首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Hamelin et al. criticize some conclusions of our paper [Morente, J.A., Portí, J.A., Salinas, A., Navarro, E.A., 2008. Icarus 195, 802-811]. This rebuttal is our response to their criticism. In our view, their comments are contradictory and not based on scientific argument. Our paper presents a comprehensible methodology for extracting weak resonances from the late-time response of systems with high losses and our conclusions are derived from and supported by this methodology, which was first checked using an analytical function and later with the data from a numerical simulation of Titan’s atmosphere. Conversely, the Comment of Hamelin et al. does not contain any mathematical proof, either supporting their statements or invalidating our analysis procedure.  相似文献   

2.
《Planetary and Space Science》1999,47(10-11):1355-1369
Energetic Neutral Atoms (ENAs) are formed when singly charged magnetospheric ions undergo charge exchange collisions with exospheric neutral atoms. The energy of the incident ions is almost entirely transferred to the charge exchange produced ENAs, which then propagate along nearly rectilinear ballistic trajectories. Thus the ENAs can be used like photons in order to form an image of the energetic ion distribution. The Cassini spacecraft is equipped with the Ion and Neutral Camera (INCA), a magnetospheric imaging ENA camera which is part of MIMI (Magnetospheric Imaging Instrument) [Mitchell, D.G., Cheng, A.F., Krimigis, S.M., Keath, E.P., Jaskulek, S.E., Mauk, B.H., McEntire, R.W., Roelof, E.C., Williams, D.J., Hsieh, K.C., Drake, V.A., 1993. INCA: the ion neutral camera for energetic neutral imaging of the Saturnian magnetosphere. Opt. Eng. 32, 3096; Krimigis, S.M., Mitchell, D.G., Hamilton, D.C. et al., 1998. Magnetospheric Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan, Space Sci. Rev., submitted]. In this paper we study the production of energetic neutral atoms resulting from the interaction of Titan’s inner exosphere with Saturn’s magnetosphere. We then simulate the ENA images of this interaction, that we anticipate to get from INCA, by using a 3-D model of the ENA production. This first necessitated the development of a model for the altitude density profile and composition of the Titan exosphere [Amsif, A., Dandouras, J., Roelof, E.C., 1997. Modeling the production and the imaging of energetic neutral atoms from Titan’s exosphere. J. Geophys. Res. 102, 22,169]. We thus used the Chamberlain model [Chamberlain, J.W., 1963. Planetary corona and atmospheric evaporation. Planet. Space Sci. 11, 901] and included the five major species: H, H2, N, N2 and CH4. The density and composition profiles obtained were then used to calculate the ENA production, considering a proton spectrum measured by Voyager in the Saturnian magnetosphere as the parent ion population. In order to generate simulated ENA images of the interaction of Titan’s exosphere with Saturn’s magnetosphere, we developed a model based on 3-D trajectory tracing techniques for the parent ions. Since the parent ions (E>10 keV) have gyroradii comparable with the Titan diameter, the screening effect of Titan on the parent ion population was also taken into account. This effect results in highly anisotropic ion distributions, which produce ‘shadows’ in the ENA fluxes, in certain directions. These shadows depend on the ENA energy and on the relative geometry of Titan, the magnetic field and the Cassini spacecraft position. The INCA images will thus enable us to remotely sense the ion fluxes and spectra. They are also expected to give information about the magnetic field in the vicinity of Titan and thus to Titan’s interaction with the magnetosphere of Saturn.  相似文献   

3.
4.
C.M. Lisse 《Icarus》2008,195(2):941-944
This response is to address the comments made by Drs. J. Crovisier and D. Bockelee-Morvan concerning the spectral analysis of Lisse et al. [Lisse, C.M., Kraemer, K.E., Nuth, J.A., Li, A., Joswiak, D., 2007. Icarus 187, 69-86] of the mid-IR ISO SWS spectrum of Comet Hale-Bopp 1995 O1 taken on October 6, 1996, and to support the conclusions made in Lisse et al. concerning the positive detection of PAHs in this comet. We also present some additional information determined from the Deep Impact and STARDUST missions, demonstrating the presence of PAHs in other comets, to support the plausibility of the Hale-Bopp PAH detection.  相似文献   

5.
M. Podolak  E. Podolak 《Icarus》1980,43(1):73-84
We present a simple model for the formation and growth of photochemical aerosols in the atmosphere of Titan. We show that, in general, an optically thick layer of particles in the size range required by models of Titan cannot be obtained at pressures less than about 2 mbar. Since the thin model of Titan's atmosphere requires that the inversion not extend below pressures of 0.11 mbar (D. M. Hunten and J. J. Caldwell, 1978, preprint), it seems to be ruled out by the calculations.  相似文献   

6.
The near-infrared spectrum of Titan, Saturn's largest moon and one of the Cassini/Huygens' space mission primary targets, covers the 0.8 to 5 micron region in which it shows several weak CH4 absorption regions, and in particular one centered near 2.75 micron. Due to the interference of telluric absorption, only part of this window region (2.9-3.1 μm) has previously been observed from the ground [Noll, K.S., Geballe, T.R., Knacke, R., Pendleton, F., Yvonne, J., 1996. Icarus 124, 625-631; Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395, 575-578; Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., Rannou, P., 2003. Science 300, 628-630; Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42]. We report here on the first spectroscopic observations of Titan covering the whole 2.4-4.9 μm region by two instruments on board the Infrared Space Observatory (ISO) in 1997. These observations show the 2.75-μm window in its complete extent for the first time. In this study we have also used a high-resolution Titan spectrum in the 2.9-3.6 μm region taken with the Keck [Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42; Kim, S.J., Geballe, T.R., Noll, K.S., Courtin, R., 2005. Icarus 173, 522-532] to infer information on the atmospheric parameters (haze extinction, single scattering albedo, methane abundance, etc.) by fitting the methane bands with a detailed microphysical model of Titan's atmosphere (updated from Rannou, P., McKay, C.P., Lorenz, R.D., 2003. Planet. Space Sci. 51, 963-976). We have included in this study an updated version of a database for the CH4 absorption coefficients [STDS, Wenger, Ch., Champion, J.-P., 1998. J. Quant. Spectrosc. Radiat. Transfer 59, 471-480. See also http://www.u-bourgogne.fr/LPUB/TSM/sTDS.html for latest updates; Boudon, V., Champion, J.-P., Gabard, T., Loëte, M., Michelot, F., Pierre, G., Rotger, M., Wenger, Ch., Rey, M., 2004. J. Mol. Spectrosc. 228, 620-634]. For the atmosphere we find that (a) the haze extinction profile that best matches the data is one with higher (by 40%) extinction in the atmosphere with respect to Rannou et al. (2003) down to about 30 km where a complete cut-off occurs; (b) the methane mixing ratio at Titan's surface cannot exceed 3% on a disk-average basis, yielding a maximum CH4 column abundance of 2.27 km-am in Titan's atmosphere. From the derived surface albedo spectrum in the 2.7-3.08 micron region, we bring some constraints on Titan's surface composition. The albedo in the center of the methane window varies from 0.01 to 0.08. These values, compared to others reported in the other methane windows, show a strong compatibility with the water ice spectrum in the near-infrared. Without confirming its existence from this work alone, our data then appear to be compatible with water ice. A variety of other ices, such as CO2, NH3, tholin material or hydrocarbon liquid cannot be excluded from our data, but an additional unidentified component with a signature around 2.74 micron is required to satisfy the data.  相似文献   

7.
The spectrometers of the Cassini mission to the Saturn system have detected haze layers reaching up to 800 km in Titan’s atmosphere. Knowledge of the complex refractive index (k) of the haze is important for modeling the surface and atmosphere of Titan and retrieving some information about the functional groups present in the aerosols. Plasma discharges or ultraviolet radiation are commonly used to drive the formation of solid organics assumed to be good analogs of the Titan aerosols. [Tran, B.N., Ferris, J.P., Chera, J.J., 2003a. The photochemical formation of a Titan haze analog. Structural analysis by X-ray photoelectron and infrared spectroscopy. Icarus 162, 114-124; Tran, B.N., Force, M., Briggs, R., Ferris J.P., Persans, P., Chera, J.J., 2008. Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan’s atmosphere. Icarus 177, 106-115] reported the index of refraction of analogs synthesized by far ultraviolet irradiation of various gas mixtures. k was determined in the 200-800 nm wavelength range from transmission and reflection spectroscopy. However, this technique is limited by (i) uncertainties in the absorption values because of the small amounts of organics available, (ii) light scattering by the surface roughness and particulates in the sample. These limitations prompted us to perform new measurements using photothermal deflection spectroscopy (PDS), a technique based on the conversion of absorbed light into heat in the material of interest. By combining traditional spectroscopy (λ < 500 nm) and PDS (λ > 500 nm), we determined values of k over the 375-1550 nm range. k values as low as 10−4 above 1000 nm were determined. This is one order of magnitude lower than the measurements generally used as a reference for Titan’s aerosols analogs [Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callicott, T.A., Williams, M.W., 1984. Optical-constants of organic Tholins produced in a simulated Titanian atmosphere—from soft-X-ray to microwave-frequencies. Icarus 60(1), 127-137]. We recommend that these results were used in models to describe the optical properties of the aerosols produced in Titan’s stratosphere.  相似文献   

8.
Images of Titan acquired over five nights in October 2004 using the adaptive optics system at the Keck Observatory show dramatic increases in tropospheric cloud activity at the south pole compared with all other images of Titan clouds to date. During this time, Titan's south polar clouds brightened to more than 18 times their typical values. The Cassini Ta flyby of Titan occurred as this storm was rapidly dissipating. We find that the brightness of this cloud outburst is consistent with the dramatic transient brightening of Titan observed in atmospheric windows on two nights in 1995 by Griffith et al. [Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395 (6702) 575-578] if we scale the brightness of the cloud by projecting it onto the equator. While apparently infrequent, the fact that large cloud events have been observed in different seasons of Titan's year indicates that these large storms might be a year-round phenomenon on Titan. We propose possible mechanisms to explain these occasional short-term increases in Titan's cloud activity.  相似文献   

9.
We present a quantitative analysis of CO thermal emissions discovered on the nightside of Titan by Baines et al. [2005. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, and Planets, 96, 119–147]. in Cassini/VIMS spectral imagery. We identify these emission features as the P and R branches of the 1-0 vibrational band of carbon monoxide (CO) near 4.65 μm. For CH3D, the prominent Q branch of the ν2 fundamental band of CH3D near 4.55 μm is apparent. CO2 emissions from the strong v3 vibrational band are virtually absent, indicating a CO2 abundance several orders of magnitude less than CO, in agreement with previous investigations. Analysis of CO emission spectra obtained over a variety of altitudes on Titan's nightside limb indicates that the stratospheric abundance of CO is 32±15 ppm, and together with other recent determinations, suggests a vertical distribution of CO nearly constant at this value from the surface throughout the troposphere to at least the stratopause near 300 km altitude. The corresponding total atmospheric content of CO in Titan is 2.9±1.5×1014 kg. Given the long lifetime of CO in the oxygen-poor Titan atmosphere (0.5–1.0 Gyr), we find a mean CO atmospheric production rate of 6±3×105 kg yr−1. Given the lack of primordial heavy noble gases observed by Huygens [Niemann et al., 2005. The abundances of constituents of Titan's atmosphere from the GCMS on the Huygens probe. Nature, 438, 779–784], the primary source of atmospheric CO is likely surface emissions. The implied CO/CH4 mixing ratio of near-surface material is 1.8±0.9×10−4, based on an average methane surface emission rate over the past 0.5 Gyr of 1.3×10−13 gm cm−2 s−1 as required to balance hydrocarbon haze production via methane photolysis [Wilson and Atreya, 2004. Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 Doi:10.1029/2003JE002181]. This low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer–Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is 0.02 km3 yr−1, a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant active geological processes reshaping the surface of Titan.  相似文献   

10.
Lisse et al. [Lisse, C.M., Kraemer, K.E., Nuth III, J.A., Li, A., Joswiak, D., 2007. Icarus 187, 69-86] recently presented a new analysis of an ISO spectrum of Comet C/1995 O1 (Hale-Bopp), from which they claimed the identification of many new dust species. Among them are PAHs, which were not found in our first analysis of the ISO spectra. We present here a re-examination of the ISO observations of Comet Hale-Bopp. From the absence of PAHs features in the 5.25-8.5 μm region, we infer that PAHs are at least twice less abundant than derived by Lisse et al. The carbonate feature at 7.00 μm is marginally present, but lower by a factor 2 to 3 than predicted by the model of Lisse et al.  相似文献   

11.
A spectrophotometric observational study of the Galilean satellites and Titan was carried out at 0.004-μm (40-Å) resolution over the spectral range 0.32 to 0.86 μm. A standard lunar area was used as a primary spectroscopic standard to establish the relative reflection spectra of the objects by ratioing the sky-corrected satellite spectra to the standard area on the Moon. J1 (Io) is found to have a spectral edge at 0.33 μm that has not been previously reported. The increase in reflectivity from 0.4 to 0.5 μm and the band at 0.56 μm are confirmed. A weak band at 0.56 μm is probable on J2 (Europa) and possible on J3 (Ganymede). J4 (Callisto) shows no spectral features that have not been previously reported. On Titan, no temporal variations in the methane bands greater than 2% were found, indicating that the effective path length in the Titan atmosphere did not change over the 3-month period of this study. A new absorption band of methane at 0.68 μm was found on Titan. We propose an extension of the evaporite model of Fanale et al. (1974, 1977) and the sulfur mixing models of Wamsteker et al. (1974) in which the primary constituent of the surface of J1 is elemental sulfur sublimated onto the surface by photodissociation of hydrogen sulfide outgassing from the interior. The sulfur is continually renewed by sublimation, sputtering, and redeposition. At low temperatures irradiation produces stable S2, S3, S4, S6, and long chain polymers. Some of these allotropes have an edge at 0.33 μm, a rising reflectance between 0.4 and 0.5 μm a band at 0.56 μm. All of these features are found in the spectrum of J1. We conclude that the lunar ratioing technique used in this study is well suited for determining the relative reflection spectra of solar system objects.  相似文献   

12.
The spatial distribution of N+ in Saturn's magnetosphere obtained from Cassini Plasma Spectrometer (CAPS) data can be used to determine the spatial distribution and relative importance of the nitrogen sources for Saturn's magnetosphere. We first summarize CAPS data from 15 orbits showing the spatial and energy distribution of the nitrogen component of the plasma. This analysis re-enforces our earlier discovery [Smith, H.T., Shappirio, M., Sittler, E.C., Reisenfeld, D., Johnson, R.E., Baragiola, R.A., Crary, F.J., McComas, D.J., Young, D.T., 2005. Geophys. Res. Lett. 32 (14). L14S03] that Enceladus is likely the dominant nitrogen source for Saturn's inner magnetosphere. We also find a sharp enhancement in the nitrogen ion to water ion ratio near the orbit of Enceladus which, we show, is consistent with the presence of a narrow Enceladus torus as described in [Johnson, R.E., Liu, M., Sittler Jr., E.C., 2005. Geophys. Res. Lett. 32. L24201]. The CAPS data and the model described below indicate that N+ ions are a significant fraction of the plasma in this narrow torus. We then simulated the combined Enceladus and Titan nitrogen sources using the CAPS data as a constraint. This simulation is an extension of the model we employed earlier to describe the neutral tori produced by the loss of nitrogen from Titan [Smith, H.T., Johnson, R.E., Shematovich, V.I., 2004. Geophys. Res. Lett. 31 (16). L16804]. We show that Enceladus is the principal nitrogen source in the inner magnetosphere but Titan might account for a fraction of the observed nitrogen ions at the largest distances discussed. We also show that the CAPS data is consistent with Enceladus being a molecular nitrogen source with a nitrogen to water ratio roughly consistent with INMS [Waite, J.H., and 13 colleagues, 2006. Science 311 (5766), 1419-1422], but out-gassing of other nitrogen-containing species, such as ammonia, cannot be ruled out.  相似文献   

13.
A large, circular marking ∼1800 km across is seen in near-infrared images of Titan. The feature is centered at 10°S, 120°W on Titan, encompasses much of Titan’s western Xanadu region, and has an off-center, quasi-circular, inner margin about 700 km across, with lobate outer margins extending 200-500 km from the inner margin. On the feature’s southern flank is Tui Regio, an area that has very high reflectivity at 5 μm, and is hypothesized to exhibit geologically recent cryovolcanic flows (Barnes, J.W. et al. [2006]. Geophys. Res. Lett. 33), similar to flows seen in Hotei Regio, a cryovolcanic area whose morphology may be controlled by pre-existing, crustal fractures resulting from an ancient impact (Soderblom, L.A. et al. [2009]. Icarus, 204). The spectral reflectivity of the large, circular feature is quite different than that of its surroundings, making it compositionally distinct, and radar measurements of its topography, brightness temperature and volume scattering also suggest that the feature is quite distinct from its surroundings. These and several other lines of evidence, in addition to the feature’s morphology, suggest that it may occupy the site of an ancient impact.  相似文献   

14.
M.G. Tomasko  L.R. Doose  L.E. Dafoe  C. See 《Icarus》2009,204(1):271-283
The Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe into the atmosphere of Titan yielded information on the size, shape, optical properties, and vertical distribution of haze aerosols in the atmosphere of Titan [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., 2008. Planet. Space Sci. 56, 669-707] from photometric and spectroscopic measurements of sunlight in Titan’s atmosphere. This instrument also made measurements of the degree of linear polarization of sunlight in two spectral bands centered at 491 and 934 nm. Here we present the calibration and reduction of the polarization measurements and compare the polarization observations to models using fractal aggregate particles which have different sizes for the small dimension (monomer size) of which the aggregates are composed. We find that the Titan aerosols produce very large polarizations perpendicular to the scattering plane for scattering near 90° scattering angle. The size of the monomers is tightly constrained by the measurements to a radius of 0.04 ± 0.01 μm at altitudes from 150 km to the surface. The decrease in polarization with decreasing altitude observed in red and blue light is as expected by increasing dilution due to multiple scattering at decreasing altitudes. There is no indication of particles that produce small amounts of linear polarization at low altitudes.  相似文献   

15.
The Huygens Probe detected dendritic drainage-like features, methane clouds and a high surface relative humidity (∼50%) on Titan in the vicinity of its landing site [Tomasko, M.G., and 39 colleagues, 2005. Nature 438, 765-778; Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], suggesting sources of methane that replenish this gas against photo- and charged-particle chemical loss on short (10-100) million year timescales [Atreya, S.K., Adams, E.Y., Niemann, H.B., Demick-Montelara, J.E., Owen, T.C., Fulchignoni, M., Ferri, F., Wilson, E.H., 2006. Planet. Space Sci. In press]. On the other hand, Cassini Orbiter remote sensing shows dry and even desert-like landscapes with dunes [Lorenz, R.D., and 39 colleagues, 2006a. Science 312, 724-727], some areas worked by fluvial erosion, but no large-scale bodies of liquid [Elachi, C., and 34 colleagues, 2005. Science 308, 970-974]. Either the atmospheric methane relative humidity is declining in a steady fashion over time, or the sources that maintain the relative humidity are geographically restricted, small, or hidden within the crust itself. In this paper we explore the hypothesis that the present-day methane relative humidity is maintained entirely by lakes that cover a small part of the surface area of Titan. We calculate the required minimum surface area coverage of such lakes, assess the stabilizing influence of ethane, and the implications for moist convection in the atmosphere. We show that, under Titan's surface conditions, methane evaporates rapidly enough that shorelines of any existing lakes could potentially migrate by several hundred m to tens of km per year, rates that could be detected by the Cassini orbiter. We furthermore show that the high relative humidity of methane in Titan's lower atmosphere could be maintained by evaporation from lakes covering only 0.002-0.02 of the whole surface.  相似文献   

16.
《Icarus》1987,70(1):61-77
The origin of methane at the present surface of Titan is modeled in light of new high-pressure phase diagrams of ammonia-water compounds and clathrate hydrate. Using recently published experimental data on the ammonia-water system at kilobar pressures, temperature-composition slices of the phase diagram are constructed at a series of pressures up to 12 kbar. A new phase of ammonia dihydrate is proposed and incorporated in the diagrams, to allow consistency with low-pressure data. These results, along with the high-pressure phase diagram of methane clathrate hydrate recently caculated by J. I. Lunine and D. J. Stevenson (1985a, Astrophys. J. Suppl. 58, 493–531) are applied to a model for the origin of the methane presently on the surface of Titan. Using simple bounds on the accretional temperatures and postaccretional state of an ammonia-rich Titan, we show that an unstable interior configuration is likely immediately after accretion, in which a rock layer is positioned above a lower-density rock-ice core. When core overturns begins the methane in the core, which is released from the clathrate structure by virtue of the high pressures, migrates upward. A model for the cooling and freezing of an ammonia-water ocean in the upper mantle of Titan, based on the phase diagram, is applied and it is concluded that insufficient liquid water exists to retrap all of the upwelling methane as clathrate. However, alternative interpretations of the phase diagram permit an ocean thick enough to entrap the methane. For the bulk of the range of plausible accretion models, enough methane is available from the interior to account for the present-day surface hydrocarbon abundance; however, the amount of nitrogen extruded in this model may be much smaller.  相似文献   

17.
A combination of laboratory experiments, theoretical modeling, and spacecraft observations is employed to characterize the aerosols in the atmosphere of Titan. The scattering properties of model aerosols were measured using the Microwave Analog Light Scattering Facility at the University of Florida and complemented with theoretical modeling of single scattering characteristics and radiative transfer in Titan's atmosphere. This study compares these modeling results with photopolarimetric observations made over a range of phase angles by the Pioneer 11 and Voyagers 1 and 2 spacecraft. Important results of this work include a survey of the scattering properties of different particle morphologies and compositions necessary to accurately interpret these observations without introducing non-physical assumptions about the particles or requiring additional free parameters to the radiative transfer models. Previous studies use calculation methods which, due to computing memory and processing time requirements, a priori exclude much of the parameter space that the microwave analog laboratory is ideal for exploring. The goal of the present work, to directly constrain aerosol physical characteristics, is addressed by studying in a consistent manner how a variety of particle morphologies and refractive indices affect the polarization and intensity reflected by Titan's atmosphere. Based on comparisons of model results to spacecraft observations, many model morphologies are excluded from further consideration. The most plausible physical particle models suggest that a combination of Rayleigh-like single particles and aggregates that are larger than those previously suggested and investigated [West, R.A., Smith, P.H., 1991. Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus 90, 330-333; Rannou, P., Cabane, M., Botet, R., Chassefière, E., 1997. A new interpretation of scattered light measurements at Titan's limb. J. Geophys. Res. 102, 10997-11013] provide the best fit to the existing data. Additional laboratory experiments and more refined modeling awaits the results of the new rich observational dataset from the Cassini/Huygens encounter with Titan.  相似文献   

18.
Atoms which escape Titan's atmosphere are unlikely to possess escape velocity from Saturn, and can orbit the planet until lost by ionization or collision with Titan. It is predicted that a toroidal ring of between ~1 and ~103 atoms or molecules cm?3 exists around Saturn at a distance of about 10 times the radius of the visible rings. This torus may be detectable from Earth-orbit and detection of nondetection of it may provide some information about the presence or absence of a Saturnian magnetic field, and the exospheric temperature and atmospheric escape rate of Titan. It is estimated that, if Titan has a large exosphere, ~97% or more of the escaping atoms can be recaptured by Titan, thereby decreasing the effective net atmospheric loss rate by up to two orders of magnitude. With such a reduction in atmospheric loss rates, it becomes more plausible to suggest that satellites previously thought too small to retain an atmosphere may have one. It is suggested that Saturn be examined by Lyman-α and other observations to search for the gaseous torus of Titan. If successful, these could then be extended to other satellites.The effect of a hypothetical Saturnian magnetosphere on the atmosphere of Titan is investigated. It is shown that, if Saturn has a magnetic field comparable to Jupiter's (~10 G at the planetary surface), the magnetospheric plasma can supply Titan with hydrogen at a rate comparable to the loss rates in some of the models of Trafton (1972) and Sagan (1973). A major part of the Saturnian ionospheric escape flux (~ 1027 photoelectrons sec?1) could perhaps be captured by Titan. At the upper limit, this rate of hydrogen input to the satellite could total ~0.1 atm pressure over the lifetime of the solar system, an amount comparable to estimates of the present atmospheric pressure of Titan.  相似文献   

19.
Scattering and absorption of sunlight by aerosols are integral to understanding the radiative balance of any planetary atmosphere covered in a haze, such as Titan and possibly the early Earth. One key optical parameter of an aerosol is its refractive index. We have simulated both Titan and early Earth organic haze aerosols in the laboratory and measured the real and imaginary portion of their refractive index at λ = 532 nm using cavity ringdown aerosol extinction spectroscopy. This novel technique allows analysis on freely-floating particles minutes after formation. For our Titan analog particles, we find a real refractive index of n = 1.35 ± 0.01 and an imaginary refractive index k = 0.023 ± 0.007, and for the early Earth analog particles we find n = 1.81 ± 0.02 and k = 0.055 ± 0.020. The Titan analog refractive index has a smaller real and similar imaginary refractive index compared to most previous laboratory measurements of Titan analog films, including values from Khare et al. (Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T.A., Williams, M.W. [1984]. Icarus 60, 127-137). These newly measured Titan analog values have implications for spacecraft retrievals of aerosol properties on Titan. The early Earth analog has a significantly higher real and imaginary refractive index than Titan analogs reported in the literature. These differences suggest that, for a given amount of aerosol, the early Earth analog would act as a stronger anti-greenhouse agent than the Titan analog.  相似文献   

20.
We model the thermal evolution of a subsurface ocean of aqueous ammonium sulfate inside Titan using a parameterized convection scheme. The cooling and crystallization of such an ocean depends on its heat flux balance, and is governed by the pressure-dependent melting temperatures at the top and bottom of the ocean. Using recent observations and previous experimental data, we present a nominal model which predicts the thickness of the ocean throughout the evolution of Titan; after 4.5 Ga we expect an aqueous ammonium sulfate ocean 56 km thick, overlain by a thick (176 km) heterogeneous crust of methane clathrate, ice I and ammonium sulfate. Underplating of the crust by ice I will give rise to compositional diapirs that are capable of rising through the crust and providing a mechanism for cryovolcanism at the surface. We have conducted a parameter space survey to account for possible variations in the nominal model, and find that for a wide range of plausible conditions, an ocean of aqueous ammonium sulfate can survive to the present day, which is consistent with the recent observations of Titan's spin state from Cassini radar data [Lorenz, R.D., Stiles, B.W., Kirk, R.L., Allison, M.D., del Marmo, P.P., Iess, L., Lunine, J.I., Ostro, S.J., Hensley, S., 2008. Science 319, 1649-1651].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号