首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

2.
Similarity is found in crater densities on the most heavily cratered surfaces throughout the solar system. This is hypothesized to result from a steady-state “saturation equilibrium” being approached or achieved by cratering processes. This hypothesis conflicts with some recent interpretations. However, it accounts for (1) a similarity in maximum relative crater density, below certain theoretically predicted values, on all heavily cratered surfaces; (2) a leveling off at this same relative density among 100-m scale (secondary?) craters in populations on lunar maria and other sparsely cratered lunar surfaces; (3) the approximate uniformity of maximum relative densities on Saturn satellites (in spite of dramatic variations predicted from nonsaturation models assuming heliocentric impactors). The lunar frontside upland crater population, sometimes described as a well-preserved production function useful for interpreting other planetary surfaces, is found not to be a production function. It was modified by intercrater plains formed (at least partly) by early upland basaltic lava flooding, recently confirmed spectrophotometrically. Consistent with this, counts in “pure uplands” (those lacking intercrater plains) match the proposed saturation equilibrium density. Variations among large (D > 64 km) crater populations are found, but these may involve several hypothesized mechanisms that rapidly obliterate large craters, especially on icy surfaces. Recent models, in which different populations of interplanetary bodies hit different planets, need further appraisal.  相似文献   

3.
M. Grott  F. Sohl 《Icarus》2007,191(1):203-210
Recently, the Cassini spacecraft has detected ongoing geologic activity near the south pole of Saturn's moon Enceladus. In contrast, the satellite's north-polar region is heavily cratered and appears to have been geologically inactive for a long time. We propose that this hemispheric dichotomy is caused by interior dynamics with degree-one convection driving the south-polar activity. We investigate a number of core sizes and internal heating rates for which degree-one convection occurs. The numerical simulations imply that a core radius of less than 100±20 km and an energy input at a rate of 3.0 to 5.5 GW would be required for degree-one convection to prevail. This is within the range of the observed thermal power release near Enceladus' south pole. Provided that Enceladus is not fully differentiated, degree-one convection is found to be a viable mechanism to explain Enceladus' hemispheric dichotomy.  相似文献   

4.
Michael Gurnis 《Icarus》1981,48(1):62-75
Improved crater statistics from varied Martian terrains are compared to lunar crater populations. The distribution functions for the average Martian cratered terrain and the average lunar highlands over the diameter range 8–2000 km are quite similar. The Martian population is less dense by approximately 0.70 from 8 to 256 km diameter and diverges to proportionally lower densities at greater diameters. Crater densities on Martian “pure” terra give a lower limit to the Mars/Moon integrated crater flux of 0.75 since the last stabilization of the respective planetary crusts. The crater population >8 km diameter postdating the Martian northern plains is statistically indistinguishable from that population postdating the lunar maria. Monte Carlo simulations were performed to constrain plausible mechanisms of crater obliteration. The models demonstrate that if the crater density difference between the lunar and Martian terra has been due to resurfacing processes, random intercrater plains formation cannot be the sole process. If plains preferentially form in and obliterate larger craters, then the observed Martian distribution retains its “shape” as the crater density decreases. This result is consistent with the morphology of Martian intercrater plains.  相似文献   

5.
David Pieri 《Icarus》1976,27(1):25-50
The distribution of small channels on Mars has been mapped from Mariner 9 images, at the 1:5 000 000 scale, by the author. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (~1 km) to about 10 km. The greatest density of small band occurs in dark cratered terrain. This dark zone forms a broad subequatorial band around the planet. The observed distribution may be the result of decreased small-channel visibility in bright areas due to obscuration by a high albedo dust or sediment mantle. Crater densities within two small-channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (~100 m) imply a major episode of small-channel formation early in Martian geologic history.  相似文献   

6.
By correlating the 1:25,000,000 geologic map of Mars of Scott and Carr (1977) with 4- to 10-km-diameter crater density data from Mariner 9 images, the average crater density for 23 of the equatorial geologic-geomorphic units on Mars was computed. The correlation of these two data sets was accomplished by digitizing both the crater density data and geologic map at the same scale and by comparing them in a computer. This technique assigns the crater density value found in the corresponding location on the geologic data set to a discrete computer file assigned each of the 23 geologic units. By averaging the crater density values accumulated in each file, an “average” crater density for each geologic unit was obtained. Condit believes these average crater density values are accurate indicators of the relative age of the geologic units considered. The statistical validity of these average values is strongest for the geologic units of the largest areal extent. The relative ages as obtained from the average crater density values for the seven largest geologic units, from youngest to oldest, are: Tharsis volcanic material, 21 ± 4 craters/106km2; smooth plains material, 57 ± 14 craters/106km2; rolling plains material, 66 ± 16 craters/106km2; plains materials, 80 ± 17 craters/106km2; ridged plains material, 128 ± 25 craters/106km2; hilly and cratered material, 137 ± 38 craters/106km2; and cratered plateau material, 138 ± 27 craters/106km2.  相似文献   

7.
A study of lunar impact crater size-distributions   总被引:3,自引:0,他引:3  
Discrepancies in published crater frequency data prompted this study of lunar crater distributions. Effects modifying production size distributions of impact craters such as surface lava flows, blanketing by ejecta, superposition, infilling, and abrasion of craters, mass wasting, and the contribution of secondary and volcanic craters are discussed. The resulting criteria have been applied in the determination of the size distributions of unmodified impact crater populations in selected lunar regions of different ages. The measured cumulative crater frequencies are used to obtain a general calibration size distribution curve by a normalization procedure. It is found that the lunar impact crater size distribution is largely constant in the size range 0.3 km ?D ? 20 km for regions with formation ages between ≈ 3 × 109 yr and ? 4 × 109 yr. A polynomial of 4th degree, valid in the size range 0.8 km ?D ? 20 km, and a polynomial of 7th degree, valid in the size range 0.3 km ?D ? ? 20 km, have been approximated to the logarithm of the cumulative crater frequencyN as a function of the logarithm of crater diameterD. The resulting relationship can be expressed asND α(D) where α is a function depending onD. This relationship allows the comparison of crater frequencies in different size ranges. Exponential relationships with constant α, commonly used in the literature, are shown to inadequately approximate the lunar impact crater size distribution. Deviations of measured size distributions from the calibration distribution are strongly suggestive of the existence of processes having modified the primary impact crater population.  相似文献   

8.
Impact crater saturation equilibrium is a state where a surface is so densely cratered that a new crater cannot form without removing older craters and the observed crater density is in (quasi-)equilibrium. Whether densely cratered surfaces throughout the solar system are saturated for large, kilometer-sized craters has been debated for decades. This work explores if spatial statistics can provide insight if these crater distributions are in saturation equilibrium. The supposition is that crater distributions become more spatially uniform (more evenly spaced) as they reach saturation (Squyres et al. 1997 ). A numerical simulation of crater saturation is combined with observations of cratered terrains throughout the solar system to assess the utility of using spatial statistics. The numerical simulations examine spatial statistics and saturation equilibrium for crater distributions for various input population size-frequency distribution (SFD) slopes, along with a range in the effective crater erasure size, effectiveness of smaller craters erasing the rims of larger craters, and the amount of rim needed to recognize a crater. Simulations show that saturated terrains do become more spatially uniform, and that the degree of uniformity appears to be most dependent on the input SFD slope. When simulation results are compared to observed crater distributions, I find that large, kilometer-sized craters on densely cratered terrains throughout the solar system are likely in saturation equilibrium.  相似文献   

9.
Gerald G. Schaber 《Icarus》1980,43(3):302-333
A prelimanary geologic map, representing 26.5% of the surface of Io, has been compiled using best-resolution (0.5 to 5 km/line pair) Voyager 1 images and (as a base) a preliminary pictorial map of Io. Nine volcanic units are identified, including materials of mountains (1.9% of total area), plains (49.6%), flows (31.1%), cones (0.1%), and crater vents (4.0%), in addition to seven types of structural features. Photogeologic evidence indicates a dominantly silicate composition for the mountain material, which supports heights of at least 9 ± 1 km. Sulfur flows of diverse viscosity and sulfur-silicate mixtures are thought to compose the pervasive plains. Pit crater and shield crater vent wall scarps reach heights of 2 km and layered plains boundary scarps have estimated heights of 150 to 1700 m; such scarps indicate a material with considerable strenght. A cumulative, volcanic crater size-frequency distribution plot has been prepared using 170 mapped Ionian vents with diameters > 14 km; the shape and slope of the curve are like those for impact craters on other bodies in the solar system, attesting to a similar nonrandom distribution to crater diameters and a surplus of small craters. Io's equatorial zone has six times the number of vents per unit area as the south polar zone. No craters of unequivocal impact origin have been identified on Io to date. A total of 151 lineaments and grabens are recognized with four dominant azimuthal trends forming two nearly orthogonal sets spaces 110° apart (N 85° E, N 25° W and N 45° E, N 55°W). The mapped area lies within the longitudinal zone (250 to 323°) of least-abundant SO2 frost, indicating that other sulfurous components dominate the upper surface layers in this area.  相似文献   

10.
Population-density maps of craters in three size ranges (0.6 to 1.2 km, 4 to 10 km, and >20 km in diameter) were compiled for most of Mars from Mariner 9 imagery. These data provide: historical records of the eolian processes (0.6 to 1.2 km craters); stratigraphic, relative, and absolute timescales (4 to 10 km craters); and a history of the early postaccretional evolution of the uplands (> 20 km craters).Based on the distribution of large craters (>20 km diameters), Mars is divisible into two general classes of terrain, densely cratered and very lightly cratered—a division remarkably like the uplands-maria dichotomy of the moon. It is probable that this bimodal character in the density distribution of large craters arose from an abrupt transition in the impact flux rate from an early intense period associated with the tailing off of accretion to an extended quiescent epoch, not from a void in geological activity during much of Mars' history. Radio-isotope studies of Apollo lunar samples show that this transition occurred on the moon in a short time.The intermediate-sized craters (4 to 10 km diameter) and the small-sized craters (0.6 to 1.2 km diameter) appear to be genetically related. The smaller ones are apparently secondary impact craters generated by the former. Most of the craters in the larger of these two size classes appear fresh and uneroded, although many are partly buried by dust mantles. Poleward of the 40° parallels the small fresh craters are notably absent owing to these mantles. The density of small craters is highest in an irregular band centered at 20°S. This band coincides closely with (1) the zone of permanent low-albedo markings; (2) the “wind equator” (the latitude of zero net north or south transport at the surface); and (3) a band that includes a majority of the small dendritic channels. Situated in the southermost part of the equatorial unmantled terrain which extends from about 40°N to 40°S, this band is apparently devoid of even a thin mantle. Because this belt is also coincident with the latitutde of maximum solar insolation (periapsis occurs near summer solstice), we suggest that this band arises from the asymmetrical global wind patterns at the surface and that the band probably follows the latitude of maximum heating which migrates north and south from 25°N to 25°S within the unmantled terrain on a 50,000 year timescale.The population of intermediate-sized craters (4–10 km diameter) appears unaffected by the eolian mantles, at least within the ±45° latitudes. Hence the local density of these craters is probably a valid indicator of the relative age of surfaces generated during the period since the uplands were intensely bombarded and eroded. It now appears that the impact fluxes at Mars and the moon have been roughly the same over the last 4 b.y. because the oldest postaccretional, mare-like surfaces on Mars and the moon display about the same crater density. If so, the nearness of Mars to the asteroid belt has not generated a flux 10 to 25 times greater than the lunar flux. Whereas the lunar maria show a variation of about a factor of three in crater density from the oldest to the youngest major units, analogous surfaces on Mars show a variation between 30 and 50. This implies that periods of active eolian erosion, tectonic evolution, volcanic eruption, and possibly fluvial modification have been scattered throughout Martian history since the formation and degradation of the martian uplands and not confined to small, ancient or recent, epochs. These processes are surely active on the planet today.  相似文献   

11.
Quinn R. Passey 《Icarus》1983,53(1):105-120
High resolution Voyager II images of Enceladus reveal that some regions on its surface are highly cratered; the most heavily cratered surfaces probably date back to a period of heavy bombardment. The forms of many of the craters on Enceladus are similar to those of fresh lunar craters, but many of the craters are much shallower in depth, and the floors of some craters are bowed up. The flattering of craters and bowing up of the floors are indicative of viscous relaxation of the topography. Analysis of the forms of the flattened craters suggests that the viscosity at the top of the lithosphere, in the most heavily cratered regions, is between 1024 and 1025 P. The exact time scale for the collapse of the craters is not known, but probably was between 100 my and 4 gy. The flattened craters are located in distinct zones that are adjacent to zones, of similar age, where craters have not flattened. The zones where flattened craters occur possibly are regions in which the heat flow was (or is) higher than that in the adjacent terrains. Because the temperature at the top of the lithosphere of Enceladus would be less than or equal to that of Ganymede and Callisto, if it is covered by a thick regolith, and because the required viscosity on Enceladus is one to two orders of magnitude less than that for Ganymede and Callisto, it can be concluded that the lithospheric material on Enceladus is different from that of Ganymede and Callisto. Enceladus probably has a mixture of ammonia ice and water ice in the lithosphere, whereas the lithospheres of Ganymede and Callisto are composed primarily of water ice.  相似文献   

12.
Floor-fractured lunar craters   总被引:1,自引:0,他引:1  
Numerous lunar craters (206 examples, mean diameter = 40km) contain pronounced floor rilles (fractures) and evidence for volcanic processes. Seven morphologic classes have been defined according to floor depth and the appearance of the floor, wall, and rim zones. Such craters containing central peaks exhibit peak heights (approximately 1km) comparable to those within well-preserved impact craters but exhibit smaller rim-peak elevation differences (generally 0–1.5km) than those (2.4km) within impact craters. In addition, the morphology, spatial distribution, and floor elevation data reveal a probable genetic association with the maria and suggest that a large number of floor-fractured craters represent pre-mare impact craters whose floors have been lifted tectonically and modified volcanically during the epochs of mare flooding. Floor uplift is envisioned as floating on an intruded sill, and estimates of the buoyed floor thickness are consistent with the inferred depth of brecciation beneath impact craters, a zone interpreted as a trap for the intruding magma. The derived model of crater modification accounts for (1) the large differences in affected crater size and age; (2) the small peak-rim elevation differences; (3) remnant central peaks within mare-flooded craters and ringed plains; (4) ridged and flat-topped rim profiles of heavily modified craters and ringed plains; and (5) the absence of positive gravity anomalies in most floor-fractured craters and some large mare-filled craters. One of the seven morphologic classes, however, displays a significantly smaller mean size, larger distances from the maria, and distinctive morphology relative to the other six classes. The distinctive morphology is attributed, in part, to the relatively small size of the affected crater, but certain members of this class represent a style of volcanism unrelated to the maria - perhaps triggered by the last major basin-forming impacts.  相似文献   

13.
Pre-Cassini images of Saturn's small icy moon Enceladus provided the first indication that this satellite has undergone extensive resurfacing and tectonism. Data returned by the Cassini spacecraft have proven Enceladus to be one of the most geologically dynamic bodies in the Solar System. Given that the diameter of Enceladus is only about 500 km, this is a surprising discovery and has made Enceladus an object of much interest. Determining Enceladus' interior structure is key to understanding its current activity. Here we use the mean density of Enceladus (as determined by the Cassini mission to Saturn), Cassini observations of endogenic activity on Enceladus, and numerical simulations of Enceladus' thermal evolution to infer that this satellite is most likely a differentiated body with a large rock-metal core of radius about 150 to 170 km surrounded by a liquid water-ice shell. With a silicate mass fraction of 50% or more, long-term radiogenic heating alone might melt most of the ice in a homogeneous Enceladus after about 500 Myr assuming an initial accretion temperature of about 200 K, no subsolidus convection of the ice, and either a surface temperature higher than at present or a porous, insulating surface. Short-lived radioactivity, e.g., the decay of 26Al, would melt all of the ice and differentiate Enceladus within a few million years of accretion assuming formation of Enceladus at a propitious time prior to the decay of 26Al. Long-lived radioactivity facilitates tidal heating as a source of energy for differentiation by warming the ice in Enceladus so that tidal deformation can become effective. This could explain the difference between Enceladus and Mimas. Mimas, with only a small rock fraction, has experienced relatively little long-term radiogenic heating; it has remained cold and stiff and less susceptible to tidal heating despite its proximity to Saturn and larger eccentricity than Enceladus. It is shown that the shape of Enceladus is not that of a body in hydrostatic equilibrium at its present orbital location and rotation rate. The present shape could be an equilibrium shape corresponding to a time when Enceladus was closer to Saturn and spinning more rapidly, or more likely, to a time when Enceladus was spinning more rapidly at its present orbital location. A liquid water layer on Enceladus is a possible source for the plume in the south polar region assuming the survivability of such a layer to the present. These results could place Enceladus in a category similar to the large satellites of Jupiter, with the core having a rock-metal composition similar to Io, and with a deep overlying ice shell similar to Europa and Ganymede. Indeed, the moment of inertia factor of a differentiated Enceladus, C/MR2, could be as small as that of Ganymede, about 0.31.  相似文献   

14.
The rayed crater Zunil and interpretations of small impact craters on Mars   总被引:1,自引:0,他引:1  
A 10-km diameter crater named Zunil in the Cerberus Plains of Mars created ∼107 secondary craters 10 to 200 m in diameter. Many of these secondary craters are concentrated in radial streaks that extend up to 1600 km from the primary crater, identical to lunar rays. Most of the larger Zunil secondaries are distinctive in both visible and thermal infrared imaging. MOC images of the secondary craters show sharp rims and bright ejecta and rays, but the craters are shallow and often noncircular, as expected for relatively low-velocity impacts. About 80% of the impact craters superimposed over the youngest surfaces in the Cerberus Plains, such as Athabasca Valles, have the distinctive characteristics of Zunil secondaries. We have not identified any other large (?10 km diameter) impact crater on Mars with such distinctive rays of young secondary craters, so the age of the crater may be less than a few Ma. Zunil formed in the apparently youngest (least cratered) large-scale lava plains on Mars, and may be an excellent example of how spallation of a competent surface layer can produce high-velocity ejecta (Melosh, 1984, Impact ejection, spallation, and the origin of meteorites, Icarus 59, 234-260). It could be the source crater for some of the basaltic shergottites, consistent with their crystallization and ejection ages, composition, and the fact that Zunil produced abundant high-velocity ejecta fragments. A 3D hydrodynamic simulation of the impact event produced 1010 rock fragments ?10 cm diameter, leading to up to 109 secondary craters ?10 m diameter. Nearly all of the simulated secondary craters larger than 50 m are within 800 km of the impact site but the more abundant smaller (10-50 m) craters extend out to 3500 km. If Zunil is representative of large impact events on Mars, then secondaries should be more abundant than primaries at diameters a factor of ∼1000 smaller than that of the largest primary crater that contributed secondaries. As a result, most small craters on Mars could be secondaries. Depth/diameter ratios of 1300 small craters (10-500 m diameter) in Isidis Planitia and Gusev crater have a mean value of 0.08; the freshest of these craters give a ratio of 0.11, identical to that of fresh secondary craters on the Moon (Pike and Wilhelms, 1978, Secondary-impact craters on the Moon: topographic form and geologic process, Lunar Planet. Sci. IX, 907-909) and significantly less than the value of ∼0.2 or more expected for fresh primary craters of this size range. Several observations suggest that the production functions of Hartmann and Neukum (2001, Cratering chronology and the evolution of Mars, Space Sci. Rev. 96, 165-194) predict too many primary craters smaller than a few hundred meters in diameter. Fewer small, high-velocity impacts may explain why there appears to be little impact regolith over Amazonian terrains. Martian terrains dated by small craters could be older than reported in recent publications.  相似文献   

15.
We describe and interpret a series of previously unidentified glacial-like lobes (34-43°N; 107-125°E) that were discovered as part of a survey of large (D > 5 km) impact craters in Utopia Planitia, one of the great northern plains of Mars. The lobes have characteristics that are consistent with a glacial origin. Evidence includes curvilinearity of form, lineations and ridges, and surface textures that are thought to form by the sublimation of near-surface volatiles. The lobes display morphologies that range from wedge-shaped to near-circular to elongate. The flow directions are towards the northern walls in the case of craters with large single lobes, and in all directions in the case of the largest (D > 30 km) craters. Concentric crater fill is also interspersed within craters of our study region, with such craters having much higher filling rates than those with flow lobes. We suggest that the impact crater population in south-west Utopia Planitia demonstrates a spectrum of glacial modifications, from low levels of filling in the case of craters with elongate lobes at one extreme, to concentric crater fill in highly-filled craters at the other.  相似文献   

16.
We find evidence, by both observation and analysis, that primary crater ejecta play an important role in the small crater (less than a few km) populations on the saturnian satellites, and more broadly, on cratered surfaces throughout the Solar System. We measure crater populations in Cassini images of Enceladus, Rhea, and Mimas, focusing on image data with scales less than 500 m/pixel. We use recent updates to crater scaling laws and their constants (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856–875) to estimate the amount of mass ejected in three different velocity ranges: (i) greater than escape velocity, (ii) less than escape velocity and faster than the minimum velocity required to make a secondary crater (vmin), and (iii) velocities less than vmin. Although the vast majority of mass on each satellite is ejected at speeds less than vmin, our calculations demonstrate that the differences in mass available in the other two categories should lead to observable differences in the small crater populations; the predictions are borne out by the measurements we have made to date. In particular, Rhea, Tethys, and Dione have sufficient surface gravities to retain ejecta moving fast enough to make secondary crater populations. The smaller satellites, such as Enceladus but especially Mimas, are expected to have little or no traditional secondary populations because their escape velocities are near the threshold velocity necessary to make a secondary crater. Our work clarifies why the Galilean satellites have extensive secondary crater populations relative to the saturnian satellites. The presence, extent, and sizes of sesquinary craters (craters formed by ejecta that escape into temporary orbits around Saturn before re-impacting the surface, see Dobrovolskis, A.R., Lissauer, J.J. [2004]. Icarus 169, 462–473; Alvarellos, J.L., Zahnle, K.J., Dobrovolskis, A.R., Hamill, P. [2005]. Icarus 178, 104–123; Zahnle, K., Alvarellos, J.L., Dobrovolskis, A.R., Hamill, P. [2008]. Icarus 194, 660–674) is not yet well understood. Finally, our work provides further evidence for a “shallow” size–frequency distribution (slope index of ~2 for a differential power-law) for comets a few kilometers diameter and smaller.  相似文献   

17.
Senkyo is an equatorial plain on Titan filled with dunes and surrounded by hummocky plateaus. During the Titan targeted flyby T61 on August 25, 2009, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed a circular feature, centered at 5.4° N and 341°W, that superimposes the dune fields and a bright plateau. This circular feature, which has been named Paxsi by the International Astronomical Union, is 120±10 km in diameter (measured from the outer edge of the crater rim) and exhibits a central bright area that can be interpreted as the central peak or pit of an impact crater. Although there are only a handful of certain impact craters on Titan, there are two other craters that are of similar size to this newly discovered feature and that have been studied by VIMS: Sinlap (Le Mouélic et al., 2008) and Selk (Soderblom et al., 2010). Sinlap is associated with a large downwind, fan-like feature that may have been formed from an impact plume that rapidly expanded and deposited icy particles onto the surface. Although much of the surrounding region is covered with dunes, the plume region is devoid of dunes. The formation process of Selk also appears to have removed (or covered up) dunes from parts of the adjacent dune-filled terrain. The circular feature on Senkyo is quite different: there is no evidence of an ejecta blanket and the crater itself appears to be infilled with dune material. The rim of the crater appears to be eroded by fluvial processes; at one point the rim is breached. The rim is unusually narrow, which may be due to mass wasting on its inside and subsequent infill by dunes. Based on these observations, we interpret this newly discovered feature to be a more eroded crater than both Sinlap and Selk. Paxsi may have formed during a period when Titan was warmer and more ductile than it is currently.  相似文献   

18.
A. Woronow 《Icarus》1978,34(1):76-88
Through analysis of a large number of Monte Carlo and Markov Chain simulations, a model for determining crater accumulation and crater obliteration histories has been derived. The model generally applies to populations of large craters. It predicts that the following relationships hold for subequilibrium-density crater populations: (1) the more negative the production function's exponent, α, (NDα) the lower the crater density at which the population size-frequency distribution will significantly depart from its production function; (2) the more negative the production function's exponent, the less obliteration a crater population will sustain after a set number of impacts. Application of the model to the lunar highlands implies (1) the production function for the large craters is highly structured, resembling the observed size-frequency distribution and not the function ND?2; (2) even the densely cratered highlands have not attained crater saturation or equilibrium. Direct simulations of the highlands' crater population supports the model's implications.  相似文献   

19.
J.B. Plescia 《Icarus》1983,56(2):255-277
Dione is one of the more geologically complex of Saturn's satellites. Several geologic units have been identified including ancient heavily cratered terrain; two plains units: cratered plains and lightly cratered plains; lobate deposits; crater rim deposits; and bright wispy material. The only structural features observed are a series of troughs which cross portions of the surface and subtle northeast and northwest trending lineaments. The troughs are associated with volcanic deposits and are interpreted to be the vents through which material was erupted. Correlations exist between telescopically observed albedo patterns and the distribution of geologic units.  相似文献   

20.
The depths of 109 impact craters 2–16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S–419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30°S, craters <6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters >6.0 km diameter. We also find that two populations exist for older craters <6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30° S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号