首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesium-rich olivine (Mg0.9Fe0.1)2SiO4 is considered to be a major constituent of the Earth's upper mantle. Because of its major geophysical importance, the temperature and pressure dependence of its crystal structure, elastic and dielectric constants, long-wavelength phonon modes and specific heat have been measured using a variety of experimental techniques. Theoretical study of lattice dynamics provides a means of analyzing and understanding a host of such experimental data in a unified manner. A detailed study of the lattice dynamics of forsterite, Mg2SiO4, has been made using a crystal potential function consisting of Coulombic and short-range terms. Quasiharmonic lattice dynamical calculations based on a rigid molecular-ion model have provided theoretical estimates of elastic constants, long-wavelength modes, phonon dispersion relation for external modes along the three high symmetry directions in the Brillouin zone, total and partial density of states and inelastic neutron scattering cross-sections. The neutron cross-sections were used as guides for the coherent inelastic neutron scattering experiment on a large single crystal using a triple axis spectrometer in the constant Q mode. The observed and predicted phonon dispersion relation show excellent agreement. The inelastically scattered neutron spectra from a powder sample have been analyzed on the basis of a phonon density of states calculated from a rigid-ion model, which includes both external and internal modes. The experimental data from a powder sample show good agreement with the calculated spectra, which include a multiphonon contribution in the incoherent approximation. The computed phonon densities of states are used to calculate the specific heat as a function of temperature using both the rigid molecular-ion and rigid ion models. These results are in very good agreement with the calorimetric measurement of the specific heat. The interatomic potential developed here can be used with some confidence to study physical properties of forsterite as a function of pressure and temperature.  相似文献   

2.
The angular variation of elastic and inelastic scattering cross-sections has been calculated and used to study the energy deposition by precipitating electrons with the help of Monte Carlo Method. Monoenergetic, power law electron spectrum with isotropic and monodinational incidence starting at an altitude of 300 km have been used to obtain the angular and energy distributions at certain height intervals. In these calculations constant magnetic field has been used.  相似文献   

3.
Enstatites (Mg2Si2O6) are important rock forming silicates of the pyroxene group whose structures are characterised by double MgO6 octahedral bands and single silicate chains. Orthoenstatite transforms to protoenstatite above 1273 K with a doubling of the a axis and a rearrangement of the silicate chains with respect to the Mg2+ ions. Lattice dynamical calculations based on a rigid-ion model in the quasi-harmonic approximation provide theoretical estimates of elastic constants, long wavelength phonon modes, phonon dispersion relations, total and partial density of states and inelastic neutron scattering cross-sections of protoenstatite. The computed elastic constants are in good agreement with experimental data. The computed density of states of a chain silicate such as protoenstatite is distinct from that of olivines (forsterite, Mg2SiO4 and fayalite, Fe2-SiO4) with isolated silicate tetrahedra. The band gaps in the density of states in forsterite are largely due to the separation in the frequency ranges of the external and internal vibrations of the isolated silicate group, whereas in protoenstatite these gaps are filled by the vibrations of the bridging oxygens of the silicate chain. The computed density of states is used to calculate the specific heat, the mean square atomic displacements and temperature factors. Validity of these calculations are supported by Raman scattering measurements. Polarised and unpolarised Raman spectra are obtained from small single crystals of protoenstatite (Li,Sc)0.6Mg1.4Si2O6 stable at room temperature using the 488 nm or 514.5 nm lines of an Ar+ ion laser and a micro-Raman spectrometer with backscattering geometry. The Raman spectra were analysed and interpreted based on the lattice dynamical model. The experimental Raman frequencies and mode assignments (based on polarised single crystal spectra) are in good agreement with those obtained from lattice dynamical calculations.  相似文献   

4.
We use an approach based upon the Born model of solids, in which potential functions represent the interactions between atoms in a structure, to calculate the phonon dispersion of forsterite and the lattice dynamical behaviour of the beta-phase and spinel polymorphs of Mg2SiO4. The potential used (THB1) was derived largely empirically using data from simple binary oxides, and has previously been successfully used to model the infrared and Raman behaviour of forsterite. It includes ‘bond bending’ terms, that model the directionality of the Si-O bond, in addition to the pair-wise additive Coulombic and short range terms. The phonon dispersion relationships of the Mg2SiO4 polymorphs predicted by THB1 were used to calculate the heat capacities, entropies, thermal expansion coefficients and Gruneisen parameters of these phases. The predicted heat capacities and entropies are in outstandingly good agreement with those determined experimentally. The predicted thermodynamic data of these phases were used to construct a phase diagram for this system, which has Clausius-Clapeyron slopes in very close agreement with those found by experiment, but which has predicted transformation pressures that show less close agreement with those inferred from experiment. The overall success, however, that we have in predicting the lattice dynamical and thermodynamic properties of the Mg2SiO4 polymorphs shows that our potential THB1 represents a significant step towards finding the elusive quantitative link between the microscopic or atomistic behaviour of minerals and their macroscopic properties.  相似文献   

5.
Shock-recovery experiments have been carried out on andalusite single crystals of gem quality in a pressure range from 300 up to 575 kbar. Infrared spectroscopic investigations indicate a progressive shock-induced transformation of andalusite into short-range-ordered Al2O3 and SiO2 phases within a pressure interval from ~360 to ~575 kbar. Exposure to dynamic pressures of about 575 kbar results in andalusite breaking down into incoherently crystallized γ-Al2O3, well-crystallized α-Al2O3 and X-ray amorphous SiO2. The shock disproportionation of andalusite is presumed to take place in three separate stages of reaction. The comparison of shock-induced reactions with results from static experiments on kyanite indicates significant differences in the transformation pressures and in the mechanism of the high pressure decomposition.  相似文献   

6.
Molar elastic strain energy arising from dislocations in andalusite and sillimanite were calculated using equations derived from a non-core, linear elasticity model. For perfect (unit) c screw dislocations in these polymorphs, minimum dislocation densities of about 1010/cm2 are necessary to significantly perturb the andalusite=sillimanite equilibrium boundary in P-T space. Compared to unit c dislocations, smaller energy perturbations arise from dissociated c screw dislocations, which are commonly observed in kyanite and sillimanite. A low computed value of stacking fault energy (~30 ergs/cm2) in these polymorphs is compatible with the large separations of dissociated dislocations in these phases. Dislocation densities in naturally occurring Al2SiO5 polymorphs are typically <108/cm2. Assuming that these densities are representative of those existing during metamorphism, as is supported by the lack of microtextures indicative of strong recovery, it is concluded that molar strain energies corresponding to observed dislocation densities (<108/cm2) result in insignificant perturbation of P-T phase equilibrium boundaries of the Al2SiO5 polymorphs.  相似文献   

7.
The phonon dispersion and thermodynamic properties of pyrope (\(\hbox {Mg}_3\hbox {Al}_2\hbox {Si}_3\hbox {O}_{12}\)) and grossular (\(\hbox {Ca}_3\hbox {Al}_2\hbox {Si}_3\hbox {O}_{12}\) ) have been computed by using an ab initio quantum mechanical approach, an all-electron variational Gaussian-type basis set and the B3LYP hybrid functional, as implemented in the Crystal program. Dispersion effects in the phonon bands have been simulated by using supercells of increasing size, containing 80, 160, 320, 640, 1280 and 2160 atoms, corresponding to 1, 2, 4, 8, 16 and 27 \(\mathbf {k}\) points in the first Brillouin zone. Phonon band structures, density of states and corresponding inelastic neutron scattering spectra are reported. Full convergence of the various thermodynamic properties, in particular entropy (S) and specific heat at constant volume (\(C_\mathrm{{V}}\)), with the number of \(\mathbf {k}\) points is achieved with 27 \(\mathbf {k}\) points. The very regular behavior of the S(T) and \(C_\mathrm{{V}}(T)\) curves as a function of the number of \(\mathbf {k}\) points, determined by high numerical stability of the code, permits extrapolation to an infinite number of \(\mathbf {k}\) points. The limiting value differs from the 27-\(\mathbf {k}\) case by only 0.40 % at 100 K for S (the difference decreasing to 0.11 % at 1000 K) and by 0.29 % (0.05 % at 1000 K) for \(C_\mathrm{{V}}\). The agreement with the experimental data is rather satisfactory. We also address the problem of the relative entropy of pyrope and grossular, a still debated question. Our lattice dynamical calculations correctly describe the larger entropy of pyrope than grossular by taking into account merely vibrational contributions and without invoking “static disorder” of the Mg ions in dodecahedral sites. However, as the computed entropy difference is found to be larger than the experimental one by a factor of 2–3, present calculations cannot exclude possible thermally induced structural changes, which could lead to further conformational contributions to the entropy.  相似文献   

8.
In this paper we present a theoretical investigation of the structures and relative stability of the olivine and spinel phases of Mg2SiO4. We use both a purely ionic model, based on the Modified Electron Gas (MEG) model of intermolecular forces, and a bond polarization model, developed for low pressure silica phases, to investigate the role of covalency in these compounds. The standard MEG ionic model gives adequate structural results for the two phases but incorrectly predicts the spinel phase to be more stable at zero pressure. This is mainly because the ionic modeling of Mg2SiO4 only accounts for 95 percent of the lattice energy. The remainder can be attributed to covalency and many-body effects. An extension of the MEG ionic model using “many-body” pair potentials corrects the phase stability error, but predicts structures which are in poorer agreement with experiment than the standard ionic approach. In addition, calculations using these many-body pair potentials can only account for 10 percent of the missing lattice energy. This model predicts an olivine-spinel phase transition of 8 GPa, below the experimental value of 20 GPa. Therefore, in order to understand more fully the stability of these structures we must consider polarization. A two-shell bond polarization model enhances the stability of both structures, with the olivine structure being stabilized more. This model predicts a phase transition at about 80 GPa, well above the observed value. Also, the olivine and spinel structures calculated with this approach are in poorer agreement with experiment than the ionic model. Therefore, based on our investigations, to properly model covalency in Mg2SiO4, a treatment more sophisticated than the two-shell model is needed.  相似文献   

9.
Polarised Raman and infrared spectra of (ir) andalusite (Al2SiO5) single crystals have been measured and interpreted on the basis of a rigid-ion model calculation. The Al-O bond strength is found to be about 70% ionic in character whereas the mainly covalently bound SiO4 tetrahedra show ca. 40% ionicity. The interatomic short range forces are strongest between silicon and oxygen and rather weak around the fivefold coordinated aluminium. Thermal soft modes appear above 200°C and are correlated with a weakening of the Al-O bonds.  相似文献   

10.
11.
The polarized far-infrared reflection spectra of single crystals of FeS2-marcasite are presented in the range from 40–700 cm?1. The spectra show 7 reststrahlen bands, as predicted by group theory. The oscillator parameters ?α ∞, ωα f, ?α f, γα f, and the transversal and longitudinal optical phonon frequencies ωTO and ωLO as well as effective ionic charges and oscillator strength weighted mean phonon frequencies were calculated. The anisotropic behaviour of these quantities is discussed in relation to the data for FeS2-pyrite. It is shown that the ionicity of marcasite is considerably smaller than that of pyrite, especially in the a and c direction. The directional dependence of the phonon frequencies is given and discussed with regard to the spectra of polycrystalline samples.  相似文献   

12.
Oxygen isotope equilibrium fractionation constants (β18O-factors) of cassiterite were evaluated on the basis of heat capacity and X-ray resonant (Mössbauer spectroscopy and X-ray inelastic scattering) data.The low-temperature heat capacity of cassiterite was measured in the range from 13 to 340 K using an adiabatic calorimeter. Results of measurements of two samples agree very closely but deviate more than 5% from previous heat capacity data used for calculation of thermodynamic functions. The temperature dependence of heat capacity was treated using the modern version of the Thirring expansion, and the appropriate temperature dependence of the vibrational kinetic energy was found.Measurements of temperature-dependent Mössbauer parameters of cassiterite were conducted in the range from 300 to 900 K. The attempt to describe Mössbauer fraction and the second order Doppler (SOD) shift on the basis of the Debye model failed. The first term of the Thirring expansion of the Mössbauer SOD shift agrees with that calculated from the Sn sublattice vibration density of states (VDOS) obtained via synchrotron X-ray scattering. Based on this agreement we calculated the kinetic energy of the cassiterite Sn sublattice from VDOS.From the kinetic energy of the total cassiterite crystalline lattice and its Sn sublattice, β18O-factors of cassiterite were computed in the temperature range 300-1500 K by the method of Polyakov and Mineev (2000). Appropriate polynomials, which are valid at temperatures above 400 K, are the following:
  相似文献   

13.
Fe, S, and Cu reduced partition function ratios (β-factors) allow calculation of equilibrium isotope fractionation factors. β-Factors for chalcopyrite are calculated from experimental and theoretical partial phonon densities of state states (Kobayashi et al., 2007). The Fe β-factors for mackinawite are calculated from Mössbauer spectroscopy data (Bertaut et al., 1965). Excellent agreement exists between Fe β-factors for chalcopyrite calculated from the experimental and theoretical 57Fe phonon densities of states, supporting the reliability of the Fe β-factors for chalcopyrite. The 34S β-factor for chalcopyrite is consistent with experimental data on equilibrium sulfur isotope fractionation factors among sulfides and theoretical 34S β-factors, except those recently calculated by a DFT approach.Up-to-date experimental isotope-exchange data on equilibrium Fe isotope fractionation factors between minerals and aqueous Fe were critically reevaluated in conjunction with Fe β-factors for minerals, and the following expressions for β-factors for aqueous Fe2+ and Fe3+ were obtained:
  相似文献   

14.
We have derived valence force constants for the tetrahedral SiO4 unit and the inter-tetrahedral SiOSi linkage from previous ab initio molecular orbital calculations on H4SiO4 and H6Si2O7 using a split-valence polarized Gaussian basis set (6-31G*), and used these to calculate the infrared and Raman active vibrational modes of α-quartz. The calculation gives frequencies approximately 15% greater than experiment, as expected from harmonic force constants obtained at this level of Hartree-Fock theory, but the calculation gives the correct distribution of modes within each frequency range. Calculated 28–30 Si and 16–18 O isotope shifts and pressure shifts to 6 GPa are also in reasonable agreement with experiment. We have also used our ab initio force field to calculate the vibrational spectrum for β-quartz. The results suggest either that inclusion of a torsional force constant is important for determining the stability of this high temperature polymorph, or that the β-quartz has a disordered structure with lower symmetry (P62) domains, as suggested by earlier diffraction studies.  相似文献   

15.
Synthetic CaAlSiO4F, the Al-F analog of titanite, has been investigated using single-crystal synchrotron diffraction experiments at Beamline X06DA (Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland) and Raman spectroscopy. The presented structural model with 40 parameters was refined against 506 unique reflections to a final R o b s of 0.026 (space group A2/a, a = 6.9120(11), b = 8.5010(10), c = 6.435(2) Å, β = 114.670(11)°, and Z = 4) and exhibits less distorted coordination polyhedra than earlier models from powder data. Vibrational spectra were calculated in harmonic approximation at the Γ point from fully relaxed energy optimisations of the crystal structure, using 3D-periodic density functional theory with Gaussian basis sets and the software CRYSTAL06. The lattice parameters of the fully relaxed structure were in good agreement with the experimental values, with the calculated values 0.8 ± 0.4 % too large; the monoclinic angle was calculated 0.4° too large. The agreement of the calculated Raman frequencies with the observed ones was very good, with standard deviation ±3 cm?1 and maximum deviations of ±7 cm?1. Furthermore, a detailed discussion of the atomic displacements associated with each Raman mode is given.  相似文献   

16.
The use of approximate molecular orbital (MO) calculations [particularly complete neglect of differential overlap (CNDO)] as a tool in understanding chemical bonding in silicates is investigated. This requires first a detailed analysis of the parametrization employed by the CNDO theory when third row atoms are involved. The accuracy of the CNDO calculations is tested by calculations on the equilibrium bond lengths, orbital energies, and bond stretching force constants of simple third row molecules, for which we have experimental data and/or ab initio results. The effects of an optimization of the parameters in the theory on the calculated properties are then analyzed. The theory is subsequently applied to a sequence of silicate prototypes: silicic acid, H4SiO4, disiloxane, (SiH3) - O - (SiH3), and disilicic acid, (SiO3H3) - O - (SiO3H3). With proper tuning of the parameters, the CNDO method can be useful in further elucidating the details of the bonding in silicates.  相似文献   

17.
The structural phase transition in titanite is correlated with a strong temperature dependence of Raman scattering cross sections and, to a somewhat lesser extent, with shifts of the phonon frequencies. Their quantitative temperature evolution in the low-symmetry phase (P21/a) is compatible with a nearly 2D Ising behaviour with β≈0.12 and T c = 497 K. At temperatures above 860 K, the phonon signals agree with A 2/a symmetry but not in the temperature interval between 497 K and 860 K. In this temperature range new structural states give rise to additional phonon signals. A model based on mobile APBs between slabs of P21/a material, first proposed by van Heurck et al. (1991), is in qualitative agreement with our experimental observations.  相似文献   

18.
Results of ab initio molecular orbital (MO) calculations provide a basis for the interpretation of structural and thermodynamic properties of crystals, glasses, and melts containing tetrahedrally coordinated Si, Al, and B. Calculated and experimental tetrahedral atom-oxygen (TO) bond lengths are in good agreement and the observed average SiO and AlO bond lengths remain relatively constant in crystalline, glassy, and molten materials. The TOT framework geometry, which determines the major structural features, is governed largely by the local constraints of the strong TO bonds and its major features are modeled well by ab initio calculations on small clusters. Observed bond lengths for non-framework cations are not always in agreement with calculated values, and reasons for this are discussed in the text. The flexibility of SiOSi, SiOAl, and AlOAl angles is in accord with easy glass formation in silicates and aluminosilicates. The stronger constraints on tetrahedral BOB and BOSi angles, as evidenced by much deeper and steeper calculated potential energy versus angle curves, suggest much greater difficulty in substituting tetrahedral B than Al for Si. This is supported by the pattern of immiscibility in borosilicate glasses, although the occurrence of boron in trigonal coordination is an added complication. The limitations on glass formation in oxysulfide and oxynitride systems may be related to the angular requirements of SiSSi and Si(NH)Si groups. Although the SiO and AlO bonds are the strongest ones in silicates and aluminosilicates, they are perturbed by other cations. Increasing perturbation and weakening of the framework occurs with increasing ability of the other atom to compete with Si or Al for bonding to oxygen, that is, with increasing cation field strength. The perturbation of TOT groups, as evidenced by TO bond lengthening predicted by MO calculations and observed in ordered crystalline aluminosilicates, increases in the series Ca, Mg and K, Na, Li. This perturbation correlates strongly with thermochemical mixing properties of glasses in the systems SiO2-M 1 n/n+ AlO2 and SiO2-M n+O n/2 (M=Li, Na, K, Rb, Cs, and Mg, Ca, Sr, Ba, Pb), with tendencies toward immiscibility in these systems, and with systematics in vibrational spectra. Trends in physical properties, including viscosity at atmospheric and high pressure, can also be correlated.  相似文献   

19.
We investigated the lattice vibrational properties and lattice dynamical behaviour of diopside by combining laser micro-Raman spectroscopic measurements with quasi-harmonic lattice dynamic simulation using a transferable interatomic potential. We obtained polarized Raman spectra from a Fe-poor natural diopside and the temperature dependencies of the Raman modes to 1125?K from high-temperature Raman spectra of a Fe-poor and a Fe-rich natural diopside. The various modes display different temperature dependencies: from ?0.021?cm?1/K to ?0.004?cm?1/K. The temperature shift of low frequency modes is generally higher. A comparison of experimentally determined frequencies and symmetries of vibrational modes of the optical type (Raman and infrared) obtained in this and earlier studies with those calculated by us suggests that a consistent characterization of the vibrational properties was achieved. The good agreement between the experimental and simulated data on the temperature-dpendencies of the Raman modes (within 5%), crystal structure (2%), bulk modulus (5%), volume thermal expansivity (6%), and constant volume heat capacity (0.2%) testifies to the applicability of the transferable interatomic potential and the lattice dynamic model to predicting the vibrational, physical, and thermodynamic properties. The simulated properties from the lattice dynamic calculations are very similar to those obtained by molecular dynamic calculations with the same potential model.  相似文献   

20.
The phonon density of states (DOS) in iron has been measured in situ by nuclear resonance inelastic X-ray scattering (NRIXS) at high pressures and high temperatures in a resistively heated diamond anvil cell. The DOS data provide a variety of thermodynamic and elastic parameters essential for characterizing iron at depth in the Earth interior, such as average sound velocity, Debye temperature, atomic mean square displacement, average kinetic energy, vibrational entropy and specific heat. The NRIXS data were collected at 6, 20, and 29 GPa and at temperatures up to 920 K. Temperatures were directly determined from the measured spectra by the ratio of intensities of the phonon creation/annihilation side bands that are determined only by the Boltzmann factor. The change of the DOS caused by the structural transition from -Fe to -Fe is small and not resolvable within the experimental precision. However, the phonon energies in -Fe are clearly shifted to lower values with respect to - and -Fe. The temperature dependence of derived thermodynamic parameters is presented and compared with those obtained by Debyes model. The Debye temperatures that best describe the data decrease slightly with increasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号