首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seepage analysis of the upper reservoir of the Kurdistan Azad pumped storage dam with a volume of 3.8E+5 m3 is a key step for selection of the optimized sealing method. More than 60% of the Lugeon test results show very permeable behavior for the pit and abutments of the reservoir. In this study, regarding the permeability value of the reservoir abutments and pit obtained by means of Lugeon tests, seepage rate was computed using various analytical and numerical methods. Reservoir total seepage discharge was computed in steady-state regime by means of analytical and numerical methods (SEEP/W finite element software) as 1.14E+05 and 1.15E+05 m3/day, respectively. Distinct element method (UDEC software) showed variable behavior for the seepage flow. In the reservoir initial impounding stages, the amount of seepage was very high (1.70E+06 m3/day). Then, the seepage rate decreased gradually and reached to a constant value (1.12E+05 m3/day). For the reservoir 3D modeling, Seep3D commercial software was used and has shown water seepage discharge of about 1.18E+05 m3/day, means 3% of total reservoir volume. Based on the above-mentioned results and regarding behavior of seepage in the initial impounding stages, sealing element is necessary to prevent from seepage phenomenon. Clay blanket, concrete lining, asphaltic concrete, and geosynthetic are the proposed methods in a large water reservoir. After a feasibility study on various sealing methods, geomembrane was suggested as the best sealing method with the reasonable implementation cost.  相似文献   

2.
Though the geologic barrier surrounding a dam reservoir plays an important role in preventing water seepage to the outside of a reservoir, a detailed survey to assess bedrock conditions of the whole reservoir boundary is seldom performed when designing a dam. In this study, a variety of investigations and analyses have been conducted to reveal a seepage phenomenon through a reservoir boundary composed of highly fractured metamorphic rocks at the Daechung multipurpose dam. At the study site, groundwater levels at monitoring wells located close to a reservoir tend to change proportionally to reservoir water levels, usually with a rapid response time of 1 day or less. Soil moisture content also changes with respect to the reservoir water level, and the area where seepage from the reservoir is a possibility has a relatively high soil moisture content. The similarity of measured seepage rates at the outflow site and the seepage rate estimated by Darcy’s law suggests strong connectivity and high density of the fractures. The estimated seepage rate using a numerical model for the northernmost valley (Zone 1) is approximately 127.2 m3/day in the case of high reservoir water level and 24.3 m3/day in the case of low water level. Continuous monitoring to obtain time series data for water levels, quality, and bedrock displacement is recommended to assess the sustainable stability of this geologic barrier.  相似文献   

3.
The Doosti Dam was built across the Harirood River on the border between Turkmenistan and Iran. During the reservoir impounding, leakage occurred as new springs through the sandstone layers of the Pesteleigh Aquifer and limy sandstone and limestone layers of the Neyzar–Kalat Aquifer, at the right abutment of the dam. To evaluate the grout curtain operation, a tracer test was carried out by injection of Uranine in a borehole located at the upstream of grout curtain in the Pesteleigh Aquifer. Tracer test results demonstrated a diffuse flow component through the grout curtain in the Pesteleigh Aquifer, but no tracer was detected at the main leakage point, SP1 Spring, emerged downstream of grout curtain from the Neyzar–Kalat Aquifer. Using the spectral coherency function, the lag time between changes in the water level of the injection borehole and water level in the tracer detected boreholes or discharge of the tracer detected springs was determined. Linear regression analyses indicated that the estimated lag time by the time series analysis was close to the first arrival time of the tracer. Therefore, the estimated velocities based on the lag time of time series could be considered close to the calculated velocities based on the first arrival time of the tracer. The estimated groundwater velocities based on the time series analysis ranged from 3.91 to 20.31 m h?1, showed that diffuse flow dominated pathways from the reservoir toward the downstream boreholes in the Neyzar–Kalat Aquifer, while conduit flow was present within the pathways toward the SP1 Spring. Regarding the reservoir volume, the negligible amount of leakage at the maximum water level of the reservoir confirmed well overall operation of the grout curtain at the dam site.  相似文献   

4.
Measured concentrations of environmental tracers in spring discharge from a karst aquifer in the Shenandoah Valley, USA, were used to refine a numerical groundwater flow model. The karst aquifer is folded and faulted carbonate bedrock dominated by diffuse flow along fractures. The numerical model represented bedrock structure and discrete features (fault zones and springs). Concentrations of 3H, 3He, 4He, and CFC-113 in spring discharge were interpreted as binary dilutions of young (0–8  years) water and old (tracer-free) water. Simulated mixtures of groundwater are derived from young water flowing along shallow paths, with the addition of old water flowing along deeper paths through the model domain that discharge to springs along fault zones. The simulated median age of young water discharged from springs (5.7  years) is slightly older than the median age estimated from 3H/3He data (4.4  years). The numerical model predicted a fraction of old water in spring discharge (0.07) that was half that determined by the binary-dilution model using the 3H/3He apparent age and 3H and CFC-113 data (0.14). This difference suggests that faults and lineaments are more numerous or extensive than those mapped and included in the numerical model.  相似文献   

5.
Treatment of the seepage problems at the Kalecik Dam (Turkey)   总被引:10,自引:0,他引:10  
Sedat Turkmen   《Engineering Geology》2003,68(3-4):159-169
This paper describes the seepage prevention measures at Kalecik Dam. Water leaked from the foundation of the dam after the impoundment. The dam, 77 m in height, was constructed for irrigation purposes.

The foundation consists of Mesozoic ophiolite, Paleocene allochthonous units composed of different lithologies and Miocene conglomerate. Karstified and fractured Paleocene limestone outcrops on the right bank of the dam foundation. This unit extends into, and its thickness increases within, the right abutment. The leakage occurs towards the downstream springs through the right bank limestone.

The main grout curtain is 200 m long and 60 m deep and was constructed on the right bank. After reservoir impounding, new springs were observed in the downstream area. Therefore, after the construction of the dam, remedial curtain grouting was required and carried out in three stages. Firstly, the main grout curtain was supplemented by additional grouting to seal the fractures and infill karstic cavities. The diversion tunnel was also repaired. The curtain depth was the same as the depth of the previous curtain. The second stage of additional treatment consisted of new deep grouting. Some investigation holes were also drilled along the same alignment as the main curtain to locate the seepage in the region. These holes were extended to an elevation of 442 m. The final stage of grouting measures was between the spillway and the dam body and underneath the spillway.

As a result of the additional grouting measures, the spring discharges observed downstream of the dam embankment decreased. However, the seepage paths were extended and were moved with time so that the seepage problems are still continuing.  相似文献   


6.
Glacial lake outburst flood (GLOF) is a powerful natural phenomenon that is very active in the Karakoram and Himalayas. This paper presents a case study from Gupis Tehsil in northern areas of Pakistan that is exposed to GLOFs from nine different glacial lakes in its upper catchment areas. Khukush Lake being the largest of all the glacial lakes has been studied and a flood attenuation model has been created for the whole Gupis Tehsil. This lake covers almost 2.2 km2 of surface area, and its calculated volume is 2.6 × 104 m3. In case of its outburst, the peak flow discharge is calculated to be 7,642 m3/s. The catchment area which contributes water and debris to the lake is 170 km2. This lake is dammed by a glacial moraine, which is not strong enough to sustain the pressure for a longer period of time. Other factors that are reducing the reliability of the dam are the secondary hazards which are in direct contact with the lake, and in case of their reactivation, they can put severe impacts on the dam. There are eight potential sites of the snow avalanche activity where debris along with snow may fall directly into the lake producing a strong wave. This strong wave of water will increase the pressure on the dam and ultimately will increase the probability for its outburst. The presense of water springs towards the downstream side of the natural dam also indicate the presence of hidden channels passing through the dam which may weaken the shear strength of the dam. Almost 24 villages settled along either sides of the Gupis River are critically studied for the expected flood from Khukush Lake. With few exceptions, almost 20–25 % area of all the villages will be affected from this flood.  相似文献   

7.
The main discharging sources of the Pabdeh karstic anticline in the southwest of Iran are two closely spaced springs called Bibitalkhone and Gariveh. Both springs have emerged about 200 m apart at the trend of a crushed zone resulted from the hidden Pabdeh thrust fault and a contact with salty-gypsum layers. Although superficially similar geological conditions of these springs, their discharge and water quality are different. The discharge, electrical conductivity (EC), and water type of the Bibitalkhone Spring are more than 2 m3/s, over 1000 μS/cm, and Cl–Na, respectively, while those of Gariveh Spring presented in order are 0.05 m3/s, less than 500 μS/cm, and HCO3–Ca (Mg). Hydrogeological, hydrochemical, tectonic, geomorphologic, and geophysical data were used to verify these diversities. The results marked that geological and tectonic settings of the area is governing different discharge rates and chemistry of the springs.  相似文献   

8.
On October 30, 2016, a seismic event and its aftershocks produced diffuse landslides along the SP 209 road in the Nera River Gorge (Central Italy). Due to the steep slopes and the outcropping of highly fractured and bedded limestone, several rockfalls were triggered, of which the main event occurred on the slope of Mount Sasso Pizzuto. The seismic shock acted on a rock wedge that, after an initial slide, developed into a rockfall. The debris accumulation blocked the SP 209 road and dammed the Nera River, forming a small lake. The river discharge was around 3.6 m3/s; the water overtopped the dam and flooded the road. By a preliminary topographic survey, we estimated that the debris accumulation covers an area of about 16,500 m2, while the volume is around 70,000 m3. The maximum volume occupied by the pre-existing talus mobilized by the rockfall is about 20% of the total volume. Besides blocking the road, the rockfall damaged a bridge severely, while, downstream of the dam, the water flow caused erosion of a road embankment. A rockfall protection gallery, a few hundred meters downstream of the dam, was damaged during the event. Other elastic nets and rigid barriers were not sufficient to protect the road from single-block rockfalls, with volumes around 1–2 m3. Considering the geological and geomorphological conditions, as well as the high seismicity and the socioeconomic importance of the area, a review of the entire rockfall protection systems is required to ensure protection of critical infrastructure and local communities.  相似文献   

9.
Water leakage paths in the Doosti Dam,Turkmenistan and Iran   总被引:2,自引:2,他引:0  
The Doosti Dam, with a reservoir capacity of 1,250 million cubic meters, was constructed on the Harirood River at the border of Turkmenistan and Iran. The reservoir is in direct contact with permeable formations on the right abutment of the dam including the Neyzar Sandstone, the Kalat Limestone and the Pesteleigh alternative layers of marlstone and sandstone. After the reservoir impoundment, several new springs and seepages emerged from these formations and the alluvium. The amount of leakage increased with the rise in reservoir water level. Fifteen kilograms of sodium fluorescein were injected into a 113-m deep borehole intersecting three permeable sandstone layers of the Pesteleigh formation. Dye was detected downstream of the grout curtain in boreholes and springs that were in direct contact with parts of the Pesteleigh formation having the same sandstone layers as the injection borehole. The dye velocity was in the range of diffuse flow, confirming the good performance of the grout curtain in the Pesteleigh formation. No dye was detected in the other formations because the injection borehole was not in direct contact with these formations. The hydraulic relation of the other formations with the reservoir was determined by considering direct contact of the formations with the reservoir, emergence of new springs and seepages after reservoir impoundment, correlation of time variations of the springs discharge and the borehole’s water level with the reservoir water level, and in some cases the hydrochemistry of the water. The results show that the Kalat and Neyzar formations are hydraulically connected to the reservoir, but the small amounts of leakage from these formations at a hydraulic gradient of 24% indicates good performance of the built grout curtain. The total reservoir leakage at maximum reservoir water level was 100 l/s which is insignificant compared with the 15 m3/s average annual release of the reservoir.  相似文献   

10.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

11.
A study on Lake Væng in Denmark demonstrates a high potential for loading of phosphorous via groundwater to seepage lakes. Groundwater discharges are displayed as an important source of phosphorous to a lake due to: (1) high concentrations in the aquifer just below the lake, and (2) the main flow paths through the aquifer–lakebed interface either being overland flow through a seepage face, or focused in zones with very high discharge rates. In-lake springs have measured discharge of up to 7.45 m3 per m2 of lakebed per day. These findings were based on seepage meter measurements at 18 locations, stable isotope (δ18O) analyses, temperature profiles and mapping of ice cover distribution. Groundwater–lake interaction was modelled with a 2D conceptual flow model (MODFLOW) with hydrogeology interpreted from catchment multi electrode profiling, on-lake ground-penetrating radar, well logging and borehole data. Discharge was found to be much focused and opposite to expected increase away from the shoreline. The average total phosphorus concentration in discharging groundwater sampled just beneath the lakebed was 0.162 mg TP/l and thereby well over freshwater ecological thresholds (0.043–0.612, median = 0.117 mg TP/l). The study illustrates a direct link between groundwater and lake chemistry.  相似文献   

12.
Akköprü Dam, which is under construction, is located at Dalaman Basin in the southwest of Turkey. The base rock at the Akköprü dam site and reservoir area is autochthon Akta? limestone and Gökseki flysch formation. Allochthon Cehennem Deresi limestone, a complex series of ferro- (melange) and peridotite–serpentine units, overlay this unit with tectonic contact. These units are covered by young sedimentary series. The outcrops of karstified Akta? limestone are observed at 2 km upstream of the dam site, at the right reservoir abutment. This unit is very permeable and the groundwater level is very deep, 100–116 m below the Dalaman riverbed. After impoundment, 250,000 m2 of this unit will be submerged. Groundwater which percolates in this unit discharges at the coastal springs. This study analyzed the watertightness of Akköprü reservoir related to the karstified limestone in the left reservoir bank and discussed possible options of remedial works to reduce seepage.  相似文献   

13.
The geomorphology of the Lar Valley in the Northeast of Tehran, the Capital of Iran, is under the geological influence of the Central Alborz, in which the different geological formations are folded and thrust, time and again over each other by faults, creating the heights. The Damavand volcano is located to the east of Lar Valley, appearing in the heights of Alborz at the point of deviation in the structural strike of Alborz chain and along the faults during the quaternary period. The physiographic, landslide phenomenon, rock fall, valleys, water courses and alluvial fans in the Lar Valley were reviewed and studied according to aerial photographs, satellite images and field observations from the aspect of their susceptibility to the impact of faults. The results indicate that 80% of the peaks and high mountains in Lar Valley are created and influenced by the action of overthrust faults. Ninety percent of the land and rock sinking are located in the intermediate regions between the faults, and they are believed to be the results of fault impacts. Seven out of the nine cases of landslide in Lar are located on or in the margin of the faults depicting the latter’s influence. The floor ratios of eight valleys were calculated and it was determined that in addition to the impacts of faults on creating the valleys, the situation of most of these along the margins of the faults as well as seven valleys are influenced by faults. The slope of rivulets and auxiliary rivers and their angles in relation to each other and the main river were calculated. The results showed that seven rivulets were under the influence of faults. Fifty-nine percent of the alluvial fans in Lar Valley were greatly influenced by faults, whereas 49% were under their normal impact. The supposition in this study is that the results can be used to identify faults and their characteristics.  相似文献   

14.
The seepage occurrence from the reservoir on the right bank of the Akde?irmen Dam located in Afyonkarahisar province in the Turkey has been investigated. When the reservoir began to fill with water, a large amount of water seepage occurred at the dam. The seepage developed at the base of the spillway and the right downstream slope of the dam. The various attempts have been made to reduce the seepage using grouting. Although the additional grouting operations was reduced the seepage at the base of the spillway, there has not been a reduction in seepage at the water outlet location at the downstream slope. Electrical resistivity measurements along the eight lines with the dipole–dipole array and dye tracer tests were performed in order to identify the seepage locations. The interpretation of electrical resistivity data showed the distribution of strata and the seepage zone along the right downstream of the dam. Groundwater flow rates calculated from dye tests indicated that there is an excessive seepage south-eastwardly on the downstream slope of the dam. Integrated interpretation of resistivity data and dye tests indicate that the seepage paths are in the direction from NW to E and SE.  相似文献   

15.
This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria’s capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.  相似文献   

16.
Bekonak dam and hydroelectric power plant are planned to be constructed on the Köprüçay river, 40 km east of the Antalya city. In the dam site and reservoir area, Köprüçay Conglomerates of Miocene age and the Bekonak Formation (sandstone-claystone) alternating with each other crop out vertically. Köprüçay conglomerates, with the components of limestone fragments and carbonate texture, are karstic and permeable, whereas the Bekonak Formation is impermeable. At the northern edge of the reservoir area, the Olukköprü karst springs discharge at a minimum of 30 m3/s. These springs discharge mainly through vertical and subvertical joint systems. Intensive superficial karstification developed along the joint systems and the terrane reveals columns of rocks, called fairy chimneys. Olukköprü springs represent the discharge point for a large and continuous system of underground solution cavities. In the Köprüçay basin, there are numerous karstic features within the conglomerates. Within the reservoir area, Kuruköprü cave, with a length of 530 m, is an example of these caves developed within the conglomerates. In some parts of the reservoir area, where the groundwater level is lower than the surface-river elevation, a highly developed karstification zone is present within the fluctuation range of groundwater between depths of 40 and 50 m. The above-mentioned Kuruköprü cave is an active cave developed in the dam site and its vicinity. The solution conduits developed along the system of mostly vertical fractures and joints are interconnected, thus giving rise to a three-dimensional conduit network. On the other hand, a majority of these conduits have clay and calcite filling materials. Karstification in the dam site varies with depth exponentially. Data suggest that karstification has a vertical extention as deep as –220 m.  相似文献   

17.
Geologic problems related to dam sites in Jordan and their solutions   总被引:1,自引:0,他引:1  
The geologic structures associated with several selected dam sites in Jordan and the tectonic effects on dam foundations and reservoir margins are reviewed. Rock defects, especially discontinuities represented by faults and closely spaced, open joints are investigated. Related problems, such as loss of water from the reservoir by seepage and leakage within the dam foundation are evaluated. The regional seismicity is analyzed and a design earthquake is established for each dam site.

Two major embankment dams are investigated, together with two large proposed dams and several small dams.

This paper discusses in some detail the regional setting and site-specific geology, and the occurrence, size and inclination of faults and joints at each dam site. Moreover, the effects of the faults on the operational performance of each dam are described and specific techniques are used or proposed for remediation are outlined.

The study shows that the combination of faults and joint features cause leakage problems at the operational dams in Jordan. Although, preventive measures such as grouting have been implemented, further leakage and/or seepage problems are anticipated and a monitoring system is needed to control and foresee such problems.

Jordan is an earthquake-prone region. Consequently, it is recommended that the design of embankment dams in the vicinity of the Dead Sea-Jordan Valley Rift should include such considerations as dynamic loading and associated hazards, including embankment acceleration zoning, foundation liquefaction risk and rockhead rupture. The magnitude of the design earthquake at each dam site can be estimated following the guidelines of ICOLD (1989), which are based on probabilistic seismic hazard analysis.  相似文献   


18.
为研究库水位变动情况下面板不同缺陷的面板堆石坝渗透稳定特性,利用著名岩土分析软件Geo-studio的Seep/w与Slope/w模块,以浙江省临海市西部括苍镇境内某面板堆石坝为例,对不同土工膜缺陷及库水位变动工况的组合进行了渗流特性及稳定性的数值模拟分析,得到了浸润线,渗漏量及稳定性系数的变化曲线,计算结果表明:(1)面板一旦发生缺陷,静库水位下坝体的浸润线有一个明显的抬升,缺陷尺寸越大,浸润线高程越高,但是差异不大。库水位高程越高,静库水位下坝体内部的浸润线高程也就越高;(2)库水位水平越高,缺陷尺寸越大,坝体渗漏量也就越大;(3)库水位骤降下面板坝内部浸润线呈现先疏后密的规律,库水位下降速率越大,上游坝体浸润线疏的部分则越疏。在库水位骤降经过面板坝缺陷高程时,有一个浸润线突降的过程;(4)从整体上看,上游坝坡的稳定性系数要大于下游坝坡的稳定性系数;静库水位下,库水位水平越高,上游坝坡稳定性系数越大,而下游坝坡稳定性系数则越小,缺陷位置越高,稳定性系数越低;库水位骤降情况下上游坝坡稳定性系数随库水位下降呈现先下降后上升的趋势,下游坝坡则呈现一直上升的规律,一旦面板发生缺陷,稳定性系数较完整面板来说有一个较大幅度的下降,面板缺陷尺寸越大,稳定性系数整体上越小。  相似文献   

19.
Northeastern Morocco is characterised by a large number of surface geothermal manifestations. Thermal waters are hosted within sedimentary rocks, and in particular the Liassic dolomitic limestones act as a reservoir. The presence of geothermal waters is closely related to important fault systems. Meteoric water infiltrates along those fractures and faults, gets heated, and then returns to the surface through hydrothermal conduits. Most of the thermal waters are of Na–Cl and Ca–Mg–HCO3 types. In this paper different geochemical approaches were applied to infer the reservoir temperature. Na–K–Mg1/2 ternary diagram points to temperatures ranging from 100 to 180 °C. Cation geothermometers suggest an average reservoir temperature of about 100 °C. Mineral solution equilibria analysis yields temperatures ranging from 50 to 185 °C. The silica enthalpy mixture model gives an average value (about 110 °C) higher than that inferred from cation geothermometers.  相似文献   

20.
尹小涛  王水林  邓琴 《岩土力学》2009,30(Z2):440-445
以房县深峪沟病险水库黏土心墙坝为研究对象,对其渗流稳定和坝坡稳定性进行评估,目的是为加固设计提供参考。设计了校核洪水位、设计洪水位、正常蓄水位的稳定渗流计算,校核洪水位降到正常蓄水位、正常蓄水位降到死水位的非稳定流计算工况,其中正常蓄水位降到死水位的工况又设计了5种降速计算方案,利用自动搜索滑动面的Morgenstern-Price法计算了不同工况下的坝坡稳定性,分析发现:校核洪水位稳定渗流背水坡安全系数k<1.15,不满足工程稳定性要求;设计洪水位和正常蓄水位工况,安全系数k<1.25,不满足工程稳定性要求。校核洪水位到正常蓄水位的迎水坡满足k≥1.15的要求,背水坡不满足k≥1.15的要求;正常蓄水位到死水位迎水坡在设计的5种降速下均存在时间步不满足k≥1.25的要求,所以该水库属于病险库,需要加固处理  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号