首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variations of angular velocity of a rotating star on the upper main sequence due to mass loss driven by various mechanisms, like radiation, corpuscule ejection, and stellar wind, are examined. Expressions for the variations of angular velocity are derived by considering a model of a rotating star. The theoretical results show that the angular velocity decreaseswith time due tomass loss. The obtained results are applied to a hot fast-rotating star V1182 Aql (O9 V) and to Y Cyg (B0 V).  相似文献   

2.
A star located in the close vicinity of a supermassive black hole (SMBH) in a galactic nucleus or a globular-cluster core could form a close binary with the SMBH, with the star possibly filling its Roche lobe. The evolution of such binary systems is studied assuming that the SMBH mainly accretes matter from the companion star and that the presence of gas in the vicinity of the SMBH does not appreciably influence variations in the star’s orbit. The evolution of the star–SMBH system is mainly determined by the same processes as those determining the evolution of ordinary binaries. The main differences are that the star is subject to an incident flux of hard radiation arising during the accretion of matter by the SMBH, and, in detached systems, the SMBH captures virtually all the wind emitted by its stellar companion, which appreciably influences the evolution of the major axis of the orbit. Moreover, the exchange between the orbital angular momentum and the angular momentum of the overflowing matter may not be entirely standard in such systems. The computations assume that there will be no such exchange of angular momentum if the characteristic timescale for mass transfer is shorter than the thermal time scale of the star. The absorption of external radiation in the stellar envelope was computed using the same formalism applied when computing the opacity of the stellar matter. The numerical simulations show that, with the adopted assumptions, three types of evolution are possible for such a binary system, depending on the masses and the initial separation of the SMBH and star. Type I evolution leads to the complete destruction of the star. Only this type of evolution is realized for low-mass main-sequence (MS) stars, even those with large initial separations from their SMBHs. Massive MS stars will also be destroyed if the initial separation is sufficiently small. However, two other types of evolution are possible for massive stars, with a determining role in the time variations of the parameters of the star–SMBH system being played by the possible growth of the massive star into a red giant during the time it is located in the close vicinity of the SMBH. Type II evolution can be realized for massive MS stars that are initially farther from the SMBH than in the case of disruption. In this case, the massive star fills its Roche lobe during its expansion, but is not fully destroyed; the star retreats inside its Roche lobe after a period of intense mass loss. This type of evolution is characterized by an increase in the orbital period of the system with time. As a result, the remnant of the star (its former core) is preserved as a white dwarf, and can end up at a fairly large distance from the SMBH. Type III evolution can be realized formassiveMSstars that are initially located still farther from their SMBHs, and also for massive stars that are already evolved at the initial time. In these cases, the star moves away from the SMBH without filling its Roche lobe, due to its intense stellar wind. The remnants of such stars can also end up at a fairly large distances from their SMBHs.  相似文献   

3.
The evolution of close binary systems containing Wolf-Rayet (WR) stars and black holes (BHs) is analyzed numerically. Both the stellar wind from the donor star itself and the induced stellar wind due to irradiation of the donor with hard radiation arising during accretion onto the relativistic component are considered. The mass and angular momentum losses due to the stellar wind are also taken into account at phases when the WR star fills its Roche lobe. It is shown that, if a WR star with a mass higher than ~10M fills its Roche lobe in an initial evolutionary phase, the donor star will eventually lose contact with the Roche lobe as the binary loses mass and angular momentum via the stellar wind, suggesting that the semi-detached binary will become detached. The star will remain a bright X-ray source, since the stellar wind that is captured by the black hole ensures a near-Eddington accretion rate. If the initial mass of the helium donor is below ~5M , the donor may only temporarily detach from its Roche lobe. Induced stellar wind plays a significant role in the evolution of binaries containing helium donors with initial masses of ~2M . We compute the evolution of three observed WR-BH binaries: Cyg X-3, IC 10 X-1, and NGC 300 X-1, as well as the evolution of the SS 433 binary system, which is a progenitor of such systems, under the assumption that this binary will avoid a common-envelope stage in its further evolution, as it does in its current evolutionary phase.  相似文献   

4.
Abstract—Currently, hot Jupiters have extended gaseous (ionospheric) envelopes extending far beyond the Roche lobe. The envelopes are loosely bound to the planet and are subject to a strong influence by stellar wind fluctuations. Since hot Jupiters are close to the parent star, the magnetic field of the stellar wind is an important factor which defines the structure of their magnetospheres. For a typical hot Jupiter, the velocity of stellar wind plasma flowing around the atmosphere is close to the Alfvén velocity. Thus, fluctuations of the stellar wind parameters (density, velocity, magnetic field) can affect conditions for the formation of the bow shock around a hot Jupiter, such as transforming the flow from sub-Alfvén to super-Alfvén regime and back. The study results of three-dimensional numerical MHD simulations confirm that, in a hot Jupiter’s envelope located near the Alfvén point of the stellar wind, both the disappearance and appearance of a detached shock can occur under the influence of a coronal mass ejection. The study also shows that this process can affect the observational manifestations of a hot Jupiter, including the radiation flux in the spectrum’s hard region.  相似文献   

5.
Optical spectra and light curves of the massive X-ray binary V1357 Cyg are analyzed. The calculations were based on models of irradiated plane-parallel stellar atmospheres, taking into account reflection of the X-ray radiation, asphericity of the stellar surface, and deviations from LTE for several ions. Comparison of observed spectra obtained in 2004?C2005 at the Bohyunsan Observatory (South Korea) revealed variations of the depths of HI lines by up to 18% and of HeI and heavy elements lines by up to 10%. These variations are not related to the orbital motion of the star, and are probably due to variations of the stellar wind intensity. Perturbations of the thermal structure of the atmosphere due to irradiation in various states of Cyg X-1 (including outburst) do not lead to the formation of a hot photosphere with an electron temperature exceeding the effective temperature. As a result, variations of the profiles of optical lines of HI, HeI, and heavy elements due to the orbital motion of the star and variations of the irradiating X-ray flux do not exceed 1% of the residual intensities. Allowing for deviations from LTE enhances the HI and HeI lines by factors of two to three and the MgII lines by a factor of nine, and is therefore required for a fully adequate analysis of the observational data. Analysis of the HI, HeI, and HeII lines profiles yielded the following set of parameters for theOstar at the observing epoch: T eff = 30 500±500 K, log g = 3.31±0.05, [He/H] = 0.42 ± 0.05. The observed HeI line profiles have emission components that are formed in the stellar wind and increase with the line intensity. The abundances of 11 elements in the atmospheres of V1357 Cyg and ?? Cam, which has a similar spectral type and luminosity class, are derived. The chemical composition of V1357 Cyg is characterized by a strong excess of helium, nitrogen, neon, and silicon, which is related to the binarity of the system.  相似文献   

6.
We consider the evolution of binary systems formed by a Supermassive Black Hole (SMBH) residing in the center of a galaxy or a globular cluster and a star in its immediate vicinity. The star is assumed to fill its Roche lobe, and the SMBH accretes primarily the matter of this star. The evolution of such a system is mainly determined by the same processes as for an ordinary binary. The main differences are that the donor star is irradiated by hard radiation emitted during accretion onto the SMBH; in a detached system, nearly all the donor wind is captured by the black hole, which strongly affects the evolution of the semi-major axis; it is not possible for companions of the most massive SMBHs to fill their Roche lobes, since the corresponding orbital separations are smaller than the radius of the last stable orbit in the gravitational field of the SMBH. Moreover, there may not be efficient exchange between the orbital angular momentum and the angular momentum of the overflowing matter in such systems. Our computations assumed that, if the characteristic timescale for mass transfer is smaller than the thermal timescale of the star, no momentum exchange occurs. Absorption of incident external radiation in the stellar envelope was treated using the same formalism that was used when computing the radiative transfer in the stellar atmosphere. Numerical simulations show that Roche-lobe overflow is possible for a broad range of initial system parameters. The evolution of semi-detached systems containing a star and a SMBH nearly always ends with the dynamical disruption of the star. Stars with masses close to the solar mass are destroyed immediately after they fill their Roche lobes. During the accretion of matter of disrupted stars, the SMBH can achieve quasar luminosities. If the SMBH accretes ambient gas as well as gas stripped from stars, the star is subject to additional radiation in the detached phase of its evolution, strengthening its stellar wind. This leads to an increase of the semi-major axis and subsequent decrease of the probability of Roche-lobe overflow during the subsequent evolution of the system.  相似文献   

7.
We have computed the dynamical evolution of homogeneous, spherical gaseous condensations in the atmosphere of a Wolf-Rayet star. The physical conditions in the condensations vary substantially in the course of their motion in the stellar wind, which should result in variations in the observed spectrum of the star. The condensations also move at velocities of up to 1000 km/s relative to the surrounding stellar wind. Variations of the physical conditions in these condensations should be taken into account in models of the stellar winds of Wolf-Rayet stars.  相似文献   

8.
The results of many-year uniform spectroscopic observations of the Herbig Ae/Be star IL Cep A are presented. Its Hα line has either a single or a barely resolved two-component emission profile. The Hβ emission line is clearly divided into two components with a deep central absorption. Smooth variations of the observed parameters of individual spectral lines over nine years are observed. The He I λ5876 Å line has a complex absorption profile, probably with superposed emission components. The NaI D1, D2 doublet exhibits weak changes due to variations in the circumstellar envelope. The variations observed in the stellar spectrum can be explained by either binarity or variations of the magnetic field in the stellar disk. Difficulties associated with both these possibilities are discussed.  相似文献   

9.
Zhilkin  A. G.  Bisikalo  D. V. 《Astronomy Reports》2019,63(7):550-564

As a rule, the orbits of “hot Jupiter” exoplanets are located close to the Alfven point of the stellar wind of the host star. Many hot Jupiters could be in the sub-Alfven zone, where the magnetic pressure of the stellar wind exceeds the dynamical pressure. Therefore, the magnetic field in the wind should play an extremely important role in the process of stellar wind flowing around the atmosphere of a hot Jupiter. This must be taken into account when constructing theoretical models and interpreting observational data. Analyses show that many typical hot Jupiters should have shockless induced magnetospheres, which have no analogs in the solar system. Such magnetospheres are characterized first and foremost by the fact that there is no bow shock, and the magnetic barrier (ionopause) is formed by induced currents in upper layers of the ionosphere. This conclusion is confirmed here using three-dimensional numerical simulations of the flow of the stellar wind from the host star around the hot Jupiter HD 209458b, taking into account both the intrinsic magnetic field of the planet and the magnetic field in the wind.

  相似文献   

10.
The results of ~15 years of photometric observations of the UX Ori star SV Cep in the near-infrared (JHKL) are presented. They demonstrate the presence of a cyclic component with a period of ~7 years in the variations of the IR fluxes. This is clearly seen in all four IR bands, but is absent in the optical. The variation amplitude is highest in the K band: ΔK ≈ 0.68 m . The shape of the variations differs slightly in the transition from J to L. However, it is reproduced with good accuracy during two cycles, suggesting a periodic process is observed. If the periodic perturbations in the circumstellar disk of SV Cep are due to a companion’s orbitalmotion, the orbital semi-major axis should be ~5AU, foramass of SVCep of 2.6M . The absence of a seven-year period in the optical light curve of SV Cep means that the observed period cannot be due to variations in the circumstellar extinction. The IR brightness variations could be due to the companion’s motion along an eccentric orbit, resulting in a periodic modulation of the rate of accretion onto the star.  相似文献   

11.
A two-point model of an unisolated star cluster moving in a circular orbit in the Galactic plane is analyzed. The equations of stellar motion are linearized in the neighborhood of the singular point at the zero-velocity surface (ZVS), and also in the neighborhood of a point below the critical ZVS on a trajectory with less than the critical stellar ‘energy.’ We find the eigenvalues and eigenvectors of these equations and point out the instability of the two singular points on the critical ZVS; the separatrix connecting these points is determined numerically. For trajectories located below the critical ZVS, the absolute values of the eigenvalues of the linearized equations of motion increase with decreasing energy of the star and decreasing maximum distance between the trajectory and the cluster center of mass. This results in an increase of the numerical estimates of the maximum characteristic Lyapunov exponents for trajectories located closer to the center of mass of the cluster. We use Poincaré sections and the maximum characteristic Lyapunov exponents to analyze the properties of the stellar trajectories. A number of periodic orbits for different stellar energies are found, and the properties of the trajectories in the vicinity of these periodic orbits analyzed. Almost all the stellar trajectories considered are stochastic, with the degree of stochasticity increasing with decreasing stellar energy. Domains with different degrees of stochasticity are identified in the Poincaré maps.  相似文献   

12.
Several scenarios for the formation of accretion and decretion disks in single and binary Ae and Be stars are proposed. It is shown that, in order for a rapidly rotating main-sequence Be star to lose mass via a disk, the star’s rotation must be quasi-rigid-body. Estimates show that such rotation can be maintained by the star’s magnetic field, which is probably a relict field. The evolution of single Be main-sequence stars is numerically simulated allowing for mass loss via the stellar wind and rotational mass loss assuming rigid-body rotation. The stellar wind is the factor that determines the maximum mass of Be stars, which is close to 30M . The evolution of Be stars in close binaries is analyzed in the approximation adopted in our scenario. Long gamma-ray bursts can be obtained as a result of the collapse of rapidly rotating oxygen—neon degenerate dwarfs—the accreting companions of Be stars—into neutron stars.  相似文献   

13.
We consider the formation of massive stars under the assumption that a young star accretes material from the protostellar cloud through its accretion disk while losing gas in the polar directions via its stellar wind. The mass of the star reaches its maximum when the intensity of the gradually strengthening stellar wind of the young star becomes equal to the accretion rate. We show that the maximum mass of the forming stars increases with the temperature of gas in the protostellar cloud T 0, since the rate at which the protostellar matter is accreted increases with T 0. Numerical modeling indicates that the maximum mass of the forming stars increases to ~900 M for T 0 ~ 300 K. Such high temperatures of the protostellar gas can be reached either in dense star-formation regions or in the vicinity of bright active galactic nuclei. It is also shown that, the lower the abundance of heavy elements in the initial stellar material Z, the larger the maximum mass of the star, since the mass-loss rate due to the stellar wind decreases with decreasing Z. This suggests that supermassive stars with masses up to 106 M could be formed at early stages in the evolution of the Universe, in young galaxies that are almost devoid of heavy elements. Under the current conditions, for T 0 = (30–100) K, the maximum mass of a star can reach ~100M , as is confirmed by observations. Another opportunity for the most massive stars to increase their masses emerges in connection with the formation and early stages of evolution of the most massive close binary systems: the most massive stars can be produced either by coalescence of the binary components or via mass transfer in such systems.  相似文献   

14.
We have analyzed light curves from the MOST satellite for the two active dwarfs ɛ Eri and κ Cet. Our maps of the stellar surface-temperature inhomogeneities were obtained with no a priori assumptions about the shape, configuration, and number of spots. We find variations of the surface-temperature inhomogeneities with time, also on time scales about equal to their rotation periods. We consider a model of a spotted star with two types of surface inhomogeneities—spots and related plage fields—and demonstrate that the best agreement between the theoretical and observed light curves is achieved for small ratios of the plage-field area to the area of cool spots. This conclusion indicates that long-term brightness variations of stars younger than the Sun are mainly due to variable spots on their surfaces, while the contribution from plage fields becomes more significant for older stars.  相似文献   

15.
The Compton interaction between the optical radiation of a Be star and the relativistic wind of a radio pulsar in a binary system is investigated. The first calculations of the periodic variations of the X-ray radiation due to the anisotropic radiation field of the optical star are presented. Under favorable conditions, the Compton X-ray radiation can vary by a factor of a few.  相似文献   

16.
We present our analysis of photometry for the FK Com star HD 199178 (V1794 Cyg). The V-band light curves are used to restore the distribution of temperature inhomogeneities on the stellar surface. The spots on the surface of HD 199178 are concentrated at two preferred longitudes separated by 0.5 in phase (180° in longitude). In addition to the quasi-periodic switching of the most active area between these two longitudes, which occurs in cycles of 2.1–2.4 or 4.1 years, we suspect that the two active areas moved toward each other across the stellar surface, possibly merging into a single formation. The detected cycle in the star’s brightness variations of about 8.0 years is also clearly visible in variations of the star’s spottedness. Themagnetic activity of the FK Com star HD199178 is in many ways similar to that observed for the prototype of this group.  相似文献   

17.
A technique for determining a star’s radius from its atmospheric characteristics (effective temperature, surface gravity, and metallicity) is realized based on modernmodel computations of the stellar internal structure and evolution. The atmospheric characteristics can also be used to find the mass and luminosity of the star. The star’s rate of evolution and the initial mass function are taken into account when determining the stellar characteristics, increasing the correctness of the results. Computations of stellar evolution of with and without the stellar rotation taken into account make it possible to remove ambiguity due to missing data on the star’s rotational velocity. The results are checked and uncertainties estimated using stars occupying two heavily populated regions in the Hertzsprung–Russell diagram that have been well studied using various methods: the main sequence and red giant branch. Good agreement with the observations is achieved; there are almost no systematic deviations of the derived point estimates of the fundamental characteristics. The metallicities of the individual components of eclipsing variable stars are estimated using observational data on for such stars displaying lines of both components in their spectra. These metallicities were determined as a function of the stellar masses in a way that eliminates systematic deviations in the derived fundamental characteristics.  相似文献   

18.
A detailed study of variations of the orbital periods of the Algol-type eclipsing binary systems RZ Cas and Z Dra is presented. The fairly complex variations of the periods of both systems can be represented as a superposition of a secular increase of the period, slow periodic fluctuations, and quasiperiodic oscillations with a small amplitude occurring on timescales of decades. The secular increase of the period can be explained by the steady mass transfer from the less massive to the more massive component with conservation of the total angular momentum. The mass-transfer rate is 5.7 × 10?9M/yr for RZ Cas and 3.0×10?8M/yr for Z Dra. To explain the long-period cyclic variations of the orbital periods of RZCas and Z Dra, it must be assumed that the eclipsing binaries move in long-period orbits. RZ Cas moves with a period of 133 yr around a third body withmass M3 > 0.55M, while Z Dra moves with a period of 60 yr around a third body with mass M3 > 0.7M. The residual fluctuations of the periods may be due to a superposition of variations due to magnetic cycles and non-stationary ejections of matter.  相似文献   

19.
The motion of a rotating star in a close binary system with conservative mass exchange is considered. In contrast to the Paczyński-Huang model, the new model applied examines the relative motion of a star along an elliptical orbit in a close binary system, taking into account the mutual gravitation between the stars, reactive forces, the gravitation exered on the stars by the mass-transfer stream, and perturbations due to the rotation of the accreting star. The variations of the semi-major axis and eccentricity of the orbit and the orbital angular velocity of the accreting star as a function of the component-mass ratio q are determined. The results are applied to the BF Aurigae system.  相似文献   

20.
Tutukov  A. V.  Fedorova  A. V. 《Astronomy Reports》2019,63(6):460-478

Under certain conditions, stars close to intermediate-mass black holes (IMBHs) can form close binary systems with these objects, in which the Roche lobe can be filled by the star and intense accretion of the star’s matter onto the IMBH is possible. Recently, accreting IMBHs have been associated with hyperluminous X-ray sources (HLXs), whose X-ray luminosities can exceed 1041 erg/s. In this paper, the evolution of star—IMBH binary systems is investigated assuming that the IMBH mainly accretes the matter of its companion star, and that the presence of gas in the vicinity of the IMBH does not appreciably affect changes in the orbit of the star. The computations take into account all processes determining the evolution of ordinary binary systems, as well as the irradiation of a star by hard radiation during the accretion of its matter onto the IMBH. The absorption of external radiation in the stellar envelope was calculated applying the same formalism that is used to calculate the opacity of the stellar matter. The computations also assumed that, if the characteristic time for the mass transfer is less than the thermal time scale of the star, there is no exchange betwween the orbital angular momentum of the system and the angular momentum of the matter flowing onto the IMBH.

Numerical simulations have shown that, under these assumptions, three types of evolution are possible for such a binary system, depending on the mass of the IMBH and the star, as well as on the star’s initial distance from the IMBH. The first type ends with the destruction of the star. For low-mass main sequence (MS) stars, only this option is realized, even in the case of large initial distances from IMBH. For massive MS stars, the star is also destroyed if the mass of the IMBH is high and the initial distance of the star from the IMBH is sufficiently small.

The second type of evolution can occur for massive MS stars, which are initially located farther from the IMBH than in the first type of evolution. In this case, the massive star fills its Roche lobe during its evolutionary expansion, after which a stage of intense mass transfer begins. It is in this phase of the evolution that the star- IMBH system can manifest itself as a HLX, when its X-ray luminosity LX exceeds 1041 erg/s for a fairly long time. Numerical simulations show that the initial mass of the donor star in systems with MBH = (103?105)M must be close to ~10 M in this case. The characteristic duration of the HLX stage is 30 000–70 000 years. For smaller initial donor masses close to ~5M, LX does not reach 1041 erg/s in the stage of intense mass transfer, but can exceed 1040 erg/s. The duration of this stage of evolution is 300 000–800 000 years. A characteristic feature of this second type of evolution is an increase in the orbital period of the system over time. As a result, after a period of intense mass loss, the star “retreats” inside the Roche lobe. A remnant of the star in the form of a white dwarf is left behind, and can end up fairly far from the IMBH.

The third type of evolution can occur for massive MS stars that are initially even farther from the IMBH, as well as for massive stars that are already evolved at the initial time. In this case, conservative mass exchange in the presence of intense stellar wind leads to the star moving away from the IMBH, without filling its Roche lobe at all. For massive stars with sufficiently strong stellar winds (for example, stars with masses ~50M), the accretion rate of matter onto the IMBH in this case can reach values that are characteristic of HLXs. As in the case of the second type of evolution, the stellar remnant can remain at a fairly large distance from the IMBH.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号