首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Titan, Saturn's largest moon, has a thick nitrogen/methane atmosphere. The temperature and pressure conditions in Titan's atmosphere are such that the methane vapor should condense near the tropopause to form clouds. Several ground-based measurements have observed sparse cloud-like features in Titan's atmosphere, while the Cassini mission to Saturn has provided large scale images of the clouds. However, Titan's cloud formation conditions remain poorly constrained. Heterogeneous nucleation (from the vapor phase onto a solid or liquid aerosol surface) greatly enhances cloud formation relative to homogeneous nucleation. In order to elucidate the cloud formation mechanism near the tropopause, we have performed laboratory measurements of the adsorption of methane and ethane onto solid organic particles (tholins) representative of Titan's photochemical haze. We find that monolayers of methane adsorb onto tholin particles at saturation ratios less than unity. We also find that solid methane nucleates onto the adsorbed methane at a saturation ratio of S=1.07±0.008. This implies that Titan's methane clouds should form easily. This is consistent with recent measurements of the column of methane ruling out excessive methane supersaturation. In addition, we find ethane adsorbs onto tholin particles in a metastable phase prior to nucleation. However, ethane nucleation onto the adsorbed ethane occurs at a relatively high saturation ratio of S=1.36±0.08. These findings are consistent with the recent report of polar ethane clouds in Titan's lower stratosphere.  相似文献   

2.
Titan is the only body, beside the Earth, where liquid is present on the surface. This paper is aimed to show the properties of possible convection in a porous regolith on Titan. In our previous work (Czechowski, L., Kossacki, K.J. [2009]. Icarus 202, 599–607) we showed, that the Rayleigh number Ra can exceed its critical value Rac. Hence, the convective motion of liquid filling pores in the regolith is likely for Titan relevant parameters. In the present work we investigate the properties of finite amplitude convection, i.e. for Ra > Racr. We study the basic properties of the steady state solution, the Nusselt number, the density of the heat flow and the average temperatures. Evolution of the convection is also considered. We conclude that any reasonable thermal model of Titan’s regolith should take into account the possibility of the considered convection. We discuss also possibility of identification of this convection (or its consequences in the form of evaporates) by the Cassini and possible future spacecrafts.  相似文献   

3.
C.M. Anderson  E.F. Young  C.P. McKay 《Icarus》2008,194(2):721-745
We report on the analysis of high spatial resolution visible to near-infrared spectral images of Titan at Ls=240° in November 2000, obtained with the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope as part of program GO-8580. We employ a radiative transfer fractal particle aerosol model with a Bayesian parameter estimation routine that computes Titan's absolute reflectivity per pixel for 122 wavelengths by modeling the vertical distribution of the lower atmosphere haze and tropospheric methane. Analysis of these data suggests that Titan's haze concentration in the lower atmosphere varies in strength with latitude. We find Titan's tropospheric methane profile to be fairly consistent with latitude and longitude, and we find evidence for local areas of a CH4-N2 binary saturation in Titan's troposphere. Our results suggest that a methane and haze profile at one location on Titan would not be representative of global conditions.  相似文献   

4.
5.
Erika L. Barth  Owen B. Toon 《Icarus》2006,182(1):230-250
Theoretical arguments point to and recent observations confirm the existence of clouds in Titan's atmosphere, yet we possess very little data on their particle size, composition and formation mechanism. A time-dependent microphysical model is used to study the evolution of ice clouds in Titan's atmosphere. The model simulates nucleation, condensational growth, evaporation, coagulation, and transport of particles in a column of atmosphere. A variety of cloud compositions are studied, including pure ethane clouds, pure methane clouds, and mixed methane-ethane clouds (all with tholin cores). The abundance of methane cloud particles may be limited by the number of ethane coated tholin nuclei rather than the number of tholins with hydrocarbon coatings. However, even the condensation of methane onto these relatively sparse ethane/tholin cloud particles is sufficient to keep the methane close to saturation. Typical methane supersaturations are of order 0.06 on the average. For simulations which take into account recent lab measurements indicating it is relatively easy for methane to nucleate onto tholin particles without an ethane-layer present, the three types of clouds (methane, ethane, and mixed) exist simultaneously. Pure methane clouds are the most abundant cloud type and serve to lower the supersaturation to about 0.04. Cloud production does not require a continuous surface source of methane. However, clouds produced by mean motions are not the visible methane clouds seen in recent Cassini and ground-based observations. Ethane clouds in the troposphere almost instantaneously nucleate methane to form mixed clouds. However, a thin ethane ‘haze’ remains just above the tropopause for some scenarios and the mixed clouds at the tropopause remain ?50% ethane by mass. Also, evaporation of methane from the mixed cloud particles near the surface leaves a thicker layer of ethane cloud particles at ∼10 km. Nevertheless, the precipitation rate of methane to Titan's surface is between 0.001 and 0.5 cm/terrestrial-year, depending on various initial conditions such as critical saturation, size and abundance of cloud condensation nuclei, surface sources and eddy diffusion.  相似文献   

6.
We have acquired resolved images of Titan with the adaptive optics systems PUEO/KIR at the CFHT (Hawaii) and NAOS/CONICA at the VLT (Chile). We report here on images and maps (when data at several orbital phases are available) of Titan's surface from observations taken during the last 4 years (2001-2004) in all the methane windows between 1 and 2.5 μm (namely, at 1.08, 1.28, 1.6, and 2 μm). We present the only complete maps of Titan currently available at 1.3 μm, a spectral window where Titan appears particularly bright in spectroscopy, with a resolution of about 200 km at best on the ground. Our surface maps show the bright and dark regions sharing Titan's landscape with as much detail as possible from the ground and with high contrast in most cases. From the information gathered by comparing the maps at different wavelengths we derive constraints on the ground's composition. Our results could complete/optimize the return of the Cassini-Huygens mission.  相似文献   

7.
Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and converted to heavier hydrocarbons irreversibly on a relatively short timescale of approximately 10-100 million years. Without the warming provided by CH4-generated hydrocarbon hazes in the stratosphere and the pressure induced opacity in the infrared, particularly by CH4-N2 and H2-N2 collisions in the troposphere, the atmosphere could be gradually reduced to as low as tens of millibar pressure. An understanding of the source-sink cycle of methane is thus crucial to the evolutionary history of Titan and its atmosphere. In this paper we propose that a complex photochemical-meteorological-hydrogeochemical cycle of methane operates on Titan. We further suggest that although photochemistry leads to the loss of methane from the atmosphere, conversion to a global ocean of ethane is unlikely. The behavior of methane in the troposphere and the surface, as measured by the Cassini-Huygens gas chromatograph mass spectrometer, together with evidence of cryovolcanism reported by the Cassini visual and infrared mapping spectrometer, represents a “methalogical” cycle on Titan, somewhat akin to the hydrological cycle on Earth. In the absence of net loss to the interior, it would represent a closed cycle. However, a source is still needed to replenish the methane lost to photolysis. A hydrogeochemical source deep in the interior of Titan holds promise. It is well known that in serpentinization, hydration of ultramafic silicates in terrestrial oceans produces H2(aq), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas. Appropriate geological, thermal, and pressure conditions could have existed in and below Titan's purported water-ammonia ocean for “low-temperature” serpentinization to occur in Titan's accretionary heating phase. On the other hand, impacts could trigger the process at high temperatures. In either instance, storage of methane as a stable clathrate-hydrate in Titan's interior for later release to the atmosphere is quite plausible. There is also some likelihood that the production of methane on Titan by serpentinization is a gradual and continuous on-going process.  相似文献   

8.
The Huygens Probe detected dendritic drainage-like features, methane clouds and a high surface relative humidity (∼50%) on Titan in the vicinity of its landing site [Tomasko, M.G., and 39 colleagues, 2005. Nature 438, 765-778; Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], suggesting sources of methane that replenish this gas against photo- and charged-particle chemical loss on short (10-100) million year timescales [Atreya, S.K., Adams, E.Y., Niemann, H.B., Demick-Montelara, J.E., Owen, T.C., Fulchignoni, M., Ferri, F., Wilson, E.H., 2006. Planet. Space Sci. In press]. On the other hand, Cassini Orbiter remote sensing shows dry and even desert-like landscapes with dunes [Lorenz, R.D., and 39 colleagues, 2006a. Science 312, 724-727], some areas worked by fluvial erosion, but no large-scale bodies of liquid [Elachi, C., and 34 colleagues, 2005. Science 308, 970-974]. Either the atmospheric methane relative humidity is declining in a steady fashion over time, or the sources that maintain the relative humidity are geographically restricted, small, or hidden within the crust itself. In this paper we explore the hypothesis that the present-day methane relative humidity is maintained entirely by lakes that cover a small part of the surface area of Titan. We calculate the required minimum surface area coverage of such lakes, assess the stabilizing influence of ethane, and the implications for moist convection in the atmosphere. We show that, under Titan's surface conditions, methane evaporates rapidly enough that shorelines of any existing lakes could potentially migrate by several hundred m to tens of km per year, rates that could be detected by the Cassini orbiter. We furthermore show that the high relative humidity of methane in Titan's lower atmosphere could be maintained by evaporation from lakes covering only 0.002-0.02 of the whole surface.  相似文献   

9.
Although methane is the dominant absorber in Titan's reflection spectrum, the amount of methane in the atmosphere has only been determined to an order of magnitude. We analyzed spectra from the Space Telescope Imaging Spectrograph, looking at both a bright surface region (700-km radius) and a dark surface region. The difference between the spectra of the two regions is attributed to light that has scattered off the surface, and therefore made a round-trip through all of Titan's methane. Considering only absorption, the shape of the difference spectrum provides an upper limit on methane abundance of 3.5 km-am. Modeling the multiple scattering in the atmosphere further constrains the methane abundance to 2.63±0.17 km-am. In the absence of supersaturation and with a simplified methane vertical profile, this corresponds to a surface methane-mole fraction near 3.8% and a relative humidity of 0.32. With supersaturation near the tropopause, the surface methane mole fraction could be as low as 3%.  相似文献   

10.
Heating occurs in Titan's stratosphere from the absorption of incident solar radiation by methane and aerosols. About 10% of the incident sunlight reaches Titan's surface and causes heating there. Thermal radiation redistributes heat within the atmosphere and cools to space. The resulting vertical temperature profile is stable against convection and a state of radiative equilibrium is established. Equating theoretical and observed temperature profiles enables an empirical determination of the vertical distribution of thermal opacity. A uniformly mixed aerosol is responsible for most of the opacity in the stratosphere, whereas collision-induced absorption of gases is the main contributor in the troposphere. Occasional clouds are observed in the troposphere in spite of the large degrees of methane supersaturation found there. Photochemistry converts CH4 and N2 into more complex hydrocarbons and nitriles in the stratosphere and above. Thin ice clouds of trace organics are formed in the winter and early spring polar regions of the lower stratosphere. Precipitating ice particles serve as condensation sites for supersaturated methane vapor in the troposphere below, resulting in lowered methane degrees of supersaturation in the polar regions. Latitudinal variations of stratospheric temperature are seasonal, and lag instantaneous response to solar irradiation by about one season for two reasons: (1) an actual instantaneous thermal response to a latitudinal distribution of absorbing gases, themselves out of phase with the sun by about one season, and (2) a sluggish dynamical response of the stratosphere to the latitudinal transport of angular momentum, induced by radiative heating and cooling. Mean vertical abundances of stratospheric organics and aerosols are determined primarily by atmospheric chemistry and condensation, whereas latitudinal distributions are more influenced by meridional circulations. In addition to preferential scavenging by precipitating ice particles from above, the polar depletion of supersaturated methane results from periodic scavenging by short-lived tropospheric clouds, coupled with the steady poleward march of the continuously drying atmosphere due to meridional transport.  相似文献   

11.
We model the thermal evolution of a subsurface ocean of aqueous ammonium sulfate inside Titan using a parameterized convection scheme. The cooling and crystallization of such an ocean depends on its heat flux balance, and is governed by the pressure-dependent melting temperatures at the top and bottom of the ocean. Using recent observations and previous experimental data, we present a nominal model which predicts the thickness of the ocean throughout the evolution of Titan; after 4.5 Ga we expect an aqueous ammonium sulfate ocean 56 km thick, overlain by a thick (176 km) heterogeneous crust of methane clathrate, ice I and ammonium sulfate. Underplating of the crust by ice I will give rise to compositional diapirs that are capable of rising through the crust and providing a mechanism for cryovolcanism at the surface. We have conducted a parameter space survey to account for possible variations in the nominal model, and find that for a wide range of plausible conditions, an ocean of aqueous ammonium sulfate can survive to the present day, which is consistent with the recent observations of Titan's spin state from Cassini radar data [Lorenz, R.D., Stiles, B.W., Kirk, R.L., Allison, M.D., del Marmo, P.P., Iess, L., Lunine, J.I., Ostro, S.J., Hensley, S., 2008. Science 319, 1649-1651].  相似文献   

12.
13.
Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.  相似文献   

14.
We analyze recently published nitrogen and hydrogen isotopic data to constrain the initial volatile abundances on Saturn's giant moon Titan. The nitrogen data are interpreted in terms of a model of non-thermal escape processes that lead to enhancement in the heavier isotope. We show that these data do not, in fact, strongly constrain the abundance of nitrogen present in Titan's early atmosphere, and that a wide range of initial atmospheric masses (all larger than the present value) can yield the measured enhancement. The enrichment in deuterated methane is now much better determined than it was when Pinto et al. (1986. Nature 319, 388-390) first proposed a photochemical mechanism to preferentially retain the deuterium. We develop a simple linear theory to provide a more reliable estimate of the relative dissociation rates of normal and deuterated methane. We utilize the improved data and models to compute initial methane reservoirs consistent with the observed enhancement. The result of this analysis agrees with an independent estimate for the initial methane abundance based solely on the present-day rate of photolysis and an assumption of steady state. This consistency in reservoir size is necessary but not sufficient to infer that methane photolysis has proceeded steadily over the age of the solar system to produce large quantities of less volatile organics. Our analysis indicates an epoch of early atmospheric escape of nitrogen, followed by a later addition of methane by outgassing from the interior. The results also suggest that Titan's volatile inventory came in part or largely from a circum-Saturnian disk of material more reducing than the surrounding solar nebula. Many of the ambiguities inherent in the present analysis can be resolved through Cassini-Huygens data and a program of laboratory studies on isotopic and molecular exchange processes. The value of, and interest in, the Cassini-Huygens data can be greatly enhanced if such a program were undertaken prior to the prime phase of the mission.  相似文献   

15.
Titan, the largest satellite of Saturn, has a thick nitrogen/methane atmosphere with a thick global organic haze. A laboratory analogue of Titan's haze, called tholin, was formed in an inductively coupled plasma from nitrogen/methane=90/10 gas mixture at various pressures ranging from 13 to 2300 Pa. Chemical and optical properties of the resulting tholin depend on the deposition pressure in cold plasma. Structural analyses by IR and UV/VIS spectroscopy, microprobe laser desorption/ionization mass spectrometry, and Raman spectroscopy suggest that larger amounts of aromatic ring structures with larger cluster size are formed at lower pressures (13 and 26 Pa) than at higher pressures (160 and 2300 Pa). Nitrogen is more likely to incorporate into carbon networks in tholins formed at lower pressures, while nitrogen is bonded as terminal groups at higher pressures. Elemental analysis reveals that the carbon/nitrogen ratio in tholins increases from 1.5-2 at lower pressures to 3 at 2300 Pa. The increase in the aromatic compounds and the decrease in C/N ratio in tholin formed at low pressures indicate the presence of the nitrogen-containing polycyclic aromatic compounds in tholin formed at low pressures. Tholin formed at high pressure (2300 Pa) consists of a polymer-like branched chain structure terminated with CH3, NH2, and CN with few aromatic compounds. Reddish-brown tholin films formed at low pressures (13-26 Pa) shows stronger absorptions (almost 10 times larger k-value) in the UV/VIS range than the yellowish tholin films formed at high pressures (160 and 2300 Pa). The tholins formed at low pressures may be better representations of Titan's haze than those formed at high pressures, because the optical properties of tholin formed at low pressures agree well with that of Khare et al. (1984a, Icarus 60, 127-137), which have been shown to account for Titan's observed geometric albedo. Thus, the nitrogen-containing polycyclic aromatic compounds we find in tholin formed at low pressure may be present in Titan's haze. These aromatic compounds may have a significant influence on the thermal structure and complex organic chemistry in Titan's atmosphere, because they are efficient absorbers of UV radiation and efficient charge exchange intermediaries. Our results also indicate that the haze layers at various altitudes might have different chemical and optical properties.  相似文献   

16.
We present in this work an application to Titan, Saturn's satellite of the transposable planetary general circulation model (PGCM), which was developed based on the second version of the Community Atmosphere Model (CAM2) of NCAR. The PGCM is a spectral model with the sigma coordinate (where σ is the pressure normalized to its surface value, commonly used as a vertical coordinate in general circulation models) and is integrated in time using the semi-implicit leapfrog scheme. The horizontal resolutions of the model are based on 128 points in longitude and 64 points in latitude, and the vertical discretization is of 26 σ-levels. In Titan's conditions we apply the PGCM to simulate Titan's general circulation in this study. Some interesting phenomena such as equatorial superrotation, vertical meridional circulations, vertical structure, etc. are well replicated. This demonstrates the good performance and applicability to Titan of our model and provides a foundation for further studies on simulating and understanding Titan's general circulation and its variability by coupling the physical processes. The features of Titan's circulation under the condition of the Earth's rotation rate are also investigated. The results suggest that different rotation rates can significantly affect the dynamical structure of Titan's circulation.  相似文献   

17.
Titan's bulk density along with Solar System formation models indicates considerable water as well as silicates as its major constituents. This satellite's dense atmosphere of nitrogen with methane is unique. Deposits or even oceans of organic compounds have been suggested to exist on Titan's solid surface due to UV-induced photochemistry in the atmosphere. Thus, the composition of the surface is a major piece of evidence needed to determine Titan's history. However, studies of the surface are hindered by the thick, absorbing, hazy and in some places cloudy atmosphere. Ground-based telescope investigations of the integral disk of Titan attempted to observe the surface albedo in spectral windows between methane absorptions by calculating and removing the haze effects. Their results were reported to be consistent with water ice on the surface that is contaminated with a small amount of dark material, perhaps organic material like tholin. We analyze here the recent Cassini Mission's visual and infrared mapping spectrometer (VIMS) observations that resolve regions on Titan. VIMS is able to see surface features and shows that there are spectral and therefore likely compositional units. By several methods, spectral albedo estimates within methane absorption windows between 0.75 and 5 μm were obtained for different surface units using VIMS image cubes from the Cassini-Huygens Titan Ta encounter. Of the spots studied, there appears to be two compositional classes present that are associated with the lower albedo and the higher albedo materials, with some variety among the brighter regions. These were compared with spectra of several different candidate materials. Our results show that the spectrum of water ice contaminated with a darker material matches the reflectance of the lower albedo Titan regions if the spectral slope from 2.71 to 2.79 μm in the poorly understood 2.8-μm methane window is ignored. The spectra for brighter regions are not matched by the spectrum of water ice or unoxidized tholin, in pure form or in mixtures with sufficient ice or tholin present to allow the water ice or tholin spectral features to be discerned. We find that the 2.8-μm methane absorption window is complex and seems to consist of two weak subwindows at 2.7 and 2.8 μm that have unknown opacities. A ratio image at these two wavelengths reveals an anomalous region on Titan that has a reflectance unlike any material so far identified, but it is unclear how much the reflectances in these two subwindows pertain to the surface.  相似文献   

18.
Nearly all adaptive optics images of Titan taken between December 2001 and November 2004 showed tropospheric clouds located within 30° of the south pole. We report here on a dissipation of Titan's south polar clouds observed in twenty-nine Keck and Gemini images taken between December 2004 and April 2005. The near complete lack of south polar cloud activity during this time, and subsequent resurgence months later at generally higher latitudes, may be the beginning of seasonal change in Titan's weather. The ∼5 month decrease in cloud activity may also have been caused by methane rainout from a large cloud event in October 2004. Understanding the seasonal evolution of Titan's clouds, and of any precipitation associated with them, is essential for interpreting the geological observations of fluid flow features observed over a wide range of Titan latitudes with the Cassini/Huygens spacecraft.  相似文献   

19.
The mechanisms that can induce short term variations of methane in the Martian atmosphere, and thus explain the observations currently available, are yet to be discovered. Seasonal exchange with the regolith, caused by reversible adsorption, is expected to induce both spatial and time variabilities without the need for additional sources and sinks, thus avoiding difficulties raised by other scenarios. However, a comprehensive view of the role of reversible exchanges with the subsurface was still lacking. We have investigated the efficiency of such a process by implementing a coupled subsurface–atmosphere transport module in a Global Climate Model, taking into account both the thermodynamics and the kinetics of the adsorption process. It is based on recent experimental data on the adsorption of methane. We show that even with an optimistic set of parameters, and although the regolith can potentially take up a large fraction of the atmospheric reservoir, the seasonal variability induced by an exchange with the subsurface is very limited. If a local plume is detected, however, the apparent decay rate of methane in the atmosphere can be affected by the regolith uptake. This study could be extended to any trace gas reacting with the regolith, to help interpret future in situ or orbital measurements.  相似文献   

20.
Recent observations suggest methane in the martian atmosphere is variable on short spatial and temporal scales. However, to explain the variability by loss reactions requires production rates much larger than expected. Here, we report results of laboratory studies of methane adsorption onto JSC-Mars-1, a martian soil simulant, and suggest that this process could explain the observations. Uptake coefficient (γ) values were measured as a function of temperature using a high-vacuum Knudsen cell able to simulate martian temperature and pressure conditions. Values of γ were measured from 115 to 135 K, and the data were extrapolated to higher temperatures with more relevance to Mars. Adsorptive uptake was found to increase at lower temperatures and larger methane partial pressures. Although only sub-monolayer methane surface coverage is likely to exist under martian conditions, a very large mineral surface area is available for adsorption as atmospheric methane can diffuse meters into the regolith. As a result, significant methane may be temporarily lost to the regolith on a seasonal time scale. As this weak adsorption is fully reversible, methane will be re-released into the atmosphere when surface and subsurface temperatures rise and so no net loss of methane occurs. Heterogeneous interaction of methane with martian soil grains is the only process proposed thus far which contains both rapid methane loss and rapid methane production mechanisms and is thus fully consistent with the reported variability of methane on Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号