首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ejection of stars from spheroidal and disk dwarf galaxies resulting from the decay of OB associations is studied. This has substantial observational consequences for disk galaxies with escape velocities up to 20 km/s, or dynamical masses up to 108 M . The ejection of stars can (i) reduce the abundances of the products of Type Ia supernovae and, to a lesser degree, Type II supernovae, in disk stars, (ii) chemically enrich the galactic halo and intergalactic medium, (iii) lead to the loss of 50% of the stellar mass in galaxies with masses ∼107 M and the loss of all stars in systems with masses ≲105 M , (iv) increase the mass-to-luminosity ratio of the galaxy.  相似文献   

2.
The statistical relation between the masses of supermassive black holes (SMBHs) in disk galaxies and the kinematic properties of their host galaxies is analyzed. Velocity estimates for several galaxies obtained earlier at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the data for other galaxies taken from the literature are used. The SMBH masses correlate well with the rotational velocities at a distance of R ≈ 1 kpc, V 1, which characterize the mean density of the central region of the galaxy. The SMBH masses correlate appreciably weaker with the asymptotic velocity at large distances from the center and the angular velocity at the optical radius R 25. We have found for the first time a correlation between the SMBH mass and the total mass of the galaxy within the optical radius R 25, M 25, which includes both baryonic and “dark” mass. The masses of the nuclear star clusters in disk galaxies (based on the catalog of Seth et al.) are also related to the dynamical mass M 25; the correlations with the luminosity and rotational velocity of the disk are appreciably weaker. For a given value of M 25, the masses of the central cluster are, on average, an order of magnitude higher in S0-Sbc galaxies than in late-type galaxies, or than the SMBH masses. We suggest that the growth of the SMBH occurs in the forming “classical” bulge of the galaxy over a time < 109 yr, during a monolithic collapse of gas in the central region of the protogalaxy. The central star clusters form on a different time scale, and their stellar masses continue to grow for a long time after the growth of the central black hole has ceased, if this process is not hindered by activity of the nucleus.  相似文献   

3.
Results of numerical simulations of a collision of the gaseous components of two identical disk galaxies during a head-on collision of the galaxies in the polar direction are presented. When the relative velocity of the galaxy collision is small, their gaseous components merge. At high relative velocities (100–500 km/s), the massive stellar components of the galaxies (M g = 109 M ) pass through each other nearly freely, leaving behind the gaseous components, which are decelerated and heated by the collision. If the overall gaseous component of the colliding galaxies is able to cool to the virial temperature during the collision, a new galaxy forms. At velocities V ≥ 500 km/s, the gaseous component does not have time to cool, and the gas is scattered into intergalactic space, supplying it with heavy elements produced in supernovae in the colliding galaxies. High-velocity (V ≥ 100 km/s) collisions of identical low-mass galaxies (M g ≤ 109 M ) whose mass is dominated by the mass of gas lead to the disruption of their stellar components. The overall gaseous component forms a new galaxy when V ≤ 500 km/s, and is scattered into intergalactic space if the velocity becomes higher than this. A galaxy collision increases the star-formation rates in the disk galaxies by nearly a factor of 100. Rotation of the colliding galaxies in the same direction increases the changes of the disruption of both the stellar and gaseous components of the galaxies. The merger of galaxies during their collision can explain the presence of gaseous disks rotating opposite to the rotation of the stellar component in some ordinary elliptical galaxies. Moreover, galaxy mergers can help explain the origin of a comparatively young stellar population in some elliptical galaxies.  相似文献   

4.
We consider the evolution of galaxies in dense galactic clusters. Observations and theoretical estimates indicate that this evolution may be specified to a large extent by collisions between galaxies, as well as interactions between the gaseous components of disk galaxies and intergalactic gas. We analyze collisions between disk galaxies with gaseous components using a simple model based on a comparison of the duration of a collision and the characteristic cooling time for the gas heated by the collision, and also of the relative masses of stars and gas in the colliding disk galaxies. This model is used to analyze scenarios for collisions between disk galaxies with various masses as a function of their relative velocities. Our analysis indicates that galaxies can merge, lose one or both of their gaseous components, or totally disintegrate as a result of a collision; ultimately, a new galaxy may form from the gas lost by the colliding galaxies. Disk galaxies with mass M G and velocities exceeding ~300 (M G/1010 M )1/2 km/s in intergalactic gas in clusters with densities ~10?27 g/cm3 can lose their gas due to the pressure of inflowing intergalactic gas, thereby developing into E(SO) galaxies.  相似文献   

5.
Total mass-to-light ratio M/L B for S0 — Irr galaxies, whereM is the dynamical mass within the optical radius R 25 (corresponding to 25 m /sq. arcsec in the B band), increases systematically with (B-V)0 color, but slower than that is predicted by stellar population evolution models without dark halo. It shows that the mean ratio between dark halo and stellar masses is higher for more “blue“ galaxies. However some galaxies don’t follow this general trend. The properties of galaxies with extremely high and extremely low values of M/L B ratios are compared, and different factors, accounting for the extremes, are analyzed. The conclusion is that in some cases too high or too low M/L B ratios are associated with observational errors, in other cases—with non-typical dark halo mass fraction, and in some cases — with peculiarities of disc stellar population. Particularly, discs of some galaxies with low M/L B ratios turn out to be unusually “light” for their luminosity and colors, which indicates a substantial deficit of low mass stars as the most probable cause of low M/L B .  相似文献   

6.
The relationship between the masses of the central, supermassive black holes (M bh) and of the nuclear star clusters (M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar populationM *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. ThemassM nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher massesM bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6–0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106?107 M (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.  相似文献   

7.
We have estimated the masses of the central supermassive black holes of 2442 radio galaxies froma catalog compiled using data from the NED, SDSS, and CATS databases. Mass estimates based on optical photometry and radio data are compared. Relationships between the mass of the central black hole M p bh and the redshift z p are constructed for both wavelength ranges. The distribution of the galaxies in these diagrams and systematic effects influencing estimation of the black-hole parameters are discussed. Upperenvelope cubic regression fits are obtained using the maximum estimates of the black-hole masses. The optical and radio upper envelopes show similar behavior, and have very similar peaks in position, z p ≅ 1.9, and amplitude, log M p/bh = 9.4. This is consistent with a model in which the growth of the supermassive black holes is self-regulating, with this redshift corresponding to the epoch when the accretion-flow phase begins to end and the nuclear activity falls off.  相似文献   

8.
Observational data on the evolution of quasars and galaxies of various morphological types and numerical simulations carried out by various groups are used to argue that low-redshift (z < 0.5) quasars of types I and II, identified with massive elliptical and spiral galaxies with classical bulges, cannot be undergoing a single, late phase of activity; i.e., their activity cannot be “primordial,” and must have “flared up” at multiple times in the past. This means that their appearance at low z is associated with recurrence of their activity—i.e., with major mergers of gas-rich galaxies (so-called wet major mergers)—since their lifetimes in the active phase do not exceed a few times 107 yrs. Only objects we have referred to earlier as AGN III, which are associated with the nuclei of isolated, late-type spiral galaxies with low-mass, rapidly-rotating “pseudobulges,” could represent primordial AGNs at low z. The black holes in such galaxies have masses M BH < 107 M , and the peculiarities of their nuclear spectra suggest that they may have very high specific rotational angular momenta per unit mass. Type I narrow-line (widths less than 2000 km/s) Seyfert galaxies (NLSyIs) with pseudobulges and black-hole masses M BH < 107 M may be characteristic representatives of the AGN III population. Since NLSyI galaxies have pseudobulges while Type I broad-line Seyfert galaxies have classical bulges, these two types of galaxies cannot represent different evolutionary stages of a single type of object. It is possible that the precursors of NLSyIs are “Population A” quasars.  相似文献   

9.
The formation and evolution of supermassive (102?1010 M ) black holes (SMBHs) in the dense cores of globular clusters and galaxies is investigated. The raw material for the construction of the SMBHs is stellar black holes produced during the evolution of massive (25?150M ) stars. The first SMBHs, with masses of ~1000M , arise in the centers of the densest and most massive globular clusters. Current scenarios for the formation of SMBHs in the cores of globular clusters are analyzed. The dynamical deceleration of the most massive and slowly moving stellar-mass (< 100M ) black holes, accompanied by the radiation of gravitational waves in late stages, is a probable scenario for the formation of SMBHs in the most massive and densest globular clusters. The dynamical friction of the most massive globular clusters close to the dense cores of their galaxies, with the formation of close binary black holes due to the radiation of gravitational waves, leads to the formation of SMBHs with masses ? 103 M in these regions. The stars of these galaxies form galactic bulges, providing a possible explanation for the correlation between the masses of the bulge and of the central SMBHs. The deceleration of the most massive galaxies in the central regions of the most massive and dense clusters of galaxies could lead to the appearance of the most massive (to 1010 M ) SMBHs in the cores of cD galaxies. A side product of this cascade scenario for the formation of massive galaxies with SMBHs in their cores is the appearance of stars with high spatial velocities (> 300 km/s). The velocities of neutron stars and stellar-mass black holes can reach ~105 km/s.  相似文献   

10.
The rotational effect of the cosmic vacuum is investigated. The induced rotation of elliptical galaxies due to the anti-gravity of the vacuum is found to be 10−21 s−1 for real elliptical galaxies. The effect of the vacuum rotation of the entire Universe is discussed, and can be described by the invariant ω ν = ω 0 ∼ $ \sqrt {G\rho v} $ \sqrt {G\rho v} . The corresponding numerical angular velocity of the Universe is 10−19 s−1, in good agreement with modern data on the temperature fluctuations of the cosmic background radiation.  相似文献   

11.
Possible orbits for the motion of a region in the gravitational field of the central body of the galaxy NGC 4151 are presented. The region is manifest through its line emission, observed in the red wing of the Hα, Pβ, and other broad lines. We carried out a computer selection of all Keplerian orbits for which the measured radial velocities of the emission-line region could be observed. We used radial-velocity data obtained by us at the Fesenkov Astrophysical Institute, as well as data from the literature. The computation results can be used to determine the mass range for the central body of NGC 4151 that provides the best agreement with the observational data: (61–65)× 106 M . Suitably designed monitoring of active galactic nuclei can be used to verify these results, and to carry out similar analyses for other Seyfert galaxies.  相似文献   

12.
NumericalN-body studies of the dynamical evolution of a cluster of 1000 galaxies were carried out in order to investigate the role of dark matter in the formation of cD galaxies. Two models explicitly describing the darkmatter as a full-fledged component of the cluster having its own physical characteristics are constructed. These treat the dark matter as a continuous underlying substrate and as “grainy” matter. The ratio of the masses of the dark and luminous matter of the cluster is varied in the range 3–100. The observed logarithmic spectrum dNdM / M is used as an initial mass spectrum for the galaxies. A comparative numerical analysis of the evolution of the mass spectrum, the dynamics of mergers of the cluster galaxies, and the evolution of the growth of the central, supermassive cD galaxy suggests that dynamical friction associated with dark matter accelerates the formation of the cD galaxy via the absorption of galaxies colliding with it. Taking into account a dark-matter “substrate” removes the formation of multiple mass-accumulation centers, and makes it easier to form a cD galaxy that accumulates 1–2% of the cluster mass within the Hubble time scale (3–8 billion years), consistent with observations.  相似文献   

13.
Data on about forty virialized galaxy clusters with bright central galaxies, for which both the galactic velocity dispersion (?? gal) and the stellar velocity dispersion in the brightest galaxies (??*) are measured, have been used to obtain several approximate relations between ?? gal, ??*, the absolute B magnitude of the brightest central galaxyM B BCG , and the mass of the central massive black holeM BH: $\begin{gathered} \log \sigma _* = (0.12 \pm 0.14)\log \sigma _{gal} + (2.1 \pm 0.4), \hfill \\ \log \sigma _* = - (0.15 \pm 0.02)M_B^{BCG} + (0.85 \pm 0.5), \hfill \\ \log M_{BH} = 0.51\log \sigma _{gal} + 7.28. \hfill \\ \end{gathered} $ . These relations can be used to derive crude estimates ofMBH in the nuclei of the brightest galaxies using the parameters of the both host galaxies and the host galaxy clusters. The last relation above confirms earlier suggestions of a quadratic relation between the masses of the coronas of the host systems and the masses their central objects: M hg halo ?? M cent 2 . The relations obtained are consistent with the common evolution of subsystems with different scales and masses formed in the process of hierarchical clustering.  相似文献   

14.
The study on the competitive adsorption shows that the magnitude order of metal ions adsorbed onto oxide and silicate minerals in near-neutral solution with low ionic strength is in mole/nm2 as follows: CaCO3 > quarte > hydromuscovite > kaolinite > Ca-montmorillonite > goethite > gibbsite. These minerals can be divided into three groups according to their surface equilibrium constantsK M of the adsorption reactions, which are the function of the dielectric constants ε of the absorbent minerals. The relationships between constantsK M and mineral dielectric constants ε are described as follows: lgK M 1 = 7.813-26.15/ε lgK M 2 = 9.030-26.15/ε lgK M 3 =11.63-26.15/ε for the adsorption reaction: >SO- + Mn+≥SOMn-1)+ (n = 1, 2, 3) The first group of minerals include quartz, goethite, 1:1 phyllosilicates and other oxide minerals; the second: gibbsite, brucite and 2:1 phyllosilicates; the third: carbonate, sulphate and phosphorate minerals. The appearance reaction constants have a variation of magnitude ±0.5 for different metal ions with the same mineral. This project was financially supported by the National Natural Science Foundation of China (No. 49572091).  相似文献   

15.
Quantitative estimates of themaximumallowed totalmasses and sizes of the dark-matter halos in groups and associations of dwarf galaxies—special types of metagalactic populations identified in recent astronomical observations with the Hubble Space Telescope—are presented. Dwarf-galaxy systems are formed of isolated dark-matter halos with a small number of dark galaxies embedded in them. Data on the sizes of these systems and the velocity dispersions of the embedded galaxies can be used to determine lower limits on the total dark-halo masses using the virial theorem. Upper limits follow from the conditions that the systems immersed in the cosmic dark-energy background be gravitationally bound. The median maximum masses are close to 1012 M for both groups and associations of dwarf galaxies, although the median virial masses for these two types of systems differ by approximately a factor of ten.  相似文献   

16.
The kinetics of the formation of the purple-colored species between FeIII-EDTA and peroxynitrite were studied as a function of pH (10.4–12.3) at 22°C in aqueous solutions using a stopped-flow technique. A purple-colored species was immediately formed upon mixing, which had an absorbance maximum at 520 nm. The increase in absorbance with time could be fit empirically by a power function with two parameters a and b. The power equation determined was absorbance = a*t b , where a increased linearly with pH and the concentration of peroxynitrite, while b almost remained constant with a value of ~0.25. The molar extinction coefficient ε520 nm for the colored species was determined as 13 M−1cm−1, which is much lower than ε520 nm = 520 M−1 cm−1 for the [FeIII(EDTA)O2]3−, a purple species observed in the FeIII–EDTA–H2O2 system. The results of kinetics and spectral measurements of the present study are briefly discussed and compared with those of the reaction between Fe(III)-EDTA and hydrogen peroxide.  相似文献   

17.
We consider the main population of cosmic voids in a heirarchical clustering model. Based on the Press-Schechter formalism modified for regions in the Universe with reduced or enhanced matter densities, we construct the mass functions for gravitationally bound objects of dark matter occupying voids or superclusters. We show that the halo mass functions in voids and superclusters differ substantially. In particular, the spatial density of massive (M ~ 1012 M ) halos is appreciably lower in voids than in superclusters, with the difference in the mass functions being greater for larger masses. According to our computations, an appreciable fraction of the mass of matter in voids should be preserved to the present epoch in the form of primordial gravitationally bound objects (POs) with modest masses (to 10% for M PO < 109 M ) keeping baryons. These primordial objects represent “primary blocks” in the heirarchical clustering model. We argue that the oldest globular clusters in the central regions of massive galaxies are the stellar remnants of these primordial objects: they can form in molecular clouds in these objects, only later being captured in the central regions of massive galaxies in the process of gravitational clustering. Primordial objects in voids can be observed as weak dwarf galaxies or Lyα absorption systems.  相似文献   

18.
OH in zoned amphiboles of eclogite from the western Tianshan,NW-China   总被引:1,自引:0,他引:1  
Chemically-zoned amphibole porphyroblast grains in an eclogite (sample ws24-7) from the western Tianshan (NW-China) have been analyzed by electron microprobe (EMP), micro Fourier-transform infrared (micro-FTIR) and micro-Raman spectroscopy in the OH-stretching region. The EMP data reveal zoned amphibole compositions clustering around two predominant compositions: a glaucophane end-member ( B Na2 C M2+ 3 M3+ 2 T Si8(OH)2) in the cores, whereas the mantle to rim of the samples has an intermediate amphibole composition ( A 0.5 B Ca1.5Na0.5 C M 2+ 4.5 M 0.53+ T Si7.5Al0.5(OH)2) (A = Na and/or K; M 2+ = Mg and Fe2+; M 3+ = Fe3+ and/or Al) between winchite (and ferro-winchite) and katophorite (and Mg-katophorite). Furthermore, we observed complicated FTIR and Raman spectra with OH-stretching absorption bands varying systematically from core to rim. The FTIR/Raman spectra of the core amphibole show three lower-frequency components (at 3,633, 3,649–3,651 and 3,660–3,663 cm−1) which can be attributed to a local O(3)-H dipole surrounded by M(1) M(3)Mg3, M(1) M(3)Mg2Fe2+ and M(1) M(3) Fe2+ 3, respectively, an empty A site and T Si8 environments. On the other hand, bands at higher frequencies (3,672–3,673, 3,691–3,697 and 3,708 cm−1) are observable in the rims of the amphiboles, and they indicate the presence of an occupied A site. The FTIR and Raman data from the OH-stretching region allow us to calculate the site occupancy of the A, M(1)–M(3), T sites with confidence when combined with EPM data. By contrast M(2)- and M(4) site occupancies are more difficult to evaluate. We use these samples to highlight on the opportunities and limitations of FTIR OH-stretching spectroscopy applied to natural high pressure amphibole phases. The much more detailed cation site occupancy of the zoned amphibole from the western Tianshan have been obtained by comparing data from micro-chemical and FTIR and/or Raman in the OH-stretching data. We find the following characteristic substitutions Si(T-site) (Mg, Fe)[M(1)–M(3)-site] → Al(T-site) Al[M(1)–M(3)-site] (tschermakite), Ca(M4-site)□ (A-site) → Na(M4-site) Na + K(A-site) (richterite), and Ca(M4-site) (Mg, Fe) [M(1)–M(3)-site] → Na(M4-site) Al[M(1)–M(3)-site] (glaucophane) from the configurations observed during metamorphism.  相似文献   

19.
Two-color photometric data obtained on the 6-m telescope of the Special Astrophysical Observatory are used to analyze the structure of 13 large disk galaxies in the NGC 80 group. Nine of the 13 studied galaxies are classified as lenticular galaxies. The stellar populations in the galaxies are very diverse, from old stars with ages of T > 10 billion years (IC 1541) to relatively young stars with ages of T ∼ 1–3 billion years (IC 1548, NGC 85); in one case, star formation is ongoing (UCM 0018+2216). In most of the studied galaxies, more precisely in all of them brighter than M B ∼ −18, two-tiered stellar disks are detected, whose radial surface-brightness profiles can be described by two exponential segments with different characteristic scales—shorter near the center and longer at the periphery. All of the dwarf S0 galaxies with single-tiered disks are close companions to larger galaxies. Except for this fact, no dependence of the properties of S0 galaxies on distance from the center of the group is found. Morphological signs of a “minor merger” are found in the lenticular galaxy NGC 85. Based on these last two results, it is concluded that the most probable mechanism for their transformation of spiral into lenticular galaxies in groups is gravitational (minor mergers and tidal interactions).  相似文献   

20.
Existing data on the temperature and composition dependence of the Fe2+-Mg2+ distribution between Fe-Mg olivine and orthopyroxene, the intra-crystalline distribution of Fe2+ and Mg2+ between M1 and M2 sites in orthopyroxene, and macroscopic activity-composition relations in olivine and orthopyroxene are shown to be inconsistent with generally accepted thermodynamic formulations which assume that the non-configurational Gibbs energy of orthopyroxene is independent of the degree of long-range ordering of Fe2+ and Mg+ between M1 and M2 sites. These data are interpreted in terms of the constraints they provide on the size of Bragg-Williams type energy, entropy, and volume terms for olivine and orthopyroxene. The apparent equilibrium constant for Fe-Mg exchange between olivine and orthopyroxene is shown to be a potentially useful ‘geothermometer’ for olivine-orthopyroxene assemblages with olivines with mole fraction of Fe2SiO4 component less than 0.2 or greater than 0.6. A provisional calibration of this ‘geothermometer’ is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号