首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detachment surfaces have important implications for structural restoration, burial-history and thermal modeling, hydrocarbon migration, and diagenesis. We present criteria to distinguish salt welds from shale detachments based on geophysical data from the inner Texas shelf. Here, the Paleogene detachment has been variously interpreted as salt or shale by different people. A newly reprocessed 8200 km2 (3200 mi2) 3D seismic volume provides excellent imaging of this detachment, which separates growth-faulted Oligocene–Miocene strata from the underlying, gently folded Cretaceous–Eocene section. Key criteria to evaluate detachment origins include seismic amplitude response, geometry, and relationship to supradetachment and subdetachment reflections. We argue that the detachment is a salt weld because (a) it is imaged as a high-amplitude, discrete reflection; (b) it has a ramp-flat geometry, cutting across underlying reflections; (c) it locally forms bowl-shaped depotroughs interpreted as former diapiric salt feeders; (d) it is overlain by seismically incoherent pods having high-amplitude tops and bases interpreted as remnant salt; and (e) in the depotroughs associated with former diapiric salt feeders the detachment has hints of upturned strata just beneath (possible halokinetic sequences). The inferred weld represents the evacuated remains of a patchy salt canopy emplaced across the study area during the Late Eocene to Early Oligocene. Preliminary examination beyond our study area suggests that this discontinuous canopy may have extended across most of the modern Texas shelf. Most of the salt was expelled from the canopy by loading from prograding Oligo–Miocene deltaic deposits.  相似文献   

2.
The stratigraphical organization of the Pliocene thrust‐top deposits cropping out at the front of the Southern Apennine thrust‐belt has been debated for a long time taking a great importance in the context of the geodynamics of the Central Mediterranean area. During this time, spreading episodes in the Apennine backarc zone alternate with important phases of overthrusting in the thrust‐belt. As a consequence, the Pliocene succession appears to be arranged in a series of stacked units, recording the poliphase tectonic history that leads to the building of the front of the southern Apennine thrust‐belt. Although there is not yet an accordance on the nature and position of the main unconformities bounding the thrust‐top units, all authors agree that the creation of new accommodation space is mainly ruled by contractional tectonics consequent to the eastward nappe propagation according to the Apennine vergence polarity. A detailed geological survey, carried out along a large portion of southern Apennine thrust‐belt front, running south of the Vulture volcano, allowed the collecting of new data concerning the basinal‐formation mechanisms acting during the sedimentation of Pliocene deposits. From this analysis, it is clear that even if contractional tectonics is the predominant factor controlling the creation or destruction of accommodation space, other mechanisms, as well as wedge uplift‐related extensional tectonics and eustasy, could have also played a significant role in the basin accommodation. In order the considered sector of southern Apennines can provide an useful example about the complex phenomena occurring at mountain belt front where the accommodation space results from a concomitance of eustatic and tectonic factors mainly linked to the accretionary wedge activity.  相似文献   

3.
We use three‐dimensional (3D) seismic reflection data to analyse the architecture of the footwall of a listric fault, in a gravitationally driven extensional system, in the north‐western Niger Delta. In contrast to conventional listric normal fault models with a single master listric fault plane the level of detachment switches from a deeper to shallower level. The footwall evolves through the generation of new master detachment faults and detachments, which transfers hanging wall rocks into the footwall. New detachments form by branching off pre‐existing detachment levels, cutting‐up through stratigraphy to the next mechanical weakness, separating discrete sections of extended strata. As a consequence a deeper, older array of seaward‐dipping, tilted extensional fault blocks is now located in the footwall beneath the master listric detachment fault. The structural complexity located below the master detachment fault highlights extensional episodes on separate detachment faults that are not captured in conventional listric models. We speculate that changes in the level of the detachment are caused by mechanical weaknesses controlled by lithology, pore pressure and episodes of sediment loading related to deltaic progradation.  相似文献   

4.
Formed during an early compressional period in the opening of North Atlantic Ocean, a Tertiary fold-thrust belt extends along the mid-to- southern part of the western coast of Spitsbergen. Complex thrust structures involve the basement (Caledonian and older) and many shallow dipping thrust faults dissect the overlying cover rocks (Devonian and younger) in Oscar II Land in the northern part of the belt. Some of these faults occur within the basement rocks with slivers or fault blocks of the cover rocks from south-western Brøggerhalvøya to innermost St. Jonsfjorden in north-eastern Oscar II Land. Six of the slivers contain Carboniferous rocks and one is a fault-bounded block with Devonian rocks. These steeply west-dipping faults form a complex fault system- EOFC (Engelskbukta-Osbornbreen Fault Complex) - within the basement area. The lithological units of the basement are separated by faults within the EOFC, which is structurally continuous with the Brøggerhalvøya fold-thrust zone to the north and is thought to continue to the fold-thrust zone on the south-eastern coast of St. Jonsfjorden. Some previous authors considered that the two lithologically contrasting Vendian diamictites and intervening Moefjellet Formation are stratigraphically continuous and defined two separate tilloid successions in the present area. This interpretation has been extended over the whole of western Spitsbergen. However, the present study indicates that these two tilloid formations and the Moefjellet Formation are separated by the faults, probably thrusts, within the EOFC and are not in a continuous stratigraphic relation. Therefore, the two-stage history of Vendian glaciation seems questionable.  相似文献   

5.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.  相似文献   

6.
Established models indicate that, before being breached, relay zones along rift borders can evolve either by lengthening and rotating during progressive overlap of growing fault segments (isolated fault model), or, by simply rotating without lengthening before breaching (coherent fault model). The spatio‐temporal distribution of vertical motions in a relay zone can thus be used to distinguish fault growth mechanisms. Depositional relay zones that develop at sea level and accommodate both deposition on the ramp itself as well as transfer of sediments from the uplifting footwall into the hangingwall depocentres and provide the most complete record of vertical motions. We examine the development of a depositional relay ramp on the border of the active Corinth rift, Greece to reconstruct fault interaction in time and space using both onshore and offshore (2D seismic lines) data. The Akrata relay zone developed over a period of ca. 0.5 Myr since the Middle Pleistocene between the newly forming East Helike Fault (EHF) that propagated towards the older, more established Derveni Fault (DF). The relay zone captured the Krathis River, which deposited prograding Gilbert‐type deltas on the sub‐horizontal ramp. Successive oblique faults record progressive linkage and basinward migration of accommodation along the ramp axis, whereas marine terraces record diachronous uplift in their footwalls. Although early linkage of the relay zone occurs, continuous propagation and linkage of the EHF onto the static DF is recorded before final beaching. Rotation on forced folds above the upward and laterally propagating normal faults at the borders of the relay zone represents the ramp hinges. The Akrata relay zone cannot be compared directly to a simple fault growth model because (1) the relay zone connects two fault segments of different generations; (2) multiple linkages during propagation was facilitated by the presence of pre‐existing crustal structures, inherited from the Hellenide fold and thrust belt. The linkage of the EHF to the DF contributed to the westward and northward propagation of the southern rift border.  相似文献   

7.
Abstract Low‐angle detachment faults and thrust‐sheet top basins are common features in foreland basins. However, in stratigraphic analysis their influence on sequence architecture is commonly neglected. Usually, only eustatic sea level and changing flexural subsidence are accounted for, and when deformation is considered, the emphasis is on the generation of local thrust‐flank unconformities. This study analyses the effects of detachment angle and repetitive detachment activation on stratigraphic stacking patterns in a large thrust‐sheet top basin by applying a three‐dimensional numerical model. Model experiments show that displacement over low‐angle faults (2–6°) at moderate rates (~5.0 m kyr?1) results in a vertical uplift component sufficient to counteract the background flexural subsidence rate. Consequently, the basin‐wide accommodation space is reduced, fluvio‐deltaic systems carried by the thrust‐sheet prograde and part of the sediment supply is spilled over towards adjacent basins. The intensity of the forced regression and the interconnectedness of fluvial sheet sandstones increases with the dip angle of the detachment fault or rate of displacement. In addition, the delta plain is susceptible to the formation of incised valleys during eustatic falls because these events are less compensated by regional flexural subsidence, than they would be in the absence of fault displacement.  相似文献   

8.
Listric extensional fault systems - results of analogue model experiments   总被引:2,自引:0,他引:2  
Abstract Analogue models are a powerful tool for investigating progressive deformation in extensional fault systems. This paper presents exciting new insights into the progressive evolution of hanging wall structures in listric extensional terranes. Analogue models, scaled to simulate deformation in a sedimentary sequence, were constructed for simple listric and ramp/flat listric extensional detachments. For each detachment geometry homogeneous sand, sand/mica and sand/clay models were used to simulate respectively, deformation of isotropic sediments, of anisotropic sediments and of sedimentary sequences with competency contrasts. Roll-over anticlines with geometrically necessary crestal collapse graben structures are characteristic of the steepening-upwards segments of listric extensional fault systems in all of our models. With progressive deformation, crestal collapse grabens show hanging wall nucleation of new faults. Variations in graben size, amount of fault rotation and throw, are dependent on detachment curvature and amount of extension. Individual faults and associated fault blocks may significantly change shape during extension. Complex and apparently conjugate fault arrays are the result of superposition of successive crestal collapse grabens. Ramp/flat listric extensional fault systems are characterized by a roll-over anticline and a crestal collapse graben system associated with each steepening-upwards segment of the detachment and a ramp zone consisting of a hanging wall syncline and a complex deformation zone with local reverse faults. The roll-over anticlines and crestal collapse graben are similar in geometry to those formed in simple listric extensional systems. The models demonstrate that the geometry of the detachments exerts a fundamental control on the evolution of hanging wall structures. Analysis of particle displacement paths for these experiments provides new insights into the mechanical development of roll-over anticlines. Two general models for deformation above simple listric and ramp/flat listric extensional detachments have been erected.  相似文献   

9.
In order to better understand the development of thrust fault‐related folds, a 3D forward numerical model has been developed to investigate the effects that lateral slip distribution and propagation rate have on the fold geometry of pre‐ and syn‐tectonic strata. We consider a fault‐propagation fold in which the fault propagates upwards from a basal decollement and along‐strike normal to transport direction. Over a 1 Ma runtime, the fault reaches a maximum length of 10 km and accumulates a maximum displacement of 1 km. Deformation ahead of the propagating fault tip is modelled using trishear kinematics while backlimb deformation is modelled using kink‐band migration. The applicability of two different lateral slip distributions, namely linear‐taper and block‐taper, are firstly tested using a constant lateral propagation rate. A block‐taper slip distribution replicates the geometry of natural fold‐thrusts better and is then used to test the sensitivity of thrust‐fold morphology to varied propagation rates in a set of fault‐propagation folds that have identical final displacement to length (Dmax/Lmax) ratios. Two stratigraphic settings are considered: a model in which background sedimentation rates are high and no topography develops, and a model in which a topographic high develops above the growing fold and local erosion, transport and deposition occur. If the lateral propagation rate is rapid (or geologically instantaneous), the fault tips quickly become pinned as the fault reaches its maximum lateral extent (10 km), after which displacement accumulates. In both stratigraphic settings, this leads to strike‐parallel rotation of the syn‐tectonic strata near the fault tips; high sedimentation rates relative to rates of uplift result in along‐strike thinning over the structural high, while low sedimentation rates result in pinchout against it. In contrast, slower lateral propagation rates (i.e. up to one order of magnitude greater than slip rate) lead to the development of along‐strike growth triangles when sedimentation rates are high, whereas when sedimentation rates are low, offflap geometries result. Overall we find that the most rapid lateral propagation rates produce the most realistic geometries. In both settings, time‐equivalent units display both nongrowth and growth stratal geometries along‐strike and the transition from growth to nongrowth has the potential to delineate the time of fault/fold growth at a given location. This work highlights the importance of lateral fault‐propagation and fault tip pinning on fault and fold growth in three dimensions and the complex syn‐tectonic geometries that can result.  相似文献   

10.
The Matakaoa Debris Flow (MDF) is a 200‐km‐long mass‐transport deposit resulting from the failure of the Matakaoa continental margin, northeast New Zealand, ca. 38–100 ky ago. In this study, high‐quality bathymetric and seismic reflection data are used to identify the morpho‐structural characters that reflect the kinematics of the MDF, as well as its interactions with basin sediments. We demonstrate how the transport energy, together with the local topography led to the present geometry and complex structure of the MDF deposits. The remarkable transport energy of the MDF is demonstrated by its dynamic impact on adjacent sedimentary series, including erosion of the substratum, shearing and compressional deformation. In the proximal zone of transport, momentous substratum erosion, demonstrated by giant tool marks and truncated sediments at the base of the debrite, triggered the excavation of a large volume (>200 km3) of basin sediments. The size of transported blocks (up to 3‐km long) is used to estimate the matrix yield strength in an early stage of transport. In the distal zone of transport, 100 km north of the source, seismic profiles show the propagation of thrust structures from the MDF into adjacent basin sediments. This study highlights that the remarkable volume of 2000 km3 of deposits partly resulted from the propagation of compressive structures within the basin sedimentary series to the front of the debrite.  相似文献   

11.
Graben systems in extensional settings tend to be segmented with evidence of segment interaction. To gain a better understanding of the evolution of structures formed during graben growth and interaction, we here study the Grabens area of Canyonlands National Park, Utah, where a wide range of such structures is well exposed. With the aid of 3D numerical models, we attempt to reproduce structures observed in that region and to understand controls on the structural style of graben interaction by varying the spacing between pre‐existing structures. The sensitivity of the system to the thickness of the salt layer is also tested. Four distinct types of structures are observed when the spacing between inherited weak zones is varied: (1) grabens connecting in a relay zone divided by a narrow central horst; (2) graben segments interacting via a secondary stepover graben; (3) grabens propagating alongside each other with limited segment interaction; and (4) an abandoned graben segment in a system of multiple competing grabens. The presence of a basal salt layer (Paradox Member) promotes efficient graben propagation. A comparison between the observed structures and the numerical model results indicates that the detachment salt layer is relatively thin in the study area.  相似文献   

12.
Deposition and subsidence analysis, coupled with previous structural studies of the Sevier thrust belt, provide a means of reconstructing the detailed kinematic history of depositional response to episodic thrusting in the Cordilleran foreland basin of southern Wyoming, western interior USA. The Upper Cretaceous basin fill is divided into five megasequences bounded by unconformities. The Sevier thrust belt in northern Utah and southwestern Wyoming deformed in an eastward progression of episodic thrusting. Three major episodes of displacement on the Willard‐Meade, Crawford and ‘early’ Absaroka thrusts occurred from Aptian to early Campanian, and the thrust wedge gradually became supercritically tapered. The Frontier Formation conglomerate, Echo Canyon and Weber Canyon Conglomerates and Little Muddy Creek Conglomerate were deposited in response to these major thrusting events. Corresponding to these proximal conglomerates within the thrust belt, Megasequences 1, 2 and 3 were developed in the distal foreland of southern Wyoming. Two‐dimensional (2‐D) subsidence analyses show that the basin was divided into foredeep, forebulge and backbulge depozones. Foredeep subsidence in Megasequences 1, 2 and 3, resulting from Willard‐Meade, Crawford and ‘early’ Absaroka thrust loading, were confined to a narrow zone in the western part of the basin. Subsidence in the broad region east of the forebulge was dominantly controlled by sediment loading and inferred dynamic subsidence. Individual subsidence curves are characterized by three stages from rapid to slow. Controlled by relationships between accommodation and sediment supply, the basin was filled with retrogradational shales during periods of rapid subsidence, followed by progradational coarse clastic wedges during periods of slow subsidence. During middle Campanian time (ca. 78.5–73.4 Ma), the thrust wedge was stalled because of wedge‐top erosion and became subcritical, and the foredeep zone eroded and rebounded because of isostasy. The eroded sediments were transported far from the thrust belt, and constitute Megasequence 4 that was mostly composed of fluvial and coastal plain depositional systems. Subsidence rates were very slow, because of post‐thrusting rebound, and the resulting 2‐D subsidence was lenticular in an east–west direction. During late Campanian to early Maastrichtian time, widespread deposits of coarse sediment (the Hams Fork Conglomerate) aggraded the top of the thrust wedge after it stalled, prior to initiation of ‘late’ Absaroka thrusting. Meanwhile Megasequence 5 was deposited in the Wyoming foreland under the influence of both the intraforeland Wind River basement uplift and the Sevier thrust belt.  相似文献   

13.
The outer Adriatic zones of the central Apennines (Italy) provide good conditions for analysing geometry and kinematics of the earliest normal faults, superposed onto the thrust belt. During the latest stages of thrusting onto the Adriatic foreland (late Pliocene–early Pleistocene), the outermost imbricates of the thrust belt were subjected to normal faulting, coeval with differential uplift. Crosscutting normal faults get younger towards the foreland, thus the easternmost normal faults record the latest stages of fault propagation and growth. The Caramanico fault, on the western flank of Mt. Maiella, is the largest outcropping normal fault of the outer zones. This high‐angle fault (dip > 70°) has cumulative offsets ≤ €4.2 km, and propagated with slip rates of 2.6 mm/year in a short time interval (≤ 1.6 Ma), concomitant with intense uplift of Mt. Maiella. In contrast with normal faults in a more internal position, the Caramanico fault maintains a high‐angle planar geometry, and does not reach the major basal detachment of the thrust belt. Thus the fault did not cause large extensional displacements; its major role was rather to accommodate ongoing components of vertical uplift of the overthickened thrust wedge. Downfaulting of the thrust belt on the western flank of Mt. Maiella represents the youngest end member of the same processes that have operated since 11 Ma in the Tyrrhenian hinterland, where large extensional strains and crustal thinning of the orogenic belt were achieved by long‐lasting activity of listric normal faults detached at lower crustal depths.  相似文献   

14.
《Basin Research》2018,30(Z1):424-436
Industry 2D and 3D seismic data across the North Taranaki Basin displays two listric normal faults that formed during Pliocene shelf edge clinoform progradation. The faults die out in the down‐transport direction with no evidence for contractional structures, except for two small thrust faults in one narrow zone. When active, the detachments lay at depths of about 1000 m below the seafloor. The overlying section had high initial porosities (30–60%). It is estimated that loss of about 17–20% pore volume by lateral compaction, and fluid expulsion over a distance of about 4–6 km in the transport direction occurred in place of folding and thrusting. Seismic and well evidence for abnormally highly compacted shales suggests there is about 6% less porosity than expected for in the prekinematic section, which possibly represents a residual of the porosity anomaly caused by lateral compaction. The observations indicate significant shortening (~20%) by lateral compaction and probably some layer parallel thickening are important deformation mechanisms in near‐surface deepwater sediments that needs to be incorporated into shortening estimates and ‘balanced’ cross‐sections. A key factor in listric fault initiation near the base of slope is inferred to be transient, increased pore fluid pressure due to lateral expulsion of fluids from beneath the prograding Giant Foresets Formation.  相似文献   

15.
Three‐dimensional (3D) modelling allows observation of geological features that may not be evident by classical two‐dimensional approaches. This is particularly important in the Pico del Águila anticline (Central External Sierras, Southern Pyrenees, Spain), a structure characterized by important geometrical variability in 3D. The Pico del Águila is a N–S‐trending fold, transverse to the E–W‐trending South‐Pyrenean thrust front, with well‐exposed growth strata that record the evolution of the structure and the influence of the South‐Pyrenean thrust front. Fold kinematics is complex and not precisely quantified. It is characterized by multiple folding mechanisms acting simultaneously in a heterogeneous stratigraphic sequence. To better understand the fold's structural evolution, 3D reconstruction and geomechanical restoration of the structure were performed. The restoration takes into account rock mechanical properties without assuming a specific kinematic model. Our work suggests that the growth of the structure was characterized by variable uplift/sedimentation rates through time and between fold limbs. The restoration also reveals that a combination of multiple folding mechanisms operated simultaneously in different units and structural domains during anti‐clinal growth. This has major implications in the understanding of detachment folds with associated growth strata, as such structures are described in many settings as potential traps for hydrocarbons and natural resources.  相似文献   

16.
《Basin Research》2018,30(Z1):65-88
Mass wasting is an important process in the degradation of deep‐water fold‐and‐thrust belts. However, the relationship between mass‐transport complex (MTC) emplacement and the timing and spatial progression of contractional deformation of the seabed have not been extensively studied. This study uses high‐quality, 3D seismic reflection data from the southern Magdalena Fan, offshore Colombia to investigate how the growth of a deep‐water fold‐and‐thrust belt (the southern Sinú fold belt) is recorded in the source, distribution and size of MTCs. More than nine distinct, but coalesced MTCs overlie a major composite basal erosion surface. This surface formed by multiple syn‐ and post‐tectonic mass‐wasting events and is thus highly diachronous, thereby recording a protracted period of tectonism, seascape degradation and associated sedimentation. The size and source location of these MTCs changed through time: the oldest ‘detached’ MTCs are relatively small (over 9–100 km2 in area) and sourced from the flanks of growing anticlines, whereas the younger ‘shelf‐attached’ MTCs are considerably larger (more than 200–300 km2), are sourced from the shelf, and post‐date the main phase of active folding and thrusting. Changes in the source, distribution and size of MTCs are tied to the sequential nucleation, amplification and along‐strike propagation of individual structures, showing that MTCs can be used to constrain the timing and style of contractional deformation, and seascape evolution in time and space.  相似文献   

17.
The Pakuashan anticline is uniquely suited for study of the forward and lateral growth of fault-related folds. The Pakuashan ridge development arises from the late Quaternary uplift of the most external thrust zone of the western foothills of Taiwan. From Kaoshiung to Taichung, recent and active westward thrusting occurs at the front of the foothills. The Pakuashan anticline, trending N 150°E in the northern part to N 000° in the southern part, has been active throughout the Quaternary period. This activity is marked by geological structures, tectonic geomorphology and seismicity. A multisource and multiscale approach to study of the continental collision setting has been undertaken to combine tectonics, sedimentology and geomorphology. Studies of fracture patterns allow identification of two main features of stress orientations: a WNW/ESE compression direction, and E–W and N–S extension directions. Quantitative geomorphic parameters have been used to define the morphotectonic evolution and to infer tectonic style along the mountain front. Geomorphic evidence provides significant information on the processes that govern lateral propagation of an active anticline. Quaternary terraces are uplifted, tilted and folded over the Pakuashan ridge. Drainage systems in areas of active compression give information on the thrust zone structures and their development. Steep drainage and high local relief indicate that the Pakuashan anticline forms a well-defined zone of high uplift, especially in the southern part. The two main controls on drainage in that area are rock strength in the hanging wall and propagation of the deformation towards the south.  相似文献   

18.
An extensive, reprocessed two‐dimensional (2D) seismic data set was utilized together with available well data to study the Tiddlybanken Basin in the southeastern Norwegian Barents Sea, which is revealed to be an excellent example of base salt rift structures, evaporite accumulations and evolution of salt structures. Late Devonian–early Carboniferous NE‐SW regional extensional stress affected the study area and gave rise to three half‐grabens that are separated by a NW‐SE to NNW‐SSE trending horst and an affiliated interference transfer zone. The arcuate nature of the horst is believed to be the effect of pre‐existing Timanian basement grain, whereas the interference zone formed due to the combined effect of a Timanian (basement) lineament and the geometrical arrangement of the opposing master faults. The interference transfer zone acted as a physical barrier, controlling the facies distribution and sedimentary thickness of three‐layered evaporitic sequences (LES). During the late Triassic, the northwestern part of a salt wall was developed due to passive diapirism and its evolution was influenced by halite lithology between the three‐LES. The central and southeastern parts of the salt wall did not progress beyond the pedestal stage due to lack of halite in the deepest evaporitic sequence. During the Triassic–Jurassic transition, far‐field stresses from the Novaya Zemlya fold‐and‐thrust belt reactivated the pre‐salt Carboniferous rift structures. The reactivation led to the development of the Signalhorn Dome, rejuvenated the northwestern part of the salt wall and affected the sedimentation rates in the southeastern broad basin. The salt wall together with the Signalhorn Dome and the Carboniferous pre‐salt structures were again reactivated during post‐Early Cretaceous, in response to regional compressional stresses. During this main tectonic inversion phase, the northwestern and southeastern parts of the salt wall were rejuvenated; however, salt reactivation was minimized towards the interference transfer zone beneath the centre of the salt wall.  相似文献   

19.
Assessing the thermal evolution of sedimentary basins over time is a major aspect of modern integrated basin analysis. While the behavior of clay minerals and organic matter with increasing burial is well documented in different geological and thermal settings, these methods are often limited by the temperature ranges over which they can be precisely applied and by the available material. Here, we explore the emergent Δ47 clumped isotope geospeedometry (based on the diffusional redistribution of carbon and oxygen isotopes in the carbonate lattice at elevated temperatures) to refine time‐temperature paths of carbonate rocks during their burial evolution. This study provides a reconstruction of the thermal and exhumation history of the Upper Cretaceous thrust belt series in the western subalpine massifs (Bauges and Bornes, French Alps) by a new approach combining for the first time available data from three independent geothermometers. The investigated area presents two zones affected by contrasting thermal histories. The most external zone has undergone a relatively mild thermal history (T < 70°C) and does not record any significant clay mineral diagenetic transformation. By contrast, the internal zone has experienced tectonic burial (prealpine nappes) in response to thrusting, resulting in overheating (T > 160–180°C) that induced widespread clay mineral diagenetic transformations (progressive illitization from R0 to R1 and R3 illite‐smectite mixed‐layers), organic matter maturation (oil window) and Δ47 thermal resetting with apparent equilibrium temperatures above 160°C. The three employed geothermal indicators conjointly reveal that the investigated Upper Cretaceous rocks have suffered a wide range of burial temperatures since their deposition, with a thermal maximum locally up to 160–180°C. High temperatures are associated with the tectonic emplacement of up to 4 km of prealpine nappes in the northern part of the studied area. Finally, a forward thermal modeling using Δ47, vitrinite reflectance and clay mineral data, is attempted to precisely refine the burial and exhumation histories of this area.  相似文献   

20.
Foreland basin systems   总被引:32,自引:1,他引:32  
A foreland basin system is defined as: (a) an elongate region of potential sediment accommodation that forms on continental crust between a contractional orogenic belt and the adjacent craton, mainly in response to geodynamic processes related to subduction and the resulting peripheral or retroarc fold-thrust belt; (b) it consists of four discrete depozones, referred to as the wedge-top, foredeep, forebulge and back-bulge depozones – which of these depozones a sediment particle occupies depends on its location at the time of deposition, rather than its ultimate geometric relationship with the thrust belt; (c) the longitudinal dimension of the foreland basin system is roughly equal to the length of the fold-thrust belt, and does not include sediment that spills into remnant ocean basins or continental rifts (impactogens). The wedge-top depozone is the mass of sediment that accumulates on top of the frontal part of the orogenic wedge, including ‘piggyback’ and ‘thrust top’ basins. Wedge-top sediment tapers toward the hinterland and is characterized by extreme coarseness, numerous tectonic unconformities and progressive deformation. The foredeep depozone consists of the sediment deposited between the structural front of the thrust belt and the proximal flank of the forebulge. This sediment typically thickens rapidly toward the front of the thrust belt, where it joins the distal end of the wedge-top depozone. The forebulge depozone is the broad region of potential flexural uplift between the foredeep and the back-bulge depozones. The back-bulge depozone is the mass of sediment that accumulates in the shallow but broad zone of potential flexural subsidence cratonward of the forebulge. This more inclusive definition of a foreland basin system is more realistic than the popular conception of a foreland basin, which generally ignores large masses of sediment derived from the thrust belt that accumulate on top of the orogenic wedge and cratonward of the forebulge. The generally accepted definition of a foreland basin attributes sediment accommodation solely to flexural subsidence driven by the topographic load of the thrust belt and sediment loads in the foreland basin. Equally or more important in some foreland basin systems are the effects of subduction loads (in peripheral systems) and far-field subsidence in response to viscous coupling between subducted slabs and mantle–wedge material beneath the outboard part of the overlying continent (in retroarc systems). Wedge-top depozones accumulate under the competing influences of uplift due to forward propagation of the orogenic wedge and regional flexural subsidence under the load of the orogenic wedge and/or subsurface loads. Whereas most of the sediment accommodation in the foredeep depozone is a result of flexural subsidence due to topographic, sediment and subduction loads, many back-bulge depozones contain an order of magnitude thicker sediment fill than is predicted from flexure of reasonably rigid continental lithosphere. Sediment accommodation in back-bulge depozones may result mainly from aggradation up to an equilibrium drainage profile (in subaerial systems) or base level (in flooded systems). Forebulge depozones are commonly sites of unconformity development, condensation and stratal thinning, local fault-controlled depocentres, and, in marine systems, carbonate platform growth. Inclusion of the wedge-top depozone in the definition of a foreland basin system requires that stratigraphic models be geometrically parameterized as doubly tapered prisms in transverse cross-sections, rather than the typical ‘doorstop’ wedge shape that is used in most models. For the same reason, sequence stratigraphic models of foreland basin systems need to admit the possible development of type I unconformities on the proximal side of the system. The oft-ignored forebulge and back-bulge depozones contain abundant information about tectonic processes that occur on the scales of orogenic belt and subduction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号