thus does not favor a “warm and wet” early Mars. Seasonal temperatures at lower latitudes, however, could range above the melting point of water, perhaps explaining the concurrent development of valley networks and open basin lakes in these areas. This treatment provides an independent estimate of the polar (and non-polar) surface temperatures near the Noachian–Hesperian boundary of Mars history and implies a cold and relatively dry Mars climate, similar to the Antarctic Dry Valleys, where seasonal melting forms transient streams and permanent ice-covered lakes in an otherwise hyperarid, hypothermal climate.  相似文献   

14.
Clay mineral-bearing deposits previously discovered on Mars with near infrared (λ=0.3-5 μm) remote sensing data are of major significance for understanding the aqueous history, geological evolution, and past habitability of Mars. In this study, we analyzed the thermal infrared (λ=6-35 μm) surface properties of the most extensive phyllosilicate deposit on Mars: the Mawrth Vallis area. Clay mineral-bearing units, which in visible images appear to be relatively light-toned, layered bedrock, have thermal inertia values ranging from 150 to 460 J m−2 K−1 s−1/2. This suggests the deposits are composed of a mixture of rock with sand and dust at 100-meter scales. Dark-toned materials that mantle the clay-bearing surfaces have thermal inertia values ranging from 150 to 800, indicating variable degrees of rockiness or induration of this younger sedimentary or pyroclastic unit. Thermal Emission Spectrometer (TES) spectra of the light-toned rocks were analyzed with a number of techniques, but none of the results shows a large phyllosilicate component as has been detected in the same surfaces with near-infrared data. Instead, TES spectra of light-toned surfaces are best modeled by a combination of plagioclase feldspar, high-silica materials (similar to impure opaline silica or felsic glass), and zeolites. We propose three hypotheses for why the clay minerals are not apparent in thermal infrared data, including effects due to surface roughness, sub-pixel mixing of multiple surface temperatures, and low absolute mineral abundances combined with differences in spatial sampling between instruments. Zeolites modeled in TES spectra could be a previously unrecognized component of the alteration assemblage in the phyllosilicate-bearing rocks of the Mawrth Vallis area. TES spectral index mapping suggests that (Fe/Mg)-clays detected with near infrared data correspond to trioctahedral (Fe2+) clay minerals rather than nontronite-like clays. The average mineralogy and geologic context of these complex, interbedded deposits suggests they are either aqueous sedimentary rocks, altered pyroclastic deposits, or a combination of both.  相似文献   

15.
It has been suggested that inclusions of CO2 or CO2 clathrate hydrates may comprise a portion of the polar deposits on Mars. Here we present results from an experimental study in which CO2 molecules were trapped in water ice deposited from CO2/H2O atmospheres at temperatures relevant for the polar regions of Mars. Fourier-Transform Infrared spectroscopy was used to monitor the phase of the condensed ice, and temperature programmed desorption was used to quantify the ratio of species in the generated ice films. Our results show that when H2O ice is deposited at 140-165 K, CO2 is trapped in large quantities, greater than expected based on lower temperature studies in amorphous ice. The trapping occurs at pressures well below the condensation point for pure CO2 ice, and therefore this mechanism may allow for CO2 deposition at the poles during warmer periods. The amount of trapped CO2 varied from 3% to 16% by mass at 160 K, depending on the substrate studied. Substrates studied were a tetrahydrofuran (C4H8O) base clathrate and Fe-montmorillonite clay, an analog for Mars soil. Experimental evidence indicates that the ice structures are likely CO2 clathrate hydrates. These results have implications for the CO2 content, overall composition, and density of the polar deposits on Mars.  相似文献   

16.
Gossan samples collected during a reconnaissance expedition to High Lake in Nunavut, Canada, were analyzed to determine their mineral components and to define parameters for the geochemical environment in which they formed. The gossan represents a natural acid drainage site in an arctic environment that serves as an analogue to the conditions under which sulfate and Fe-oxide possibly formed on Mars. Rock and soil samples were taken from three different outcrops and analyzed using XRD, SEM/EDS and Mössbauer. Two main mineral assemblages were observed. The first assemblage, which was found primarily in samples from the first outcrop, contained chlorite, Fe-phosphates, Fe-oxide and quartz. The second assemblage, which was found at the second and third outcrops, was primarily quartz, mica and jarosite. One sample (G41), containing Fe-oxide, jarosite and gypsum, appears to be transitional between a Fe-oxide dominant assemblage to a jarosite dominant assemblage. Thermodynamic equilibria predicts that the gossan pore water should range from mildly acidic, relatively sulfate-poor (pH 3-6; SO4 <1000 mg l−1) to highly acidic and relatively sulfate-rich (pH 0.5-3; SO4 >3000 mg l−1) for the first and second mineral assemblages, respectively. Kinetic reaction models indicate that the second assemblage replaces the first during evaporation or freezing of water. Compared to acid mine drainage (AMD) sites located in temperate regions, the arctic High Lake gossan lacks diversity in sulfate species and has smaller diagenetic crystal sizes. The smaller crystal size may reflect the slower reaction rates at colder temperatures and the seasonal water saturation. These initial results indicate that the High Lake gossan deposit does record mechanisms for which minerals like hematite, goethite, gypsum and jarosite, which are found on Mars, can form in an environment that involves seasonal water occurrence in a cold climate.  相似文献   

17.
Meridiani Planum is the first officially recognized meteorite find on the surface of Mars. It was discovered at and named after the landing site of the Mars Exploration Rover Opportunity. Based on its composition, it was classified as a IAB complex iron meteorite. Mössbauer spectra obtained by Opportunity are dominated by kamacite (α‐Fe‐Ni) and exhibit a small contribution of ferric oxide. Several small features in the spectra have been neglected to date. To shed more light on these features, five iron meteorite specimens were investigated as analogs to Meridiani Planum with a laboratory Mössbauer setup. Measurements were performed on (1) their metallic bulk, (2) troilite (FeS) inclusions, (3) cohenite ((Fe,Ni,Co)3C) and schreibersite ((Fe,Ni)3P), and (4) corroded rims. In addition to these room‐temperature measurements, a specimen from the Mundrabilla IAB‐ungrouped meteorite was measured at Mars‐equivalent temperatures. Based on these measurements, the features in Meridiani Planum spectra can be explained with the presence of small amounts of schreibersite and/or cohenite and iron oxides. The iron oxides can be attributed to a previously reported coating on Meridiani Planum. Their presence indicates weathering through the interaction of the meteorite with small amounts of water.  相似文献   

18.
Alberto G. Fairén 《Icarus》2010,208(1):165-48
Water on Mars has been explained by invoking controversial and mutually exclusive solutions based on warming the atmosphere with greenhouse gases (the “warm and wet” Mars) or on local thermal energy sources acting in a global freezing climate (the “cold and dry” Mars). Both have critical limitations and none has been definitively accepted as a compelling explanation for the presence of liquid water on Mars. Here is considered the hypothesis that cold, saline and acidic liquid solutions have been stable on the sub-zero surface of Mars for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet. Computer simulations have been developed to analyze the evaporation processes of a hypothetical martian fluid with a composition resulting from the acid weathering of basalt. This model is based on orbiter- and lander-observed surface mineralogy of Mars, and is consistent with the sequence and time of deposition of the different mineralogical units. The hydrological cycle would have been active only in periods of dense atmosphere, as having a minimum atmospheric pressure is essential for water to flow, and relatively high temperatures (over ∼245 K) are required to trigger evaporation and snowfall; minor episodes of limited liquid water on the surface could have occurred at lower temperatures (over ∼225 K). During times with a thin atmosphere and even lesser temperatures (under ∼225 K), only transient liquid water can potentially exist on most of the martian surface. Assuming that surface temperatures have always been maintained below 273 K, Mars can be considered a “cold and wet” planet for a substantial part of its geological history.  相似文献   

19.
Chemical equilibrium calculations on the stability of pure and dissolved graphite and cohenite (Fe3C), several other carbides, and several carbonates have been carried out for a system with solar elemental abundances over a very wide range of temperature and pressure. The calculated abundances of condensed carbon compounds are similar to the observed inventories on Earth and Venus, but fully 10 times smaller than the minimum carbon abundance found in ordinary chondrites. The total carbon content of most iron meteorites is compatible with their origin as a cooling FeNiCSP solution which was saturated with dissolved carbon at the solidus, such as would be produced by melting an ordinary chondrite, not by direct condensation from or equilibrium with the primitive solar nebula. It is argued that the carbon content of Mars need not be appreciably greater than that of the Earth. Material with even lower formation temperatures than Mars, such as the primitive material in the asteroid belt, may retain substantially more carbon as disequilibrium polymeric organic matter, possibly by the Fischer-Tropsch mechanism favored by Anders. Carbonates are not found as equilibrium products in a solar-composition system, and are probably secondary alteration products. CaCO3 might, however, persist in a solar-composition gas at temperatures below 460°K and pressures below 10?6.6 bar. The most stable condensed carbon compounds are found to be graphite, Fe3C, and possibly TiC, all in solid solution in the metal phase.  相似文献   

20.
William K. Hartmann 《Icarus》1974,22(3):301-311
Evidence for past Martian rivers is perhaps the most puzzling and inconsistent present planetary problem, conflicting as it does with current conditions on the planet. This paper emphasizes the similar puzzling evidence that the Earth, as well as Mars, was warmer in the past. Neutrino evidence raises the suggestion that the sun was also “warmer” in the past. A hypothetical cause reconciling all effects is episodic change in solar luminosity on a time-scale of a few hundred million years. This paper outlines requirements and consequences of such a working hypothesis, with pro and con arguments. It is important to try to prove or disprove this hypothesis because it has radical implications for current science. For example, it suggests (1) climates of all the planets have been markedly altered simultaneously by solar changes, sometimes catastrophically; (2) solar changes have been a dominant “forcing function” driving biological speculation and evolution on Earth; (3) the concept of geologic uniformitarianism is somewhat modified by cosmic variables; (4) evolution of water-utilizing intelligent creatures near other stars may be less likely than has been thought, due to catastrophic planetary climate reactions to change in stellar luminosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号