首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current study, we use the polyhedral model to compute the potential of the asteroid. There are five equilibrium points in the gravitational field of the asteroid 283 Emma. We concluded that the zero-velocity surfaces and the equilibrium points change with the suppositive variation of the rotational speed of the asteroid. It is found that if the rotational speed equals a half as it is in present, the number of equilibrium points is also five. However, if the rotational speed equals twice as it is in present, there are only three equilibrium points left. Four different periodic orbits are calculated using the hierarchical grid searching method. We calculated characteristic multipliers of periodic orbits to investigate the stability of these periodic orbits. The orbit near the primary's equatorial plane is more likely to be stable when the separation/ primary-radius is a large number.  相似文献   

2.
Motivated by Papadakis (2005a, b), we study a Chermnykh-like problem, in which an additional gravitational potential from the belt is included. In addition to the usual five equilibrium points (three collinear and two triangular points), there are some new equilibrium points for this system. We studied the conditions for the existence of these new equilibrium points both analytically and numerically.  相似文献   

3.
This paper presents a generalized problem of the restricted three body studied in Abdul Raheem and Singh with the inclusion that the third body is an oblate spheroidal test particle of infinitesimally mass. The positions and stability of the equilibrium point of this problem is studied for a model in which the primaries is the binary system Struve 2398 (Gliese 725) in the constellation Draco; which consist of a pair of radiating oblate stars. It is seen that additional equilibrium points exist on the line collinear with the primaries, for some combined parameters of the problem. Hence, there can be up to five collinear equilibrium points. Two triangular points exist and depends on the oblateness of the participating bodies, radiation pressure of the primaries and a small perturbation in the centrifugal force. The stability analysis ensures that, the collinear equilibrium points are unstable in the linear sense while the triangular points are stable under certain conditions. Illustrative numerical exploration is given to indicate significant improvement of the problem in Abdul Raheem and Singh.  相似文献   

4.
The equilibrium points of the gravitational potential field of minor celestial bodies, including asteroids, comets, and irregular satellites of planets, are studied. In order to understand better the orbital dynamics of massless particles moving near celestial minor bodies and their internal structure, both internal and external equilibrium points of the potential field of the body are analyzed. In this paper, the location and stability of the equilibrium points of 23 minor celestial bodies are presented. In addition, the contour plots of the gravitational effective potential of these minor bodies are used to point out the differences between them. Furthermore, stability and topological classifications of equilibrium points are discussed, which clearly illustrate the topological structure near the equilibrium points and help to have an insight into the orbital dynamics around the irregular-shaped minor celestial bodies. The results obtained here show that there is at least one equilibrium point in the potential field of a minor celestial body, and the number of equilibrium points could be one, five, seven, and nine, which are all odd integers. It is found that for some irregular-shaped celestial bodies, there are more than four equilibrium points outside the bodies while for some others there are no external equilibrium points. If a celestial body has one equilibrium point inside the body, this one is more likely linearly stable.  相似文献   

5.
This paper investigates the combined effect of small perturbations ε,ε′ in the Coriolis and centrifugal forces, radiation pressure q i , and changing oblateness of the primaries A i (t) (i=1,2) on the stability of equilibrium points in the restricted three body problem in which the primaries is a supergiant eclipsing binary system which consists of a pair of bright oblate stars having the appearance of a giant peanut in space and their masses assumed to vary with time in the absence of reactive forces. The equations of motion are derived and the equilibrium points are obtained. For the autonomized system, it is seen that there are more than a pair of the triangular points as κ→∞; κ being the arbitrary sum of the masses of the primaries. In the case of the collinear points, two additional equilibrium points exist on the line joining the primaries when simultaneously κ+ε′<0 and both primaries are oblate, i.e., 0<α i ?1. So there are five collinear equilibrium points in this case. Two non-planar equilibrium points exist for κ>1. Hence, there are at least nine equilibrium points of the system. The stability of these points is explored analytically and numerically. It is seen that the collinear and triangular points are stable with respect to certain conditions controlled by κ while the non-planar equilibrium points are unstable.  相似文献   

6.
We consider the modified restricted three body problem with power-law density profile of disk, which rotates around the center of mass of the system with perturbed mean motion. Using analytical and numerical methods, we have found equilibrium points and examined their linear stability. We have also found the zero velocity surface for the present model. In addition to five equilibrium points there exists a new equilibrium point on the line joining the two primaries. It is found that L 1 and L 3 are stable for some values of inner and outer radius of the disk while other collinear points are unstable, but L 4 is conditionally stable for mass ratio less than that of Routh’s critical value. Lastly, we have studied the effects of radiation pressure, oblateness and mass of the disk on the motion and stability of equilibrium points.  相似文献   

7.
The effects of the radiation pressure in the restricted three-body problem are considered and the existence of the out-of-plane equilibrium points is analyzed. It is found that within the framework of the stellar stability, the five Lagrangian points are the only equilibrium points, at least as far as the force of the radiation pressure is taken into account.  相似文献   

8.
The equilibrium points of charged particles moving under the Lorentz forces of two parallel or anti-parallel magnetic dipoles located at the two primaries of the Restricted Three-Body Problem are calculated. The magnetic moments of the dipoles are taken perpendicular to the plane of motion of the primaries. The configuration studied simulates the case of close-binary stars with dominant zero-order harmonics in the magnetic field of each star. Depending on the mass parameter and the magnetic moment ratio of the two dipoles, it is found that there exist from one to nine equilibrium points in the plane of motion of the primaries. On the synodical axis of the primaries, depending on the above two ratios, there exist one, two three, or five equilibrium points, while off this axis the number of equilibrium points is zero, two or four.  相似文献   

9.
The restricted problem of three bodies is generalized to the restricted problem of 2+n bodies. Instead of one body of small mass and two primaries, the system is modified so that there are several gravitationally interacting bodies with small masses. Their motions are influenced by the primaries but they do not influence the motions of the primaries. Several variations of the classical problem are discussed. The separate Jacobian integrals of the minor bodies are lost but a conservative (time-independent) Hamiltonian of the system is obtained. For the case of two minor bodies, the five Lagrangian points of the classical problem are generalized and fourteen equilibrium solutions are established. The four linearly stable equilibrium solutions which are the generalizations of the triangular Lagrangian points are once again stable but only for considerably smaller values of the mass parameter of the primaries than in the classical problem.  相似文献   

10.
A criterion for the linear stability of the equilibrium points in the perturbed restricted three-body problem is given. This criterion is related only to the coefficients of the characteristic equation of the tangent map of an equilibrium point, and this is convenient to use. With this criterion, we have discussed the linear stability of the equilibrium points in the Robe problem under the perturbation of a drag force, derived the linearly stable region of the equilibrium point in the perturbed Robe's problem with the drag given by Hallen et al., and improved as well the results obtained by Giordano et al.  相似文献   

11.
给出了受摄限制性三体问题平动点线性稳定性的一个判断条件.条件只与平动点切映像的特征方程系数有关,使用方便.用判断条件,讨论了Robe问题平动点在阻力摄动下的线性稳定性,得到了Hallan等给出的Robe问题平动点在阻力摄动下的线性稳定范围.并改进了Giordanoc等的结果.  相似文献   

12.
Different types of propulsion systems with continuous and purely radial thrust, whose modulus depends on the distance from a massive body, may be conveniently described within a single mathematical model by means of the concept of generalized sail. This paper discusses the existence and stability of artificial equilibrium points maintained by a generalized sail within an elliptic restricted three-body problem. Similar to the classical case in the absence of thrust, a generalized sail guarantees the existence of equilibrium points belonging only to the orbital plane of the two primaries. The geometrical loci of existing artificial equilibrium points are shown to coincide with those obtained for the circular three body problem when a non-uniformly rotating and pulsating coordinate system is chosen to describe the spacecraft motion. However, the generalized sail has to provide a periodically variable acceleration to maintain a given artificial equilibrium point. A linear stability analysis of the artificial equilibrium points is provided by means of the Floquet theory.  相似文献   

13.
This paper introduces a new approach to the study of artificial equilibrium points in the circular restricted three-body problem for propulsion systems with continuous and purely radial thrust. The propulsion system is described by means of a general mathematical model that encompasses the behavior of different systems like a solar sail, a magnetic sail and an electric sail. The proposed model is based on the choice of a coefficient related to the propulsion type and a performance parameter that quantifies the system technological complexity. The propulsion system is therefore referred to as generalized sail. The existence of artificial equilibrium points for a generalized sail is investigated. It is shown that three different families of equilibrium points exist, and their characteristic locus is described geometrically by varying the value of the performance parameter. The linear stability of the artificial points is also discussed.  相似文献   

14.
This article examines the effects of the zonal harmonics on the out-of-plane equilibrium points of Robe's circular restricted three-body problem when the hydrostatic equilibrium shape of the first primary is an oblate spheroid, the shape of the second primary is an oblate spheroid with oblateness coefficients up to the second zonal harmonic, and the full buoyancy of the fluid is considered. It is observed that the size of the oblateness and the zonal harmonics affect the positions of the out-of-plane equilibrium points L6 and L7. It is also observed that these points within the possible region of motion are unstable.  相似文献   

15.
Orbits and manifolds near the equilibrium points around a rotating asteroid   总被引:6,自引:0,他引:6  
We study the orbits and manifolds near the equilibrium points of a rotating asteroid. The linearised equations of motion relative to the equilibrium points in the gravitational field of a rotating asteroid, the characteristic equation and the stable conditions of the equilibrium points are derived and discussed. First, a new metric is presented to link the orbit and the geodesic of the smooth manifold. Then, using the eigenvalues of the characteristic equation, the equilibrium points are classified into 8 cases. A theorem is presented and proved to describe the structure of the submanifold as well as the stable and unstable behaviours of a massless test particle near the equilibrium points. The linearly stable, the non-resonant unstable, and the resonant equilibrium points are discussed. There are three families of periodic orbits and four families of quasi-periodic orbits near the linearly stable equilibrium point. For the non-resonant unstable equilibrium points, there are four relevant cases; for the periodic orbit and the quasi-periodic orbit, the structures of the submanifold and the subspace near the equilibrium points are studied for each case. For the resonant equilibrium points, the dimension of the resonant manifold is greater than 4, and we find at least one family of periodic orbits near the resonant equilibrium points. As an application of the theory developed here, we study relevant orbits for the asteroids 216 Kleopatra, 1620 Geographos, 4769 Castalia and 6489 Golevka.  相似文献   

16.
This paper examines the effects of triaxiality of both the primaries on the position and stability of the oblate infinitesimal mass in the neighborhood of triangular equilibrium points in the framework of Elliptical restricted three body problem. We have found the solutions for the locations of triangular equilibrium points. We have investigated the stability of infinitesimal mass around the triangular equilibrium points.It is observed that the infinitesimal motion around triangular equilibrium points are stable under certain condition with respect to triaxiality of primaries. We have applied the method of averaging used by Grebenivok, throughout the analysis of the stability of the infinitesimal mass around the triangular equilibrium points. We have exploited simulation technique using MATLAB 15 to analyze the stability of the system. The critical mass ratio depends on the triaxiality, oblateness, semi- major axis and eccentricity of the elliptical orbits.  相似文献   

17.
High-order analytical solutions of invariant manifolds, associated with Lissajous and halo orbits in the elliptic restricted three-body problem (ERTBP), are constructed in this paper. The equations of motion of ERTBP in the pulsating synodic coordinate system have five equilibrium points, and the three collinear libration points as well as the associated center manifolds are unstable. In our calculation, the general solutions of the invariant manifolds associated with Lissajous and halo orbits around collinear libration points are expressed as power series of five parameters: the orbital eccentricity, two amplitudes corresponding to the hyperbolic manifolds, and two amplitudes corresponding to the center manifolds. The analytical solutions up to arbitrary order are constructed by means of Lindstedt–Poincaré method, and then the center and invariant manifolds, transit and non-transit trajectories in ERTBP are all parameterized. Since the circular restricted three-body problem (CRTBP) is a particular case of ERTBP when the eccentricity is zero, the general solutions constructed in this paper can be reduced to describe the dynamics around the collinear libration points in CRTBP naturally. In order to check the validity of the series expansions constructed, the practical convergence of the series expansions up to different orders is studied.  相似文献   

18.
This paper investigates the motion of an infinitesimal body in the generalized restricted three-body problem. It is generalized in the sense that both primaries are radiating, oblate bodies, together with the effect of gravitational potential from a belt. It derives equations of the motion, locates positions of the equilibrium points and examines their linear stability. It has been found that, in addition to the usual five equilibrium points, there appear two new collinear points L n1, L n2 due to the potential from the belt, and in the presence of all these perturbations, the equilibrium points L 1, L 3 come nearer to the primaries; while L 2, L 4, L 5, L n1 move towards the less massive primary and L n2 moves away from it. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le\mu\le\frac{1}{2}$ , where μ c is the critical mass ratio influenced by the oblateness and radiation of the primaries and potential from the belt, all of which have destabilizing tendency. A practical application of this model could be the study of the motion of a dust particle near the oblate, radiating binary stars systems surrounded by a belt.  相似文献   

19.
The equilibrium points and the curves of zero-velocity (Roche varieties) are analyzed in the frame of the regularized circular restricted three-body problem. The coordinate transformation is done with Levi-Civita generalized method, using polynomial functions of n degree. In the parametric plane, five families of equilibrium points are identified: \(L_{i}^{1}, L_{i}^{2}, \ldots, L_{i}^{n}\) , \(i\in\{ 1,2,\ldots,5 \}, n \in\mathbb{N}^{*}\) . These families of points correspond to the five equilibrium points in the physical plane L 1,L 2,…,L 5. The zero-velocity curves from the physical plane are transformed in Roche varieties in the parametric plane. The properties of these varieties are analyzed and the Roche varieties for n∈{1,2,…,6} are plotted. The equation of the asymptotic variety is obtained and its shape is analyzed. The slope of the Roche variety in \(L_{1}^{1}\) point is obtained. For n=1 the slope obtained by Plavec and Kratochvil (1964) in the physical plane was found.  相似文献   

20.
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting–Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L1, L2 and L3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov’s first method of stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号