首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of river channels and their suitability as habitat for aqueous organisms is strongly controlled by the rate of bedload transport. Quantification of bedload transport rates in rivers is difficult, not only because of the temporal variation in transport, but also because of the cross‐channel variation in transport. The objectives of this study were: (i) to determine the effect of cross‐channel variation in bedload transport on the uncertainty of width‐integrated transport rates; and to use this knowledge (ii) to improve guidelines for bedload sampling. This was done through a thorough statistical evaluation of stochastic and systematic uncertainties involved in bed‐load transport measurements. Based on this evaluation, new guidelines are presented for determination of the number of samples and sampling positions across the channel that are required for bedload measurements in several types of sand‐bed rivers and gravel‐bed rivers. The guidelines relate to bedload measurements made with pressure‐difference (Helley‐Smith type) samplers that require numerous bedload samples of short duration at several positions across the channel. The results show that generally more sampling positions across the channel are required in gravel‐bed rivers than in sand‐bed rivers. For gravel‐bed rivers with unknown cross‐channel distribution of transport, at least 10 sampling positions are recommended, whereas for most sand‐bed rivers five positions suffice. In addition, at least 12 short‐duration samples are required at each position to obtain bedload estimates with uncertainties below 20%. If the same level of uncertainty is desired in the case of high spatial and temporal variation in transport rates, the number of short‐duration samples needed per sampling position increases to 40.  相似文献   

2.
以往对沙波的研究多针对河流中下游、河口海岸段的细沙(粒径D<1 mm),而长江上游等卵砾石输移河段(D>2 mm)是否会出现沙波以及卵砾石沙波的临界条件,尚需开展进一步研究。通过长江上游九堆子、筲箕背等卵石滩的现场踏勘,观察到明显的天然沙波形态。采用中值粒径D50=1.8 mm和5.3 mm的天然沙和D50=4.8 mm的轻质沙进行水槽试验,成功模拟出砾石沙波。根据恒定均匀流条件下,产生沙波的比降、水位、流量等水流条件及试验沙的粒径、比重,提出卵砾石沙波的临界条件公式。结果表明,卵砾石沙波的临界条件可以用量纲起动功率w* 、R/D及比降S表达,并据此提出判别系数GDcr。当研究河段的卵砾石输移带上的水流条件满足判别系数GDcr,则可以判断能够产生沙波现象。  相似文献   

3.
The present research was carried out by using artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), cokriging (CK) and ordinary kriging (OK) using the rainfall and streamflow data for suspended sediment load forecasting. For this reason, the time series of daily rainfall (mm), streamflow (m3/s), and suspended sediment load (tons/day) data were used from the Kojor forest watershed near the Caspian Sea between 28 October 2007 and 21 September 2010 (776 days). Root mean square error, efficiency coefficient, mean absolute error, and mean relative error statistics are used for evaluating the accuracy of the ANN, ANFIS, CK, and OK models. In the first part of the study, various combinations of current daily rainfall, streamflow and past daily rainfall, streamflow data are used as inputs to the neural network and neuro-fuzzy computing technique so as to estimate current suspended sediment. Also, the accuracy of the ANN and ANFIS models are compared together in suspended sediment load forecasting. Comparison results reveal that the ANFIS model provided better estimation than the ANN model. In the second part of the study, the ANN and ANFIS models are compared with OK and CK. The comparison results reveal that CK was a better estimation than the OK. The ANFIS and ANN models also provided better estimation than the OK and CK models.  相似文献   

4.
We discuss the present-day sediment transport by rivers, and hence the erosion rate in upstream basins, based on the example of Taiwan Rivers where large datasets are available. After data correction, the values of the suspended sediment load in the lower Kaoping River are nearly three times smaller than those from the literature. On the other hand, we add the bed load evaluated from numerical modelling, despite limitations from data and models. Whereas the contribution of the chemical denudation rate in Taiwan is minor, the bed load is significant and must be evaluated. We point out that biases in data collection may favour high values of suspended load data, and that large series of datasets are needed to reduce uncertainties and smooth the time variability effect. To cite this article: F.-C. Li et al., C. R. Geoscience 337 (2005).  相似文献   

5.
This paper evaluates the performance of three soft computing techniques, namely Gene-Expression Programming (GEP) (Zakaria et al 2010), Feed Forward Neural Networks (FFNN) (Ab Ghani et al 2011), and Adaptive Neuro-Fuzzy Inference System (ANFIS) in the prediction of total bed material load for three Malaysian rivers namely Kurau, Langat and Muda. The results of present study are very promising: FFNN (R 2 = 0.958, RMSE = 0.0698), ANFIS (R 2 = 0.648, RMSE = 6.654), and GEP (R 2 = 0.97, RMSE = 0.057), which support the use of these intelligent techniques in the prediction of sediment loads in tropical rivers.  相似文献   

6.
Sediments contained in the river bed do not necessarily contribute to morphological change. The finest part of the sediment mixture often fills the pores between the larger grains and can be removed without causing a drop in bed level. The discrimination between pore‐filling load and bed‐structure load, therefore, is of practical importance for morphological predictions. In this study, a new method is proposed to estimate the cut‐off grain size that forms the boundary between pore‐filling load and bed‐structure load. The method evaluates the pore structure of the river bed geometrically. Only detailed grain‐size distributions of the river bed are required as input to the method. A preliminary validation shows that the calculated porosity and cut‐off size values agree well with experimental data. Application of the new cut‐off size method to the river Rhine demonstrates that the estimated cut‐off size decreases in a downstream direction from about 2 to 0·05 mm, covariant with the downstream fining of bed sediments. Grain size fractions that are pore‐filling load in the upstream part of the river thus gradually become bed‐structure load in the downstream part. The estimated (mass) percentage of pore‐filling load in the river bed ranges from 0% in areas with a unimodal river bed, to about 22% in reaches with a bimodal sand‐gravel bed. The estimated bed porosity varies between 0·15 and 0·35, which is considerably less than the often‐used standard value of 0·40. The predicted cut‐off size between pore‐filling load and bed‐structure load (Dc,p) is fundamentally different from the cut‐off size between wash‐load and bed‐material load (Dc,w), irrespective of the method used to determine Dc,p or Dc,w. Dc,w values are in the order of 10?1 mm and mainly dependent on the flow characteristics, whereas Dc,p values are generally much larger (about 100 mm in gravel‐bed rivers) and dependent on the bed composition. Knowledge of Dc,w is important for the prediction of the total sediment transport in a river (including suspended fines that do not interact with the bed), whereas knowledge of Dc,p helps to improve morphological predictions, especially if spatial variations in Dc,p are taken into account. An alternative to using a spatially variable value of Dc,p in morphological models is to use a spatially variable bed porosity, which can also be predicted with the new method. In addition to the morphological benefits, the new method also has sedimentological applications. The possibility to determine quickly whether a sediment mixture is clast‐supported or matrix‐supported may help to better understand downstream fining trends, sediment entrainment thresholds and variations in hydraulic conductivity.  相似文献   

7.
沙洲是塑造分汊型河道最重要的形态因子,其发育与蚀退由于上游来水来沙变化呈现冲淤交替,从而影响分汊河道输水输沙平衡.通过单个卵石沙洲的淤积和冲刷试验,揭示不同加沙速率、粒径和来流量条件下,沙洲淤积和冲刷规律,并建立简化理论模型分析沙洲淤积速率.结果表明,4组加沙试验中,分流点后出现明显淤积下延至洲头,左汊和右汊成为输沙通道,洲尾中心线两侧的左右汊道有泥沙淤积,洲尾未出现淤积.7组清水冲刷试验中,洲头最先承受冲刷和蚀退,并沿洲体冲刷延伸,洲头冲刷的泥沙沿左右汊水流带到下游,洲尾未出现明显冲刷.卵石沙洲以洲头淤积为主导发育模式,泥沙粒径、洲头坡角和分流角是决定淤积速率的关键因子.  相似文献   

8.
对于山区河流低坝而言,平时淤积在坝前的推移质粗沙可能会在洪水期集中翻越坝顶,形成高强度输沙。本文开展水槽试验,研究推移质粗沙自上游起动、推进、再翻越坝顶后向下游输移的过程,分析了输沙参数的变化特性及数理规律,描述了翻坝输沙模式及运动特征,揭示了输沙规律与河床形态之间的自然联系。取得如下认识:①输沙量随时间大致以幂函数规律增长。②低坝附近区域河床形态终将趋于稳定,上游和下游均形成相对稳定的曲面斜坡淤积体。③在不同的水流强度下推移质翻坝输移模式存在差异。对于一般水流强度工况,上游淤积体曲面斜坡表面泥沙颗粒以滚动或滑动模式起动,推移至接近坝顶位置时再跃移翻坝,后向下游输移;对于更高水流强度工况,后期的翻坝输沙模式可能发生显著转变,周期性边壁漩涡成为翻坝输沙的主要动力来源。  相似文献   

9.
对于山区河流低坝而言,平时淤积在坝前的推移质粗沙可能会在洪水期集中翻越坝顶,形成高强度输沙。本文开展水槽试验,研究推移质粗沙自上游起动、推进、再翻越坝顶后向下游输移的过程,分析了输沙参数的变化特性及数理规律,描述了翻坝输沙模式及运动特征,揭示了输沙规律与河床形态之间的自然联系。取得如下认识:①输沙量随时间大致以幂函数规律增长。②低坝附近区域河床形态终将趋于稳定,上游和下游均形成相对稳定的曲面斜坡淤积体。③在不同的水流强度下推移质翻坝输移模式存在差异。对于一般水流强度工况,上游淤积体曲面斜坡表面泥沙颗粒以滚动或滑动模式起动,推移至接近坝顶位置时再跃移翻坝,后向下游输移;对于更高水流强度工况,后期的翻坝输沙模式可能发生显著转变,周期性边壁漩涡成为翻坝输沙的主要动力来源。  相似文献   

10.
Interactions between catchment variables and sediment transport processes in rivers are complex, and sediment transport behaviour during high‐flow events is not well documented. This paper presents an investigation into sediment transport processes in a short‐duration, high‐discharge event in the Burdekin River, a large sand‐ and gravel‐bed river in the monsoon‐ and cyclone‐influenced, semi‐arid tropics of north Queensland. The Burdekin's discharge is highly variable and strongly seasonal, with a recorded maximum of 40 400 m3 s?1. Sediment was sampled systematically across an 800 m wide, 12 m deep and straight reach using Helley‐Smith bedload and US P‐61 suspended sediment samplers over 16 days of a 29‐day discharge event in February and March 2000 (peak 11 155 m3 s?1). About 3·7 × 106 tonnes of suspended sediment and 3 × 105 tonnes of bedload are estimated to have been transported past the sample site during the flow event. The sediment load was predominantly supply limited. Wash load included clay, silt and very fine sand. The concentration of suspended bed material (including very coarse sand) varied with bedload transport rate, discharge and height above the bed. Bedload transport rate and changes in channel shape were greatest several days after peak discharge. Comparison between these data and sparse published data from other events on this river shows that the control on sediment load varies between supply limited and hydraulically limited transport, and that antecedent weather is an important control on suspended sediment concentration. Neither the empirical relationships widely used to estimate suspended sediment concentrations and bedload (e.g. Ackers & White, 1973) nor observations of sediment transport characteristics in ephemeral streams (e.g. Reid & Frostick, 1987) are directly applicable to this river.  相似文献   

11.
It is generally accepted that a gravel-bed river will aggrade if the supply of sediment to the river is increased. In a series of flume experiments using constant discharge and gravel feed rate, sand feed rates were increased to 6.1 times that of gravel. The slope of the bed decreased with increasing sand supply, indicating that the increased sediment load could be transported at the same rate due to a decrease in shear stresses. These results extend previous experiments to a wider range of boundary conditions. A recent surface transport model is used to predict the changes in bed composition and transport using the same sediment supply composition and feed rates as in the laboratory experiments. This model reasonably predicts a decrease in the reference shear stresses of the sand and gravel fractions as the sand supply is increased. An increase in sand supply can increase the mobility of gravel fractions in the stream bed, which can lead to bed degradation and preferential evacuation of these sediments from the river.  相似文献   

12.
《Geodinamica Acta》2013,26(1-2):35-52
Non-invasive techniques to continuously measure the rates or intensities of bedload transport in gravel bed rivers would be quite useful for both research and practice. Since 1986 measurements have been made with piezoelectric bedload impact sensors (PBIS) in several mountain torrents. In 1994 and 1995, a calibration campaign was carried out at a water intake in the Pitzbach mountain stream in Austria, where weighing cells and a water pressure sensor in the settling basin allow sediment transport loads to be determined in 15 minute intervals. Daily averages of PBIS impulses correlate reasonably well with the measured sediment load. Using a linear calibration relation, the relative error between predicted and measured sediment loads is within a factor of about 1.5 to 2. The scatter between PBIS impulses and bedload volumes is much larger if the measurements are averaged over one hour intervals or when the original 15 minute values are considered. A comparison with measurements from the Swiss Erlenbach torrent and from laboratory experiments using sediment particles from the Erlenbach torrent indicates that the proportionality coefficient between PBIS impulses and sediment load appears to depend on site specific conditions, including factors such as flow intensity and sediment properties.  相似文献   

13.
The grain‐scale topography of a sediment surface is a key component of a fluvial system, affecting aspects including sediment transport, flow resistance and ecology. However, its effect is hard to quantify because of the need for grain‐scale elevation data from in situ fluvial gravel surfaces which are difficult to collect. The sediment surface properties are, therefore, commonly estimated as a function of the sediment grain‐size distribution; however, because of additional factors, such as grain packing and shape, there is not necessarily a unique relationship between the two. A new methodology has been developed that uses terrestrial laser scanning to collect grain‐scale topographic data from in situ fluvial gravel surfaces, from which digital terrain models are created. This paper investigates methods of analysing such digital terrain models, and possible sedimentological interpretations that can be drawn from the analysis. Eleven digital terrain models from exposed gravel surfaces in two contrasting rivers (the River Feshie and Bury Green Brook) were analysed by calculating: the distribution of surface elevations, semivariograms, surface inclinations, surface slopes and aspects and grain orientation. The distribution of surface elevations and surface slope and aspect analysis were found to be most informative. In the River Feshie, grain‐size was interpreted as being a dominant control on sediment surface structure and gravel imbrication was identified. In Bury Green Brook, the location of the digital terrain models within the riffle–pool sequence was the dominant control on surface structure and grain orientation. Such digital terrain models therefore provide a new approach to measuring and quantifying the topography of fluvial sediment surfaces.  相似文献   

14.
A hierarchical typology for the channels and bars within aggradational wandering gravel-bed rivers is developed from an examination of a 50 km reach of lower Fraser River, British Columbia, Canada. Unit bars, built by stacking of gravelly bedload sheets, are the key dynamic element of the sediment transfer system, linking sediment transport during individual freshets to the creation, development and remoulding of compound bar platforms that have either a lateral or medial style. Primary and secondary unit bars are identified, respectively, as those that deliver sediment to compound bars from the principal channel and those that redistribute sediment across the compound bar via seasonal anabranches and smaller channels. The record of bar accretion evident in ground-penetrating radar sequences is consistent with the long-term development of bar complexes derived from historical aerial photographs. For two compound bars, inter-annual changes associated with individual sediment transport episodes are measured using detailed topographic surveys and longer-term changes are quantified using sediment budgets derived for individual bars from periodic channel surveys. Annual sediment turnover on the bars is comparable with the bed material transfer rate along the channel, indicating that relatively little bed material bypasses the bars. Bar construction and change are accomplished mainly by lateral accretion as the river has limited capacity to raise bed load onto higher surfaces. Styles of accretion and erosion and, therefore, the major bar form morphologies on Fraser River are familiar and consistent with those in gravelly braided channels but the wandering style does exhibit some distinctive features. For example, 65-year histories reveal the potential for long sequences of uninterrupted accretion in relatively stable wandering rivers that are unlikely in braided rivers.  相似文献   

15.
河床粗化过程中推移质输移特征试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究河床粗化破坏与形成过程中推移质的输移特征,基于一套新型的接沙系统,在上游无来沙条件下,进行了3组不同床沙级配的水槽试验,研究了递增梯级流量作用下河床粗化破坏与形成的过程,采集到一套高精度(0.1 g)、高频率(1 Hz)的实时推移质输沙率及分时段输沙级配数据,分析了累积输沙量、输沙率及输沙级配的变化特征。结果表明,粗化过程中累积输沙量随时间基本呈幂函数规律增长,且"粗化破坏再形成"的累积输沙量曲线出现明显转折点;推移质输沙率表现出明显的非恒定性,其粗化形成阶段的耗时要远大于粗化破坏阶段的时间,两者之比范围为3.5~20.5;推移质输沙级配中粗颗粒比例随时间变化趋势与输沙率相似,在输沙率达到峰值附近时,输沙级配与原始床沙级配相同。  相似文献   

16.
采用图像识别与推移质动态监测技术,开展基于双峰型非均匀推移质的系列水槽试验.通过引入反映床面粗糙度、粘性底层特性与颗粒非均匀度η(粗细比)的综合水流强度函数Ψb、特征弗劳德数Frb,系统研究了不同水流强度与床沙组成条件下的推移质输移特性以及颗粒非均匀度对输沙率的影响.通过对关键因子的辨识与量纲分析,提出了双峰型非均匀推移质输移模式,建立了基于近壁特征因子的水流强度Ψb与非均匀推移质输移强度Φ'的函数关系.对双峰型底沙输移机理的分析表明,非均匀沙的组成特征使得η成为影响Φ'的重要参量;正是细粒对粗粒的解怙作用对粗沙运动产生重要影响,使推移质输移率与颗粒非均匀度间呈现驼峰关系,峰值对应的粗细比ηc约为3∶7.  相似文献   

17.
The partitioning of the total sediment load of a river into suspended load and bedload is an important problem in fluvial geomorphology, sedimentation engineering and sedimentology. Bedload transport rates are notoriously hard to measure and, at many sites, only suspended load data are available. Often the bedload fraction is estimated with ‘rule of thumb’ methods such as Maddock’s Table, which are inadequately field‐tested. Here, the partitioning of sediment load for the Pitzbach is discussed, an Austrian mountain stream for which high temporal resolution data on both bedload and suspended load are available. The available data show large scatter on all scales. The fraction of the total load transported in suspension may vary between zero and one at the Pitzbach, while its average decreases with rising discharge (i.e. bedload transport is more important during floods). Existing data on short‐term and long‐term partitioning is reviewed and an empirical equation to estimate bedload transport rates from measured suspended load transport rates is suggested. The partitioning averaged over a flood can vary strongly from event to event. Similar variations may occur in the year‐to‐year averages. Using published simultaneous short‐term field measurements of bedload and suspended load transport rates, Maddock’s Table is reviewed and updated. Long‐term average partitioning could be a function of the catchment geology, the fraction of the catchment covered by glaciers and the extent of forest, but the available data are insufficient to draw final conclusions. At a given drainage area, scatter is large, but the data show a minimal fraction of sediment transported in suspended load, which increases with increasing drainage area and with decreasing rock strength for gravel‐bed rivers, whereby in large catchments the bedload fraction is insignificant at ca 1%. For sand‐bed rivers, the bedload fraction may be substantial (30% to 50%) even for large catchments. However, available data are scarce and of varying quality. Long‐term partitioning varies widely among catchments and the available data are currently not sufficient to discriminate control parameters effectively.  相似文献   

18.
沙质河床冲刷过程中床沙级配的模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了沙质河床冲刷过程中床沙级配的模拟方法。在该方法中采用了新的描述床沙级配变化的动力学方程和床沙级配在交换层内垂向变化与水流强度、河床冲刷强度的关系,反映了冲刷过程中交换层内向床面补充的物理过程。通过室内实验率定了相关参数,建立了床沙级配变化动力学方程的数值求解方法,模拟了床沙冲刷粗化。计算结果与室内实验结果符合较好,表明所建议的方法反映了河床冲刷中床沙级配变化的物理事实,可用于沙质河床冲刷粗化模拟。  相似文献   

19.
Hilda Glacier, a small cirque glacier in the Canadian Rocky Mountains, yields two principal types of sediment: ablation till, deficient in fine material and produced by rockfalls and avalanches falling on to the glacier surface, and basal lodgement till, rich in fines and formed mainly by subglacial erosion. Recent recession from its Neoglacial maximum has exposed large areas of basal till with thin veneers of ablation till which, when combined with present subglacial and supraglacial debris, provide abundant material for erosion and transport by the mcltwatcr stream. Sediment transport measurements over two summers (1977–1978) showed that bed load and suspended load occur in approximately equal proportions and that dissolved loads are minor. Local source variations, especially bank slumps, are a major cause of scatter in sediment rating curves. Suspended-sediment concentrations are greater early in the melt season due to availability of loose sediment produced by freezing and thawing. Other contributors to scatter in suspended-sediment rating curves include rain showers and diurnal hysteretic effects. Although the distinction between bed load and suspended load is never sharp, available data suggest that the sand/ gravel grain-size boundary (-1ø) approximates the suspendcd-load/bed-load division for characteristic Hilda flows transporting gravel. This approximation, combined with till grain-size analyses, suspended-sediment measurements, and spatial distributions of till types, leads to the following computations of fluvial sediment sources: for suspended load - 6% supraglacial, 47% subglacial, 47% channel banks; for bed load - 46% supraglacial, 27% each subglacial and channel banks. Supraglacial debris provides only about one-fourth of all fluvial sediment, but nearly half of the bed load.  相似文献   

20.
The ability to predict bedform migration in rivers is critical for estimating bed material load, yet there is no relation for predicting bedform migration (downstream translation) that covers the full range of conditions under which subcritical bedforms develop. Here, the relation between bedform migration rates and transport stage is explored using a field and several flume data sets. Transport stage is defined as the non‐dimensional Shields stress divided by its value at the threshold for sediment entrainment. Statistically significant positive correlations between both ripple and dune migration rates and transport stage are found. Stratification of the data by the flow depth to grain‐size ratio improved the amount of variability in migration rates that was explained by transport stage to ca 70%. As transport stage increases for a given depth to grain‐size ratio, migration rates increase. For a given transport stage, the migration rate increases as the flow depth to grain‐size ratio gets smaller. In coarser sediment, bedforms move faster than in finer sediment at the same transport stage. Normalization of dune migration rates by the settling velocity of bed sediment partially collapses the data. Given the large amount of variability that arises from combining data sets from different sources, using different equipment, the partial collapse is remarkable and warrants further testing in the laboratory and field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号