首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-resolution current velocity and suspended sediment concentration (SSC) data were collected by using an Acoustic Doppler Current Profiler (ADCP) at two anchor stations and a cross-section in the South Channel of the Changjiang River mouth during meso and neap tides on Nov. 16, 2003. In addition, tidal cycle (13-hour) observation at two stations was carried out with traditional methods during the spring tide. Results indicated that resuspension occurred not only at the flood and ebb maximum, but also in the early phase of ebb in the meso and neap tide. When tidal current transited from high to ebb phase, current speed accelerated. Subsequently, fine-grained sediment with low critical threshold was resuspended and increased concentration. The river mouth area remained in siltation in the meso and neap tidal phase during the observation season, with calculated resuspension flux in the order of magnitude of 10−4–10−7 kg·m−2/s. Suspended sediment transport in the South Channel was dominated by freshwater discharge, but the Storks drift, vertical circulation and vertical shear effect due to tidal oscillation also played an important role in resuspension and associated sediment transport. In contrast, resuspension sediment flux in the spring tide was larger than that in meso and neap tide, especially at the ebb maximum and flood maximum. The present study revealed that intensive resuspension corresponded well with the larger current velocity during winter. In addition, the ‘tidal pumping’ effect and tidal gravity circulation were also vital for forming the turbidity maximum in the Changjiang River estuary.  相似文献   

2.
The Humber Estuary, UK, divides into the Ouse and Trent estuaries at the so-called Apex within its upper reaches. Remotely sensed Compact Airborne Spectrographic Imager (CASI) images and boat measurements were used to observe a strong turbidity maximum in the upper Humber and Ouse during a spring tide in November 1995. Surface suspended particulate matter (SPM) concentrations during the late ebb, as estimated from the CASI data, increased from approximately 6 to 13 g I−1 moving up-estuary into the Ouse. Greater SPM concentrations (∼10 g I−1) were evident in the deeper channels of the Ouse, compared with shallower areas, possibly due to faster ebb currents there and differential down-estuary advection of the turbidity maximum. Ribbons, or streaks, of lower SPM and slightly cooler waters were observed. It appears that slightly cooler and lower turbidity waters from the confluent Trent estuary remained fairly distinct for distances of approximately 2 km down-stream of its confluence with the upper Humber and Ouse. These waters eventually broke into ribbon-like or streak-like structures within the higher SPM-laden and slightly warmer waters of the Humber. They were discernible for more than 5 km down-estuary of the confluence of the Humber, Ouse, and Trent. Boat measurements showed that the turbidity maximum occurred over a fairly restricted region of the upper Humber, between about 20 to 50 km from the tidal limit at high water. The turbidity maximum’s sediment load was largely suspended in the water column during stronger currents. SPM rapidly settled close to the bed during high water and low water slack periods. At these times, SPM concentrations in a thin, near-bed layer were >60 g I−1 in the turbidity maximum region of the Ouse and >30 g 1−1 in the upper Humber (where channel volumes were much greater). SPM within the turbidity maximum comprised very fine-grained material and its low organic content demonstrated that the SPM was essentially mineral, clastic sediment derived originally from erosion and decay of crustal rocks.  相似文献   

3.
In October of 2004, a 3-d observational program to measure flow and sediment resuspension within a coastal intertidal salt marsh was conducted in the North Inlet/Winyah Bay National Estuarine Research Reserve located near Georgetown, South Carolina. Current and acoustic backscatter profiles were obtained from a moored acoustic Doppler current profiler (ADCP) deployed in a shallow tidal channel during the spring phase of the tidal cycle under high discharge conditions. The channel serves as a conduit between Winyah Bay, a large brackish estuary, and North Inlet, a saline intertidal coastal salt marsh with little freshwater input. Salinity measurements indicate that the water column is vertically well mixed during flood, but becomes vertically stratified during early ebb. The stratification results from brackish (15 psu) Winyah Bay water entering North Inlet via the tidal channel, suggesting an exchange mechanism that permits North Inlet to receive a fraction of the poor water quality and high discharge flow from upland rivers. Although maximum flood currents exceed maximum ebb currents by 0.2 m s−1, suspended sediment concentrations are highest during the latter ebb phase and persist for a longer fraction of the ebb cycle. Even though the channel is flood-dominated, the higher concentrations occurring over a longer fraction of the ebb phase indicate net particulate transport from Winyah Bay to North Inlet during spring tide accompanied by high discharge. Our evidence suggests that the higher concentrations during ebb result from increased bed friction caused by flow asymmetries and variations in water depth in which the highest stresses occur near the end of ebb near low water despite stronger maximum currents during flood.  相似文献   

4.
Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4 , NO3-, NO2- and PO43-. The water samples were collected with a Niskin sampler hourly at the near-surface, middle and near-bottom depths at the three stations -A1, A2 and A3-during two complete tidal cycles of neap tide and spring tide. Results showed that 1) the concentrations of NH4 , NO3- and NO2- were a little higher respectively during the neap tide than those during the spring tide, while PO43- showed an opposite trend, and each was higher in the ebb tide than in the flood tide, either for the neap tidal cycle or the spring tidal cycle; 2) higher stratification of the nutrients existed obviously in this area, with the concentrations of which increased from the bottom to the surface, especially for NH4 and NO3-; 3) the coefficient of variation (C.V.) values of all dissolved inorganic nutrients varied from 4.06% to 36.8% beyond different influences of the tidal current and Changjiang runoff; 4) with increasing suspended matter in the water column, the concentrations of PO43- became lower in the filtered water; and 5) the total transport of each tidal cycle was much more in the spring tide than in the neap tide, and the positive values indicated that the nutrients had been exported to the East China Sea. Studies on the variations and net transport of dissolved inorganic nutrients in the South Passage of the Changjiang Estuary will provide the scientific basis for the study of the mechanism of red tide in the East China Sea.  相似文献   

5.
An ephemeral estuarine turbidity maximum (ETM) occurs at high water in the macrotidal Taf estuary (SW Wales, United Kingdom). A new mechanism of ETM formation, due to resuspension and advection of material by flood tidal currents, is observed that differs from classical mechanisms of gravitational circulation and tidal pumping. The flood tide advances across intertidal sand flats in the main body of the estuary, progressively entraining material from the rippled sands. Resuspension creates, a turbid front that has suspended sediment concentrations (SSC) of about 4,000 mg I−1 by the time it reaches its landward limit which is also the landward limit of salt penetration. This turbid body constitutes the ETM. Deposition occurs at high slack water but the ETM retains SSC values up to 800 mg I−1, 1–2 orders of magnitude greater than ambient SSC values in the river and estuarine waters on either side. The ETM retreats down the estuary during the ebb; some material is deposited thinly across emergent intertidal flats and some is flushed out of the estuary. A new ETM is generated by the next flood tide. Both location and SSC of the ETM scale on Q/R3 where Q is tidal range and R is river discharge. The greatest expression of the ETM occurs when a spring tide coincides with low river discharge. It does not form during high river discharge conditions and is poorly developed on neap tides. Particles in the ETM have effective densities (120–160 kg m−3) that are 3–4 times less than those in the main part of the estuary at high water. High chlorophyll concentrations in the ETM suggest that flocs probably originate from biological production in the estuary, including production on the intertidal sand flats.  相似文献   

6.
The distribution and partitioning of trace metals (Co, Cu, Fe, Mn, Ni, and Zn) between dissolved and particulate phases were studied in the Tanshui Estuary. The upper reach of the estuary is hypoxic and heavily polluted due to domestic and industrial discharges. The concentration ranges of dissolved and leachable particulate trace metals in the Tanshui Estuary were: Co: 0.3–6.1 nM, 1.8–18.6 mg kg−1; Cu: 5–53 nM, 22–500 mg kg−1; Fe: 388–3,364 nM, 1.08–6.67%; Mn: 57–2,914 nM, 209–1,169 mg kg−1; Ni: 7–310 nM, 6–108 mg kg−1; and Zn: 12–176 nM, 62–1,316 mg kg−1; respectively. The dissolved concentrations of the metals were 2–35 times higher than the average values of the world river water. The distributions of dissolved and particulate studied metals, except Mn, in the estuary showed scattering, which could be attributed to the discharges from many industrial wastewater disposal works located in the upper tributaries. The daily input of dissolved metals from the disposal works to the Tanshui Estuary ranged from 0.1–0.4 tons. Dissolved Mn was nearly conservative in the region with salinity higher than 10 psu, while particulate Mn decreased in the region with salinity of 10–15 psu. The concentration increased significantly seawards, corresponding with the distribution of dissolved oxygen. The distribution coefficient (KD) for Mn in the lower estuary was nearly three orders of magnitude higher than in the upper estuary. This phenomenon may be attributed to the diffusion of Mn from the anoxic sediment in the upper estuary and gradual oxidation into particulate Mn in the middle and lower estuary as the estuarine water became more oxygenated. The distribution coefficient for Cu decreased with increasing salinity. The percentages of trace metals bound by suspended particulate matter decreased in the following order: Fe>Zn, Cu>Co>Mn>Ni.  相似文献   

7.
Weather and water-quality data from 1980 to 1989 were correlated with fluctuations in submersed macrophyte populations in the tidal Potomac River near Washington, D.C., to elucidate causal relationships and explain population dynamics. Both reaches were unvegetated in 1980 when mean growing-season Secchi depths were <0.60 m. Macrophyte resurgence in the upper tidal river in 1983 was associated with a growing-season Secchi depth of 0.86 m, total suspended solids (TSS) of 17.7 mg l?1, chlorophyll a concentrations of 15.2 μg l?1, significantly higher than average percent available sunshine, and significantly lower than average wind speed. From 1983 to 1989, mean seasonal Secchi depths <0.65 m were associated with decrease in plant coverage and mean seasonal Secchi depths >0.65 were associated with increases in plant coverage. Changes in mean seasonal Secchi depth were related to changes in mean seasonal TSS and chlorophyll a concentration; mean Secchi depths >0.65 generally occur when seasonal mean TSS is <19 mg l?1 and seasonal mean chlorophyll a concentration is ≤15 μg l?1. Secchi depth is highly correlated with plant growth in the upper tidal river and chlorophyll a and TSS with plant growth in the lower tidal river. Wind speed is an important influence on plant growth in both reaches.  相似文献   

8.
Light availability is critically important for primary productivity in coastal systems, yet current research approaches may not be adequate in shallow coastal lagoons. Light attenuation in these systems is typically dominated by suspended sediment, while light attenuation in deeper estuaries is often dominated by phytoplankton. This difference in controls on light attenuation suggests that physical processes may exert a greater influence on light availability in coastal lagoons than in deeper estuaries. Light availability in Hog Island Bay, a shallow coastal lagoon on the eastern shore of Virginia, was determined for a summer and late fall time period with different wind conditions. We combined field measurements and a process-based modeling approach that predicts sediment suspension and light availability from waves and currents to examine both the variability and drivers of light attenuation. Total suspended solids was the only significant predictor of light attenuation in Hog Island Bay. Waves and currents in Hog Island Bay responded strongly to wind forcing, with bottom stresses from wind driven waves dominant for 60% of the modeled area for the late fall period and 24% of the modeled area for the summer period. Higher wind speeds in late fall than in summer caused greater sediment suspension (41 and 3 mg l−1 average, respectively) and lower average (spatial and temporal) downwelling light availability (32% and 55%, respectively). Because of the episodic nature of wind events and the spatially variable nature of sediment suspension, conventional methods of examining light availability, such as fair-weather monitoring or single in situ recorders, do not adequately represent light conditions for benthic plants.  相似文献   

9.
 The Mfolozi Estuary on the KwaZulu-Natal coast of South Africa is the most turbid estuary in Natal due to poor catchment management, leading to large quantities of suspended particulate matter (SPM) entering the estuary from the Mfolozi River. This paper quantities some of the solute and sediment dynamics in the Mfolozi Estuary where the main documented environmental concern is the periodic input of SPM from the Mfolozi Estuary to the St. Lucia system, causing reduction of light penetration and endangering biological productivity in this important nature reserve. Synoptic water level results have allowed reach mean bed shear stresses and velocities to be calculated for an observed neap tidal cycle. Results indicate that ebb velocities dominate the sediment transport processes in the estuary when fluvial input in the Mfolozi River is of the order of 15–20 m3 s–1. Observed and predicted flood tide velocities are too low (<0.35 m s–1) to suspend and transport significant amounts of SPM. Observed results indicate that although the SPM load entering the estuary is dominantly from the Mfolozi River, the Msunduzi River flow plays a major role in the composition of the estuary's salinity and velocity fields. It is calculated that the Mfolozi Estuary would fill with sediment in 1.3 years if it was cut off from the sea. The major fluvial flood events help maintain the estuary by periodically pushing sediment seawards (spit progrades seawards 5 m yr–1) and scouring and maintaining the main flow channel in the estuary. During low fluvial flow conditions, tidal flow velocities will become the dominant control on sediment transport in the estuary. Interchange of SPM between the St. Lucia and Mfolozi estuaries under present conditions is complicated by the strong transverse velocity shear between the two systems at their combined mouth. This is creating a salinity-maintained axial convergence front that suppresses mixing of solutes and SPM between the systems for up to 10 h of the tidal cycle during observed conditions. Received: 22 May 1995 · Accepted: 31 July 1995  相似文献   

10.
Physical and chemical characteristics of the Hooghly estuary during winter (December 1997–January 1998), summer (May 1998) and post-monsoon (November 1998) seasons have been studied. Salinity varied spatially and temporally and seasonally during ebb and flood tide conditions. Water temperature showed a difference of 10‡C in winter to summer. Temperature did not vary much vertically as it is a well-mixed estuary. Strong currents exceeding 100 cm S-1 were observed during peak ebb and flood tide conditions irrespective of the season. Longitudinal eddy diffusion coefficient (K x ) was estimated as 757m S-1 and 811m2 S-1 during summer and post-monsoon seasons, respectively. The vertical eddy diffusion coefficient (εv) was estimated as 0.0337 m2 S-1 during post-monsoon season. The salinity and current observations are compared with those obtained from models reported earlier. Values of pH, Dissolved Oxygen and Biological Oxygen Demand are within the threshold limits of the estuarine environment. Nutrients show seasonal variation in the estuarine environment. High values (160-2686 mg l-1) of total suspended matter were noticed both at surface and bottom in the study region showing the impact of fresh water and sediment transportation.  相似文献   

11.
In this study, two sediment cores (~70 cm) were collected from separate mangrove forests straddling the Ba Lat Estuary, Red River of northern Vietnam, to examine the origins of sedimentary organic carbon (SOC) and reconstruct the paleoenvironment. In addition, mangrove leaves and particulate organic matter were collected and measured for δ13C to trace the origins of SOC. The cores were analyzed by high-resolution sections for δ13C, TOC, C/N ratios, sediment grain size, water content, and porosity, with values of δ13C, TOC, and C/N ratios ranging from −28.19 to −22.5‰, 2.14–30.94 mg/g, and 10.29–18.32, respectively. The δ13C and TOC relationship indicated that there were some small residual effects of diagenetic processes on TOC and δ13C values in mangrove sediments. However, the shifts of δ13C and C/N ratios from the bottom to the surface sediment of the cores explained the change in organic matter sources, with values of C/N > 12 and δ13C < −25‰, and C/N < 12 and δ13C > −25‰ indicated terrestrial (e.g., mangrove litter) and marine phytoplankton sources, respectively. The covarying δ13C, C/N ratios, and sediment grain sizes during the past 100 years in sediment cores showed that the paleoenvironment may be reconstructed into three environments (subtidal, tidal flat, and intertidal mangrove). General trends in δ13C and C/N followed a gradual increase in the C/N ratio and a concomitant decrease in δ13C from the subtidal, through to tidal flat, and to the intertidal mangrove. δ13C and C/N ratios are therefore effective in measuring the continuum of environmental change in mangrove ecosystem.  相似文献   

12.
Changes in circulation, water level, salinity, suspended sediments, and sediment flux resulted from Tropical Storm Frances and Hurricane Georges in the Vermilion-Atchafalaya Bay region during September 1998. Tropical Storm Frances made landfall near Port Aransas, Texas, 400 km west of the study area, and yet the strong and long-lived southeasterly winds resulted in the highest water levels and salinity values of the year at one station in West Cote Blanche Bay. Water levels were abnormally high across this coastal bay system, although salinity impacts varied spatially. Over 24 h, salinity increased from 5 to 20 psu at Site 1 on the east side of West Cote Blanche Bay. Abnormally high salinities were recorded in Atchafalaya Bay but not at stations in Vermilion Bay. On September 28, 1998, Hurricane Georges made landfall near Biloxi, Mississippi, 240 km east of the study area. On the west side of the storm, wind stress was from the north and maximum winds locally reached 14 m s−1. The wind forcing and physical responses of the bay system were analogous to those experienced during a winter cold-front passage. During the strong, north wind stress period, coastal water levels fell, salinity decreased, and sediment-laden bay water was transported onto the inner shelf. As the north wind stress subsided, a pulse of relatively saline water entered Vermilion Bay through Southwest Pass increasing salinity from 5 to 20 psu over a 24-h period. National Oceanic and Atmospheric Administration (NOAA)-14 reflectance imagery revealed the regional impacts of wind-wave resuspension and the bay-shelf exchange of waters. During both storm events, suspended solid concentrations increased by an order of magnitude from 75 to over 750 mg l−1. The measurements demonstrated that even remote storm systems can have marked impacts on the physical processes that affect ecological processes in shallow coastal bay systems.  相似文献   

13.
Since 1991, Mississippi River water has been diverted at Caernarvon, Louisiana, into Breton Sound estuary. Breton Sound estuary encompasses 1100 km2 of fresh and brackish, rapidly subsiding wetlands. Nitrite + nitrate, total Kjeldahl nitrogen, ammonium, total phosphorus, total suspended sediments, and salinity concentrations were monitored at seven locations in Breton Sound from 1988 to 1994. Statistical analysis of the data indicated decreased total Kjeldahl nitrogen with associated decrease in total nitrogen, and decreased salinity concentrations in the estuary due to the diversion. Spring and summer water quality transects indicated rapid reduction of nitrite + nitrate and total suspended sediment concentration as diverted Mississippi River water entered the estuary, suggesting near complete assimilation of these constituents by the ecosystem. Loading rates of nitrite + nitrate (5.6–13.4 g m−2 yr−1), total nitrogen (8.9–23.4 g m−2 yr−1), and total phosphorus (0.9–2.0 g m−2 yr−1) were calculated along with removal efficiencies for these constituents (nitrite + nitrate 88–97%; total nitrogen 32–57%; total phosphorus 0–46%). The low impact of the diversion on water quality in the Breton Sound estuary, along with assimilation of TSS over a very short distance, suggests that more water may be introduced into the estuary without detrimental affects. This would be necessary if freshwater diversions are to be used to distribute nitrients and sediments into the lower reaches of the estuary, in an effort to compensate for relative sea-level rise, and reverse the current trend of rapid loss of wetlands in coastal Louisiana.  相似文献   

14.
现场试验表明,三角架观测系统稳定性良好,获取了边界层内多层位、连续的温、盐、流速、浊度同步观测数据,适用于浅海近底部沉积动力过程高分辨率观测及物质输运研究。观测结果显示:观测期间,边界层内存在向陆的余流,并呈现逐渐减小的趋势,其主要由涨、落潮流的不对称造成,大风天气和密度环流亦是影响余流强弱的重要因素;观测期间多数时刻底部切应力大于起动切应力,底质沉积物可产生明显的搬运甚至再悬浮;悬沙浓度对沉积动力的响应在涨、落潮,大、小潮阶段均有各自的特点,水动力的变化、潮流加/减速时间的长短、床面泥沙的供应量、上部水体泥沙的沉降是导致悬沙浓度变化的主要原因;底部边界层内,涨、落潮期间不对称输沙导致潮周期内悬沙净向河口湾内输运。  相似文献   

15.
A three-dimensional (3-D) suspended sediment model was coupled with a 3-D hydrodynamic numerical model and used to examine the spatial and temporal distribution of suspended sediments in the Satilla River estuary of Georgia. The hydrodynamic model was a modified ECOM-si model with inclusion of the flooding-drying cycle over intertidal salt marshes. The suspended sediment model consisted of a simple passive tracer equation with inclusion of sinking, resuspension, and sedimentation processes. The coupled model was driven by tidal forcing at the open boundary over the inner shelf of the South Atlantic Bight and real-time river discharge at the upstream end of the estuary, with a uniform initial distribution of total suspended sediment (TSS). The initial conditions for salinity were specified using observations taken along the estuary. The coupled model provided a reasonable simulation of both the spatial and temporal distributions of observed TSS concentration. Model-predicted TSS concentrations varied over a tidal cycle; they were highest at maximum flood and ebb tidal phases and lowest at slack tides. Model-guided process studies suggest that the spatial distribution of TSS concentration in the Satilla River estuary is controlled by a complex nonlinear physical process associated with the convergence and divergence of residual flow, a non-uniform along-estuary distribution of bottom stress, and the inertial effects of a curved shoreline.  相似文献   

16.
In comparison to their temperate counterparts, sediment processes in tropical estuaries are poorly known and especially in African ones. The hydrodynamics of such environments is controlled by a combination of multiple processes including morphology, salinity, mangrove vegetation, tidal processes, river discharge, settling and erosion of mud and by physico-chemical processes as well as sediment dynamics.The aim of this study is to understand the sediment processes in this transitional stage of the estuary when the balance between river discharges and marine processes is reversing. Studying the hydrodynamics and sediment dynamics of the Konkouré Estuary has recently been made possible thanks to new data on bathymetry, sedimentary cover, salinity, water elevations, and current velocities. The Lower Konkouré is a shallow, funnel shaped, mesotidal mangrove-fringed, tide-dominated estuary, well mixed during low river discharge and stratified during high river discharge. The Konkouré Estuary is turbid despite the small amount of terrestrial input and its residual velocity at the mouth during low river discharges, landwards for two of the three branches, suggests a landward migration by tidal pumping of the suspended particulate matter. A Turbidity Maximum Zone (TMZ) is identified for typical states of the estuary with regard to fluvial and tidal components. Suspended sediment transport during a transitional stage between the rainy and dry seasons is known thanks to current velocity and Suspended Sediment Concentration (SSC) measurements taken in November 2003. The Richardson layered number calculation assesses that turbulence is the major mixing process in the water column, at least during the flood and ebb stages, whereas stratification occurs during the slack water periods. Tidal currents generate bottom erosion, and turbulence mixes the suspended sediment throughout the water column. As a result, a net sediment input is calculated from the western Konkouré outlet for two consecutive tidal cycles. Despite the net water export, almost 300 tons per tide reach the estuary through this outlet, for a moderate river flow.  相似文献   

17.
This study investigated physico-chemical characteristics of the water column and chemistry of suspended particulate material (SPM) under quiescent, high-wind and high-wind/heavy-rainfall conditions in Homebush Bay, a highly contaminated embayment of Port Jackson (Australia) to distinguish source and possible adverse effects to benthic and pelagic animals. Mean concentrations in surficial sediment were <1, 14, 181, 141, 37, 290 and 685 μg g−1 for Cd, Co, Cr, Cu, Ni, Pb and Zn, respectively. Sediment chemistry indicated these metals had multiple sources, i.e. the estuary, stormwater and industry. Mean total suspended solids (TSS) were 7, 17 and 20 mg L−1 during quiescent, high-rainfall and heavy rainfall/high wind conditions, respectively, whereas SPM Cd, Co, Cr, Cu, Ni, Pb and Zn concentrations varied between 13–25, 166–259, 127–198, 38–82, 236–305 and 605–865 μg g−1, respectively under these conditions. TSS and total water metal concentrations were lowest during quiescent conditions. High TSS and metal loads in surface water characterised high-rainfall events. Wind-induced resuspension contributed the greatest mass of SPM and metals to the water column. Benthic animals may be adversely affected by Pb and Zn in sediment. Total water Cu and Zn concentrations may pose a risk to filter-feeding animals in the water column due to resuspension of contaminated sediment.  相似文献   

18.
Data are presented on dissolved oxygen (DO) concentrations and their relationship to salinity, suspended particulate matter (SPM), concentrations, and the turbidity maximum in the Humber-Ouse Estuary, United Kingdom, during summer 1995. Measurements in the upper Humber during March 1995 showed DO in the range 82% to 87% of saturation. Suspended particulate matter concentrations were <5000 mg l?1 and salinity was in the range 0.5 to 12. In contrast, a pronounced DO sag occurred in the upper reaches of the Ouse during medium and spring tide, summer conditions. The DO minimum was essentially an anoxic level and was associated with the location of the turbidity maximum, at salinities between about 0.4 and 1.5. SPM concentrations at 1 m beneath the surface reached 25,000 mg l?1 in the turbidity maximum, between about 20 km and 40 km from the tidal limit. Suspended particulate matter concentrations were much lower at neap tides, although dense suspensions of SPM (>60,000 mg l?1) occurred within 1 m of the bed in the turbidity maximum region. A spring-neap record showed a dramatic and tidally controlled decrease in DO at very low salinities as the tides progressed from neaps to springs. An anchor station located down-channel of the turbidity maximum showed that about 95% of the variance in DO, which varied from 28% at low-water slack to 67% at high-water slack, could be explained in terms of salinity variation. At the up-channel margins of the turbidity maximum, DO increased from zero (anoxia) near high water to 60% near low water slack, in contrast to the behavior down-channel of the turbidity maximum. About 82% of the variance in DO could be explained in terms of salinity variations alone. Only 43% of the DO variance could be explained in terms of SPM alone. Up-channel of the turbidity maximum, SPM concentrations were relatively low (<3000 mg l?1) and DO levels varied from 48% of saturation near high water to 83% near low water slack. About 76% of the variance in DO could be explained in terms of salinity variations alone. Within the turbidity maximum region, DO varied from <2% saturation on the early flood and late ebb and maximized around 7% at high water slack. About 63% of the variance in DO could be explained in terms of salinity variation alone. This increased to 70% when suspended particulate matter was taken into account. Only 29% of the DO variance could be explained in terms of suspended particulate matter alone. Because bacteria were likely to have been the cause of the observed reduction in DO, the numbers of bacteria, both free-living and attached to particles, were measured in the turbidity maximum region. Numbers of free-living bacteria were low and most of the bacteria were attached to sediment particles. There was a linear correlation between total bacterial number and suspended particulate matter concentration, suggesting that the strong DO demand was exerted locally as a result of bacterial activity associated with increased suspended particulate matter concentrations. An order of magnitude analysis of DO consumption within the Ouse’s turbidity maximum, based on the premise that DO depletion was directly related to suspended particulate matter concentrations and that DO addition was due to reaeration, indicates that complete deoxygenation could have occurred with an oxygen depletion rate of ~0.01 mg DO h?1/g suspended particulate matter during the residence time of waters within the turbidity maximum (~7 d). This rate was sufficiently fast that anoxic to aerobic conditions were able to develop a spring-neap periodicity within the turbidity maximum, but too slow to generate substantial intratidal fluctuations in DO. This is in accordance with the observations, which show that relatively little of the intratidal variance in DO could be explained in terms of suspended particulate matter fluctuations, whereas most of the variance could be explained in terms of salinity, which behaved as a surrogate measure for the proximity of the turbidity maximum.  相似文献   

19.
The effects of damming on the materials flux in the Colorado River delta   总被引:1,自引:0,他引:1  
During the last century, the Colorado River delta (CRD) has been dramatically altered by the diversion of river water for use in human activities. This alteration has eliminated the delivery of fresh water to the Gulf of California radically transforming the former estuary into an inverse-estuary. Under the new conditions, the new materials budget was estimated at the mouth of the Colorado River in terms of salts, total suspended sediments, organic suspended matter and nutrients. The results of this study show that, because of the asymmetry of the tidal wave, the variability of seston concentration follows a sedimentation pattern of three successive stages: re-suspension (erosion at ebb flow) > dilution (during flood flow) > sedimentation (at the end of the flood stage). The tidal asymmetry during neap tides was characterized by longer ebb (at least, 30 min longer) than flood and more intense ebb currents (as much as 43% higher), hence characterizing an ebb-dominated system. The CRD is characterized by high nutrients concentrations. Maximal levels are: nitrates (41 μM), phosphates (2.6 μM) and silicates (68 μM), nitrite (15 μM). The mass balance indicates that the system acts as a net exporter of suspended sediment with rates as high as 7 tons per tidal cycle. This behavior indicates that the CRD is in a destructive stage as a result of the lack of freshwater inflow and supply of sediment into the system.  相似文献   

20.
The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l−1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of suspended sediment concentration (SSC) showed a great limitation in that only low to moderate concentrations (up to 50 mg l−1) could be reliably estimated. In this study, we developed a semi-empirical radiative transfer (SERT) model with physically based empirical coefficients to estimate SSC from MERIS data over turbid waters with a much wider range of SSC. The model was based on the Kubelka–Munk two-stream approximation of radiative transfer theory and calibrated using datasets from in situ measurements and outdoor controlled tank experiments. The results show that the sensitivity and saturation level of remote-sensing reflectance to SSC are dependent on wavelengths and SSC levels. Therefore, the SERT model, coupled with a multi-conditional algorithm scheme adapted to satellite retrieval of wide-range SSC, was proposed. Results suggest that this method is more effective and accurate in the estimation of SSC over turbid waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号