首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
As one of the mélanges in the southern side of the Yarlung-Zangbo suture zone,the Saiqu mélange in southern Tibet is important for understanding the evolution of the Neo-Tethys ocean.The age of the Saiqu mélange,however,has been debated due to the lack of reliable fossil evidence in matrix strata.Based on lithological similarities with platform strata in southern Tibet and limited fossils from exotic blocks,previous studies variously ascribed the Saiqu mélange to be Triassic in general,Late Triassic,or Late Cretaceous.Here we reported planktonic foraminiferal faunas from the matrix strata of the Saiqu mélange.The new fossils yield a Late Cretaceous age,which is so far the best age constraint for the mélange.Regional stratigraphic correlation indicates that the Cretaceous Oceanic Red Beds (CORBs)in Saiqu may be time equivalent to the CORBs of the Zongzhuo Formation in neighboring regions.Thus the Saiqu mélange should be correlated to the Upper Cretaceous Zongzhuo Formation rather than the Triassic Xiukang Group,as previously suggested.  相似文献   

2.
As one of the mélanges in the southern side of the Yarlung-Zangbo suture zone, the Saiqu mélange in southern Tibet is important for understanding the evolution of the Neo-Tethys ocean. The age of the Saiqu mélange, however, has been debated due to the lack of reliable fossil evidence in matrix strata. Based on lithological similarities with platform strata in southern Tibet and limited fossils from exotic blocks, previous studies variously ascribed the Saiqu mélange to be Triassic in general, Late Triassic, or Late Cretaceous. Here we reported planktonic foraminiferal faunas from the matrix strata of the Saiqu mélange. The new fossils yield a Late Cretaceous age, which is so far the best age constraint for the mélange. Regional stratigraphic correlation indicates that the Cretaceous Oceanic Red Beds (CORBs) in Saiqu may be time equivalent to the CORBs of the Zongzhuo Formation in neighboring regions. Thus the Saiqu mélange should be correlated to the Upper Cretaceous Zongzhuo Formation rather than the Triassic Xiukang Group, as previously suggested.  相似文献   

3.
Abstract: There is a group of variegated marine deposits, including the red beds widespread in the area of Tianba, Kangmar, southern Tibet, which previous works have contributed to Cretaceous Zongzhuo Formation by lithologic associations only, but with poor fossil evidence. Due to the absence of age dating fossils, the red bed age is obscure. Abundant Cretaceous radiolaria were discovered from the Zongzhuo Formation in the present study. In spite of the poor general preservation of some radiolarian specimens as recrystallized quartz infillings, 58 species from 46 genera of radiolaria, extracted from chert and silicous limestone of the Zongzhuo Formation in Kangmar, were identified on the basis of their shape and ornamentation. Based on the radiolaria, the age of the Zongzhuo Formation of this area has been referred to as Late Cretaceous. The new radiolarian data from the Zongzhuo Formation of Tianba area provide a local basis to correlate these deposits with other regions of the Tethyan Himalaya.  相似文献   

4.
The planktic foraminifera of the Chuangde Formation (Upper Cretaceous Oceanic Red Beds, CORBs) as exposed at Tianbadong section, Kangmar, southern Tibet has been firstly studied for a detailed for a detailed biostratigraphy elaboration. A rich and well-preserved planktic foraminifera were recovered from the Chuangde Formation of the Tianbadong section and the Globotruncanita elevata, Globotruncana ventricosa, Radotruncana calcarata, Globotruncanella havanensis, Globotruncana aegyptiaca, Gansserina gansseri and Abathomphalus mayaroensis zones have been recognized. The planktic foraminiferal assemblage points to an early Campanian to Maastrichitian age for the CORBs of the eastern North Tethyan Himalayan sub-belt, which also provides a better understanding of the shifting progress of the Indian Plate to the north and the evolution of the Neotethyan ocean. The lithostratigraphy of the Chuangde Formation of the Tianbadong section comprises two lithological sequences observed in ascending succession: a lower unit (the Shale Member) mainly composed of purple (cherry-red, violet-red) shales with interbedded siltstones and siliceous rocks; and an upper unit (the Limestone Member) of variegated limestones. The strata of the Chuangde Formation in the Tianbadong section are similar to CORBs in other parts of the northern Tethyan Himalaya area of Asia (Gyangze, Sa’gya, Sangdanlin, northern Zanskar, etc.). The fossil contents of the Chuangde Formation in the sections (CORBs) studied provide a means of correlation with the zonation schemes for those of the northern Tethyan Himalayan sub-belt and the Upper Cretaceous of the southern Tethyan Himalayan sub-belt. Paleogeographic reconstruction for the Late Cretaceous indicates that the Upper Cretaceous Chuangde Formation (CORBs) and correlatable strata in northern Zanskar were representative of slope to basinal deposits, which were situated in the northern Tethyan Belt. Correlatable Cretaceous strata in Spiti and Gamba situated in the southern Tethyan Belt in contrast were deposited in shelf environments along the Tethyan Himalayan passive margin. CORBs are most likely formed by the oxidation of Fe(II)-enriched, anoxic deep ocean water near the chemocline that separated the oxic oceanic surface from the anoxic.  相似文献   

5.
The Upper Carboniferous Zhanjin Formation has attracted much attention from geoscientists for containing glacial–marine diamictite and cold-water fauna typified by the bivalve Eurydesma.The presence of this Formation has provided important evidence for determining the northern border of Gondwana.Previous researchers have classified those strata north of Niangrong Co in the Gêrzê region as part of the Zhanjin Formation based on the presence of glacial–marine diamictite, although the absence of biological fossil evidence has defied clear age determination.Our field investigations first discovered large quantities of corals, sponges and bryozoans.All coral fossils were identified as belonging to the Hexacorallia subclass including 13 genera and 25 species, primarily including Conophyllia guiyangensis Deng et Kong, Coryphyllia regularis Cuif, Cuifia columnaris Roniewicz, Distichophyllia norica Frech, Distichophyllia gigas Vinassa de Regny, Pamiroseris rectilamellosa Winkler, Retiophyllia clathrata Emmrich, and Retiophyllia paraclathrata Roniewicz.Extensive biostratigraphic correlations show that the hexacorallia should belong to the Late Triassic, thereby negating the presence of the Zhanjin Formation in the study area.Based on analyses of sedimentary facies and detailed study of the glacial–marine diamictite as supposed by earlier researchers, the limestone blocks and gravels within the facies are slope facies olistostromes and waterway sediments from lime slurry debris flows in the submarine fan rather than primary sedimentary products.Among them, lenticular sandstone should be sequentially distributed waterway sand bodies, indicating that the strata have no glacial–marine diamictite.In addition, the rocks containing the mentioned fossils are just limestone blocks from olistostromes, and limestone gravels from waterways of submarine fans.Such a result further negates the presence of the Zhanjin Formation in the study area, and indicates that the age of the studied strata should be youner than the Late Triassic.Through regional stratigraphic comparisons and the study of tectonic settings of the strata, the sedimentary characteristics of the subject strata, including lithology, lithofacies and fossils, are confirmed to be similar to the widely distributed Sêwa Formation in this region.We thus infer that the strata belong to the Middle–Lower Jurassic Sêwa Formation.This finding is important for both studying paleogeography of Tibet and determining the northern boundary of Gondwana.  相似文献   

6.
<正>1 Introduction Shalagang mine,the largest antimony deposit in southern Tibet,is located in the west of Longma Town,Jiangzi County,to the east is the anticlinorium of Jiangzibasin.The exposed strata in the mine area are the Upper Cretaceous Zongzhuo Formation(a set of sedimentary chaotic melange)and the Lower Cretaceous Duojiu  相似文献   

7.
The Naij Tal Group-complex is a suite of tectonic-sedimentary melange aggregation of the Eastern Kunlun orogenic belt, which is composed of two parts, i.e. the exotic blocks of various ages and the matrix strata. On the basis of coral, brachiopod and gastropod fossils found in the exotic blocks, the age of this group-complex was once defined to the Late Ordovician or the Paleozoic. This paper reports for the first time 44 genera and 31 species of Mid-Late Oligocene sporopollen in samples from the matrix strata in this group-complex and the Paleogene Quercoidites-Persicarioipollis assemblage is named. The paper aims to provide some detailed evidence for determining the age of the matrix strata in this group-complex based upon a study at the Caiyuanzigou section, which would be of great geological significance for further understanding this group-complex as a suite of tectonic-sedimentary melange aggregation. The new finding will certainly benefit from now on the investigation of formation and evolution mechanism for the Eastern Kunlun orogenic belt.  相似文献   

8.
This is a new report on the early Eocene radiolarian fauna from the Sangdanlin section in the Gyirong region, along the southern margin of the Yarlung Zangbo Suture Zone. The Sangdanlin section measured in this study is divided into three lithostratigraphic units from bottom to top: the Zongzhuo, Sangdanlin, and Zheya formations. Abundant radiolarian fossils were obtained from the Sangdanlin section and 54 species of 30 genera were identified and assigned as follows: Cryptamphorella conara-C. macropora the late Cretaceous Zone and Amphisphaera coronate, Buryella tetradica-Bekoma campechensis, and B.bidartensis-B. divaricata the Paleocene-early Eocene Interval Zones. The Paleocene–early Eocene radiolarian zones are comparable to the radiolarian zones RP4-RP8 in New Zealand. Based on the data of radiolaria and lithofacies, it is suggested that the Zongzhuo Formation should be deposited along the base of the north-facing, continental slope of the Greater Indian continental margin, and the Sangdanlin Formation should be a deep marine, sedimentary sequence located in a foreland basin. The early Eocene radiolarian fauna in the Sangdanlin Formation constrains the initial age of the India-Asia collision to no later than 53.6 Ma.  相似文献   

9.
Defining the Jurassic-Cretaceous boundary is a controversy in stratigraphic study of the world. It has been widely accepted that this boundary can be defined at the bottom of Berriasian in Tethys, with the appearance of the ammonite Berriasella jacobi dating to ca. 145 Ma. However, it is difficult for the widespread terrestrial deposits in China to correlate with the international standard of marine facies. The Somanakamura Group in Japan is represented by a succession of marine-continental transitional strata. It provides a bridge of marine and nonmarine stratigraphic correlation. The ammonite and radiolarian fossils preserved in this group suggest an age from Bajocian to early Valanginian. The J-K boundary was defined in or atop the Tomizawa Formation of the group according to the ammonite data. The present authors study the fossil spores and pollen newly found from the Tomizawa and Koyamada formations. Three assemblages have been recognized. They are Assemblage 1 (Cyathidites-Classopollis) from the upper part of the Tomizawa Formation, Assemblage 2 (Cyathidites-Jiaohepollis) from the lower part of the Koyamada Formation, and Assemblage 3 (Cyathidites-Spheripollenites-Ephedripites) from the middle to upper part of the Koyamada Formation. With the reference of ammonite evidence, the J-K boundary can be defined between Assemblage 1 and Assemblage 2. This palynological J-K boundary can be correlated with that of terrestrial sequence in China. However, local biostratigraphy imply that the continental J-K boundary in China is of 135 or 137 Ma age. It has a considerable discrepancy from the marine standard. Biogeographically, the distribution pattern of spores and pollen in southern China is in accordance with that in the Somanakamura Group, which parallels the Tuchengzi Formation in northeastern China. By the palynological correlation between the Somanakamura Group and the strata in southern China, and then with the sequence in northeastern China, it is suggested that the continental J-K boundary is located in the Tuchengzi Formation.  相似文献   

10.
正Objective The Dayangshu Basin located in eastern Inner Mongolia,is one of the key areas for oil and gas exploration in the periphery of Songliao Basin.So far,this basin has been poorly explored,and the basic geological research is still weak,due to the lack of high-quality paleontologic and stratigraphic data.The previous oil and gas investigations were mainly focused on the Early Cretaceous strata.However,the Late Cretaceous Nenjiang Formation in the basin also has hydrocarbon potential according to the latest research.In recent oil and gas geological survey,palynological fossils have been discovered from the Nenjiang Formation in the Dayangshu Basin,providing new evidence for biostratigraphic division and correlation.  相似文献   

11.
From a fresh field investigation, it has been ascertained that the Late Palaeozoic Yu'erhong (Yuernhung) flora from Yu'erhong, Yumen, Gansu, northwestern China, studied by Bohlin in 1971 includes plants from the Westphalian Yangfukou Formation and the Stephanian to Sakmarian Taiyuan Formation. The Yu'erhong flora from the Yanghukou Formation is dominated by Euramerican elements with a few elements of the Cathaysian flora. No Angarian elements have be found in this section for lack of Late Permian strata. The specimens studied by Bohlin might possibly come from the upper part of the Upper Permian at tne southeastern corner . of the Yu'erhong basin. Those fossils from different horizons and localities might be mixed with each other during collection ;so they fail to reflect the exact horizon of certain plant fossils.  相似文献   

12.
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track(AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault(LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50°C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with ~1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of Qinling Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at ~100 Ma.  相似文献   

13.
New data from abundant vegetative shoots and cuticular analysis are provided for the Cretaceous cheirolepidiaceous conifer Pseudofrenelopsis gansuensis Deng, Yang et Lu. The material was found from a new locality of the Lower Cretaceous strata in the Luozigou Basin, Wangqing, Jilin Province, northeastern China. Pseudofrenelopsis is a common plant in the Dalazi Formation of the Yanji Basin about 150 km from Wangqing, but there exists different species, Pseudofrenelopsis dalatzensis only. Both P. dalatzensis and P. gansuensis have been recorded from the Lower Cretaceous of Jiuquan, Gansu Province, but they are in different stratigraphic horizons. The Lower Cretaceous plant-bearing strata in Luozigou have used to correlate with the Dalazi Formation of the Yanji Basin. The discovery of P. gansuensis, which is lower in horizon than P. dalatzensis in Jiuquan, may indicate that they are also different in horizon in Jilin. Cheirolepidiaceous conifers are among the few fossils of red beds of the Early Cretaceous in China. The present discovery of Pseudofrenelopsis gansuensis provides important evidence for classification, correlation and determination of geological ages of the Early Cretaceous non-marine red deposits of the two separate basins in remote areas of North China.  相似文献   

14.
The stratigraphic division and sequence of the Upper Cretaceous sediments in eastern Heilongjiang Province,China,have been ambiguous and controversial,mainly due to a lack of biostratigraphically useful fossils and related radiometric dating.A new species of angiospermous fossil plant.Platanus heilongjiangensis sp.nov.,from Qitaihe in eastern Heilongjiang has been found in sediments conformably above which zircons from a rhyolitic tuff has been dated by U-Pb radiometric methods as 96.2± 1.7 Ma.indicating that the Upper Houshigou Formation is of Cenomanian age.This discovery not only provides new data to improve our stratigraphic understanding of the Houshigou Formation,but also shows that Platanus flourished in the early Late Cretaceous floras of the region.This new study also indicates active volcanism taking place in the eastern Heilongjiang region during the Cenomanian of the Late Cretaceous.  相似文献   

15.
Central Asian Orogenic Belt(CAOB) is one of the largest accretionary orogenic belts in the world. The eastern segment of CAOB is dominated by Paleozoic Paleo Asian Ocean tectonic regime, Mesozoic Paleo-Pacific tectonic regime and Mongolian-Okhotsk tectonic regime. The Songliao and Jiamusi blocks are located in the easternmost part of the CAOB and are the key region to solve the problem about overprinting processes of multiple tectonic regimes. It is generally believed that the Mudanjiang Ocean between the two blocks was finally closed in the Mesozoic, but the Paleozoic magmatism also developed along the Mudanjiang suture zone, while on both sides of the suture zone, there were comparable Paleozoic strata, indicating that the two blocks had converged during the Paleozoic, and the evolution history of the two blocks in the Late Paleozoic remains controversial. The Carboniferous-Permian terrestrial strata mainly developed in Binxian, Wuchang and Tieli on Songliao Block, Baoqing and Mishan on Jiamusi Block. Samples from the Songliao and Jiamusi blocks in the Late Carboniferous-Early Permian and Late Permian are collected for comparative analysis. The LAICP-MS zircon U-Pb dating results show that the maximum depositional age of Middle Permian Tumenling Formation and Late Permian Hongshan Formation in Songliao Block is ~260 Ma, while that of Tatouhe Formation and Carboniferous strata in Jiamusi Block are ~290 Ma and ~300 Ma, respectively, which supports the previous stratigraphic division scheme. The age peaks of ~290–300 Ma, ~400 Ma, ~500 Ma appeared in the Late Carboniferous to Early Permian strata of Jiamusi Block and the Middle Permian strata of Songliao Block. The age peak of ~500 Ma in the Middle Permian strata of Songliao Block may come from the Cambrian basement, Mashan Complex, of Jiamusi Block, while the age peaks of ~420–440 Ma in the Carboniferous strata of Jiamusi Block may come from the Silurian magmatic arc in Zhangguangcai Range in the eastern margin of Songliao Block, reflects the history that they had been potential sources of each other, indicating that they may have combined in the Paleozoic. The Hongshan Formation of Songliao Block in the Late Permian lacks the age peak of ~500 Ma, which indicate that Jiamusi Block was not the provenance of Songliao Block in the Late Permian, that is, there was a palaeogeographic isolation between the two blocks. Combined with the ~210 Ma bimodal volcanic rocks developed along the Mudanjiang suture zone reported previously, we believe that the oceanic basin between the Songliao and Jiamusi blocks should have been connected in Late Permian and reopened during Late Permian to Late Triassic.  相似文献   

16.
Three Schizolepis species collected from the Lower Cretaceous layer of the Huolinhe Basin,Inner Mongolia,China are described.These fossils are Schizolepis longipetiolus Xu XH et Sun BN sp.nov.,which is a new species,Schizolepis cf.heilongjiangensis Zheng et Zhang,and Schizolepis neimengensis Deng.The new species is a well-preserved female cone,slender and cylindrical in shape.The seed–scale complexes have long petioles and are arranged on the cone axis loosely and helically.The seed scales are divided into two lobes from the base.Each lobe is semicircular or elongate ligulate in shape,widest at the middle or the lower middle part,with an obtuse or bluntly pointed apex.The inner margin is almost straight and the outer margin is strongly arched.On the surface of the lobe,there are longitudinal and somewhat radial striations from the base to the margin.The seed is borne on the adaxial surface at the base or middle of each lobe.Schizolepis was established in 1847,and,although more than twenty species have been discovered and reported,its phylogenetic position is controversial because of the imperfection of fossils.Most authors have considered there to be a close evolutionary relationship between Schizolepis and extant Pinaceae.Here,we analyze characteristics and compare Schizolepis with Picea crassifolia Kom,which is morphologically most similar to Schizolepis.The results indicate that the genus probably has a distant evolutionary relationship with extant Pinaceae.A detailed statistical analysis of the global paleogeographic distribution of Schizolepis showed that all the fossils of this genus appeared in strata ranging from the Upper Triassic to the Lower Cretaceous in the North Hemisphere,being rare in the Upper Triassic and Lower Jurassic,but being very common from the Middle Jurassic to the Lower Cretaceous,and particularly abundant in the Lower Cretaceous.According to the statistical results,we speculate that the genus originated in Europe in the Late Triassic then spread from Europe to Asia between the Late Triassic and the Late Jurassic.In the Early Cretaceous most species existed in China’s three northeastern Provinces and the Inner Mongolia Autonomous Region and adjacent areas.Combining the paleogeographic distribution of the genus with ancient climatic factors,we deduced that Schizolepis began to decline and became extinct in the Early Cretaceous,and the reason for its extinction is closely related to the icehouse climate during the Early Cretaceous.  相似文献   

17.
Turbidites from the Shiquanhe–Namco Ophiolite Mélange Zone(SNMZ) record critical information about the tectonic affinity of the SNMZ and the evolutionary history of the Meso-Tethys Ocean in Tibet.This paper reports sedimentologic,sandstone petrographic,zircon U-Pb geochronologic,and clastic rocks geochemical data of newly identified turbidites(Asa Formation) in the Asa Ophiolite Mélange.The youngest ages of detrital zircon from the turbiditic sandstone samples,together with ~115 Ma U-Pb concordant age from the tuff intercalation within the Asa Formation indicate an Early Cretaceous age.The sandstone mineral modal composition data show that the main component is quartz grains and the minor components are sedimentary and volcanic fragments,suggesting that the turbidites were mainly derived from a recycled orogen provenance with a minor addition of volcanic arc materials.The detrital U-Pb zircon ages of turbiditic sandstones yield main age populations of170–120 Ma,300–220 Ma,600–500 Ma,1000–700 Ma,1900–1500 Ma,and ~2500 Ma,similar to the ages of the Qiangtang Terrane(age peak of 600–500 Ma,1000–900 Ma,~1850 Ma and ~2500 Ma) and the accretionary complex in the Bangong–Nujiang Ophiolite Zone(BNMZ) rather than the age of the Central Lhasa Terrane(age peak of ~300 Ma,~550 Ma and ~1150 Ma).The mineral modal compositions,detrital U-Pb zircon ages,and geochemical data of clastic rocks suggest that the Asa Formation is composed of sediments primarily recycled from the Jurassic accretionary complex within the BNMZ with the secondary addition of intermediate-felsic island arc materials from the South Qiangtang Terrane.Based on our new results and previous studies,we infer that the SNMZ represents a part of the Meso-Tethys Suture Zone,rather than a southward tectonic klippe of the BNMZ or an isolated ophiolitic mélange zone within the Lhasa Terrane.The Meso-Tethys Suture Zone records the continuous evolutionary history of the northward subduction,accretion,arc-Lhasa collision,and Lhasa-Qiangtang collision of the Meso-Tethys Ocean from the Early Jurassic to the Early Cretaceous.  相似文献   

18.
Well-preserved and diversified spores, cryptospores, and acritarchs have been recorded from a relatively continuous sequence that encompasses the Silurian–Devonian boundary in Qujing, Yunnan, southwest China. Four spore assemblage zones from Late Silurian to Early Devonian in age are proposed based on the first appearance datum (FAD) of characteristic spore species. In ascending stratigraphic order, they are Ambitisporites dilutus–Apiculiretusispora synorea (DS; Late Ludfordian to Early Pridoli), Synorisporites verrucatus–Apiculiretusispora plicata (VP; Pridoli), Apiculiretusispora minuta–Leiotriletes ornatus (MO; Lochkovian), and Verrucosisporites polygonalis–Dibolisporites wetteldorfensis (PW; Pragian). The acritarch assemblage from the upper part of the Yulongsi Formation, the Xiaxishancun Formation, and the lower–middle parts of the Xitun Formation indicates an age of Late Silurian. Based on palynological evidence, the upper part of the Yulongsi Formation is considered Late Ludfordian to Early Pridoli in age; the Xiaxishancun Formation is believed to be Pridoli in age; the Xitun Formation is considered Late Pridoli to Early Lochkovian in age; the Guijiatun Formation is considered Lochkovian in age; and the Xujiachong Formation is Late Lochkovian to Pragian in age. The Silurian-Devonian boundary is recognized between the VP and the MO spore biozones, and occurs within the middle part of the Xitun Formation.  相似文献   

19.
The Jiangshan-Shaoxing-Pingxiang Fault(JSP Fault) is traditionally considered as the boundary between the Yangtze and Cathaysia blocks in South China. Whether the previously defined Shenshan and Kuli formations located along the JSP fault and near the Xinyu City, Jiangxi Province, are continuous strata or parts of a tectonic mélange is important for understanding the geological history of South China. A carbonaceous phyllite from the area, previously considered as part of the Neoproterozoic Shenshan and Kuli formations, is analyzed palynologically in this study. The AsteridiumComasphaeridium acritarch assemblage found in the slate can be correlated with the basal Cambrian AsteridiumHeliosphaeridium-Comasphaeridium(AHC) acritarch assemblage in Tarim and the Yangtze Block. The early Cambrian biostratigraphical age assignment for the carbonaceous phyllite indicates the presence of both Neoproterozoic and Cambrian rocks in the sedimentary package, and supports that the package is a part of tectonic mélange rather than a continuous Neoproterozoic strata. The Cambrian slate is the youngest known lithology in the mélange at present.  相似文献   

20.
Abundant medusoid soft-bodied metazoan fossils have been found in the Sinian Xingmincun Formation(with an isotopic age of 650 Ma) at Qipanmo, Qidingshan and Yangtun of the Dalian-Jinzhou area, southern Liaoning Province; in addition, a number of macroscopic algal fossils have been discovered for the first time in the Getun Formation overlying the Xingmincun Formation. Medusoid fossils include 3 genera and 6 species(all of which are new). Judging from their biological characters, these medusoid fossils are considered to have an intimate affinity with the Ediacara fauna in the terminal Precambrian of Australia, as their characters are close to each other. The authors suggest that these medusoids and the Edicara fauna might be the products of the same period. The discovery of the medusoid fauna in the Xingmincun Formation marks an important event in the evolution of the terminal Precambrian organisms in China, and it is of major practical significance in the study of the Sinian System of China and the correlation of the Sinian strata of northern and southern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号