首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Acoustic propagation in shallow water is greatly dependent on the geoacoustic properties of the seabottom. This paper exploits this dependence for estimating geoacoustic sediment properties from the bottom acoustic returns of known signals received on a hydrophone line array. There are two major issues in this approach: one is the feasibility of acoustic inversion with a limited aperture line array, the other is related to the knowledge of the geometry of the experimental configuration. To test the feasibility of this approach, a 40-hydrophone-4-m spaced towed array together with a low-frequency acoustic source, was operated at a shallow water site in the Strait of Sicily. In order to estimate the array deformation in real time, it has been equipped with a set of nonacoustic positioning sensors (compasses, tilt-meters, pressure gauges). The acoustic data were inverted using two complementary approaches: a genetic algorithm (GA) like approach and a radial basis functions (RBF) inversion scheme. More traditional methods, based on core sampling, seismic survey and geophone data, together with Hamilton's regression curves, have also been employed on the same tracks, in order to provide a ground truth reference environment. The results of the experiment, can be summarized as follows: 1) the towed array movement is not negligible for the application considered and the use of positioning sensors are essential for a proper acoustic inversion, 2) the inversion with GA and RBF are in good qualitative agreement with the ground truth model, and 3) the GA scheme tends to have better stability properties. On the other hand, repeated in version of successive field measurements requires much less computational effort with RBF  相似文献   

2.
作者提出一种应用径向基函数网络 (RBF)的云检测方法。此方法要求晴空海域与有云海域均以一定数量的基函数来表征 ,两种基函数可组成一个径向基函数网络。使用欧空局沿轨道扫描辐射计 (ERS- 1/ ATSR)资料对径向基函数网络在云检测中的性能作了验证 ,重点研究网络结构的复杂度对分类结果的影响 ,并与人眼的目视解译作比较 ,结果表明径向基函数网络在云检测中性能良好。  相似文献   

3.
Recently, neural networks have been proposed for radar clutter modeling because of the inherent nonlinearity of clutter signals. This paper performs an analysis of the practicality of using a radial basis function (RBF) neural network to model sea clutter and to detect small target embedded in sea clutter. An experiment using an instrumental quality radar was carried out on the eastcoast of Canada to create a rich sea clutter and small surface target database. This database contains both staring and scanning data under various environmental conditions. Using data-sets with different characteristics, we investigate the effects of quantization error, measurement noise, generalization of the neural net over ranges and sampling rate on the RBF clutter model. Despite these physical limitations, the RBF model was shown to approach an optimal predictive performance. The RBF predictor was also applied to detect various small targets in this database based on the constant false alarm rate (CFAR) principle. This RBF-CFAR detector was demonstrated to be able to detect small floating targets even in rough sea conditions  相似文献   

4.
This paper describes results from geoacoustic inversion of low-frequency acoustic data recorded at a receiving array divided into two sections, a sparse bottom laid horizontal array (HLA) and a vertical array (VLA) deployed in shallow water. The data are from an experiment conducted by the Norwegian Defence Research Establishment (FFI) in the Barents Sea, using broadband explosives (shot) sources. A two-layer range-independent geoacoustic model, consistent with seismic profiles from the area, described the environment. Inversion for geoacoustic model parameters was carried out using a fast implementation of the hybrid adaptive simplex simulated annealing (ASSA) inversion algorithm, with replica fields computed by the ORCA normal mode code. Low-frequency (40-128 Hz) data from six shot sources at ranges 3-9 km from the array were considered. Estimates of sediment and substrate p-wave velocities and sediment thickness were found to be consistent between independent inversions of data from the two sections of the array.  相似文献   

5.
This paper proposes a method, based on the Biot model, for estimating the physical and acoustic properties of surficial ocean sediments from normal incidence reflection data acquired by a chirp sonar. The inversion method estimates sediment porosity from reflection coefficient measurements and, using the estimated porosity and the measured change in fast wave attenuation with frequency, estimates the permeability of the top sediment layer. The spectral ratio of echoes from the interface at the base of the upper sediment layer and from the sediment-water interface provides a measure of the change in attenuation with frequency. Given the porosity and permeability estimates, the Kozeny-Carman equation provides the mean grain size and the inversion method yields the acoustic properties of top sediment layer. The inversion technique is tested using chirp sonar data collected at the 1999 Sediment Acoustics Experiment (SAX-99) site. Remote estimates of porosity, grain size, and permeability agree with direct measurements of those properties.  相似文献   

6.
A perturbative inversion method for estimating sediment compressional-wave-speed profiles from modal travel-time data is extended to include range-dependent environments. The procedure entails dividing a region into range-independent sections and obtaining estimates of the sediment properties for each region. Inversion results obtained using synthetic data show that range-dependent properties can be obtained if an experiment is designed to include multiple source/receiver combinations. This approach is applied to field data collected during the 2006 Shallow Water Experiment (SW06). The sediment compressional-wave-speed profiles resulting from analysis of the field data are evaluated by comparing acoustic fields predicted based on the inversion to acoustic fields measured during a different experiment conducted in the same region. The model is also compared to seismic reflection survey data collected during SW06. Resolution and variance estimated for the inversion results are also presented.   相似文献   

7.
Fine-grained sediments commonly occur in areas of the continental shelf where wave and current energy are weak. Bulk density, compressional wave speed and attenuation are fundamental physical properties of these sediments required for predicting the response of the seabed for diverse branches of marine science. The traditional coring approach is time and labor-intensive, with large uncertainties associated with sediment disturbance in the sampling phase. Acoustic methods offer the advantages of remote sensing, i.e., sampling the sediment structure without mechanical disturbance and a significantly larger seabed coverage rate per unit time. Two different acoustic methods are described: one using short-range single-bounce interactions with the seabed, and the second using long-range modal propagation to infer the sediment properties. The relative strengths and sensitivities of each approach are explored through simulations guided by experience with measured data.  相似文献   

8.
A method has been presented for estimating the elastic properties of sea-floor sediment by inverting the amplitude-range information of precritical reflection data. The method was tested using synthetic data for reflection from a half-space sediment model and the estimates values for the P- and S-wave speeds and the density were in good agreement with the geoacoustic model parameters. The synthetic data were also used to determine the sensitivity of the method to interference from reflections from subbottom layers. In most practical cases the interference is not likely to be a problem for precritical reflection data. The method was then applied to measurements of seafloor reflection obtained in an experiment carried out off the west coast of Canada. The estimated values of the elastic properties of the topmost sediment layer were consistent with values available from the literature, and with estimates from other experiments carried out in the same region  相似文献   

9.
The flocculation of cohesive sediment in the presence of waves is investigated using high-resolution field observations and a newly-developed flocculation model based on artificial neural networks. Vertical profiles of suspended sediment concentration and turbulent intensity are estimated using measurements of current profile and acoustic backscatter. The vertical distribution of floc size is estimated using an artificial neural network (ANN) that is trained and validated using floc size measurements at one vertical level. Data analysis suggests a linear correlation between suspended sediment concentration and turbulence intensity. Observations and numerical simulations show that floc size is inversely related to sediment concentration, turbulence intensity and water temperature. The numerical results indicate that floc growth is supported by low concentration and low turbulence. In the vertical direction, mean size of flocs decreases toward the bottom, suggesting floc breakage due to increasing turbulence intensity toward the bed. A significant decrease in turbulent shear could occur within the bottom few-cm, related to increased damping of turbulence by sediment induced density stratification. The results of the numerical simulations presented here are consistent with the concept of a cohesive sediment particle undergoing aggregation-fragmentation processes, and suggest that the ANN can be a precise tool to study flocculation processes.  相似文献   

10.
利用MATLAB神经网络实现GPS高程转换设计   总被引:2,自引:0,他引:2  
详细论述了如何运用MATLAB神经网络工具箱设计BP和RBF两种神经网络来实现GPS高程转换,以及在实现过程中应注意的问题,并结合工程实例对上述两种神经网络进行了比较分析,以期在实际应用中指导神经网络的设计。  相似文献   

11.
This paper describes measurements of sediments during the 2000-2001 Asian Seas International Acoustic Experiment in the East China Sea. A number of techniques were used to infer properties of these sediments, including gravity and piston cores, subbottom profiling using a water gun, long-range sediment tomography, and in situ measurement of conductivity. Historical data from echosounder records and cores showed two regions of surficial sediments in the experimental area: a silty area to the west and a sandy area to the east. The tomography, cores, and water-gun measurements confirm the two surficial sediment regions seen in the historical data and also indicate that the subbottom structure at the experimental site consists of a thin (0-3 m thick) layer of sandy sediment directly beneath the sea floor. Below this layer, there is an extensive package of sediment with relatively uniform acoustic attributes. Core analysis shows that the surface sediment layer varies in compressional wave speed from a low near 1600 m/s in the west side of the experiment area to 1660 m/s in the east side of the experiment area. Long-range sediment tomography inversions show a similar spatial variation in the surface layer properties. In addition, the layer thickness as determined from tomography is consistent with the estimates from subbottom profiling.  相似文献   

12.
In this paper, we use a neural network to carry out angle-of-arrival (AOA) estimation in a multipath oceanic environment. In particular, the AOA problem is considered as a mapping from the space of AOA to the space of the sensor output. A neural network is used to determine the inverse mapping from the sensor output space to the space of AOA and this inversion is realized using a radial basis function (RBF) network. We will present the development of the RBF approach for AOA estimation. Simulations are carried out to understand the efficiency and performance of this method. Furthermore, real data are used to evaluate the RBF approach and the results demonstrate the robustness and effectiveness of this neural network method  相似文献   

13.
Determination and control of longshore sediment transport: A case study   总被引:1,自引:0,他引:1  
The fishery harbor of Karaburun coastal village is located at the south west coast of the Black Sea. The significant waves coming from north eastern direction cause considerable rate of sediment transport along 4 km sandy beach towards the fishery harbor in the region. The resulting sediment deposition near and inside the harbor entrance prevents the boat traffic and cause a vital problem for the harbor operations. In order to determine the level and reasons of the sediment transport, the long-term observations of shoreline changes, the long-term statistical analysis of wind and wave characteristics in the region, and sediment properties have been performed. The data obtained from observations, measurements and analysis were discussed. The long-term statistics of deep water significant wave heights for each direction was discussed by comparing the results obtained from different data sources and methods. For shoreline evolution, the numerical study using one-line model was applied to describe the shoreline changes with respect to probable wave conditions. Initial shoreline was obtained from the digitized image in 1996 since there was no previous shoreline measurement of the site. The results were compared using the techniques of remote sensing obtained from sequent images using IKONOS and IRS1C/D satellites.  相似文献   

14.
This study demonstrates application of artificial neural networks (ANNs) for identifying the origin of green macroalgae (Enteromorpha sp. and Cladophora sp.) according to their concentrations of Cd, Cu, Ni, Zn, Mn, Pb, Na, Ca, K and Mg. Earlier studies confirmed that algae can be used for biomonitoring surveys of metal contaminants in coastal areas of the Southern Baltic. The same data sets were classified with the use of different structures of radial basis function (RBF) and multilayer perceptron (MLP) networks. The selected networks were able to classify the samples according to their geographical origin, i.e. Southern Baltic, Gulf of Gdańsk and Vistula Lagoon. Additionally in the case of macroalgae from the Gulf of Gdańsk, the networks enabled the discrimination of samples according to areas of contrasting levels of pollution. Hence this study shows that artificial neural networks can be a valuable tool in biomonitoring studies.  相似文献   

15.
Building empirical equations is an effective way to link the acoustic and physical properties of sediments. These equations play an important role in the prediction of sediments sound speeds required in underwater acoustics.Although many empirical equations coupling acoustic and physical properties have been developed over the past few decades, further confirmation of their applicability by obtaining large amounts of data, especially for equations based on in situ acoustic measurement techniques, is required. A sediment acoustic survey in the South Yellow Sea from 2009 to 2010 revealed statistical relationships between the in situ sound speed and sediment physical properties. To improve the comparability of these relationships with existing empirical equations, the present study calculated the ratio of the in situ sediment sound speed to the bottom seawater sound speed, and established the relationships between the sound speed ratio and the mean grain size, density and porosity of the sediment. The sound speed of seawater at in situ measurement stations was calculated using a perennially averaged seawater sound speed map by an interpolation method. Moreover, empirical relations between the index of impedance and the sound speed and the physical properties were established. The results confirmed that the existing empirical equations between the in situ sound speed ratio and the density and porosity have general suitability for application. This study also considered that a multiple-parameter equation coupling the sound speed ratio to both the porosity and the mean grain size may be more useful for predicting the sound speed than an equation coupling the sound speed ratio to the mean grain size.  相似文献   

16.
Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate several metres into the seafloor, depending on substrate type. We present a case study illustrating how a non-targeted dataset may be used to derive information from multibeam backscatter data regarding distribution of substrate types. The results allow us to assess limitations associated with low frequency MBES where sub-bottom layering is present, and test the accuracy of automated supervised segmentation performed using SonarScope® software. This is done through comparison of predicted and observed substrate from backscatter facies-derived classes and substrate data, reinforced using quantitative statistical analysis based on a confusion matrix. We use sediment samples, video transects and sub-bottom profiles acquired on the Chatham Rise, east of New Zealand. Inferences on the substrate types are made using the Generic Seafloor Acoustic Backscatter (GSAB) model, and the extents of the backscatter classes are delineated by automated supervised segmentation. Correlating substrate data to backscatter classes revealed that backscatter amplitude may correspond to lithologies up to 4 m below the seafloor. Our results emphasise several issues related to substrate characterisation using backscatter classification, primarily because the GSAB model does not only relate to grain size and roughness properties of substrate, but also accounts for other parameters that influence backscatter. Better understanding these limitations allows us to derive first-order interpretations of sediment properties from automated supervised segmentation.  相似文献   

17.
In this study an attempt has been made to extract sediment geoacoustic properties using ambient noise measured from a vertical hydrophone array. Time series noise data recorded from three shallow water sites (Chennai, Cuddalore and Cochin) along the Indian continental shelf were used for the analysis. The compressional sound speed of sediment for all the sites was estimated from the vertical directionality of ambient noise. Using the value of the compressional sound speed remaining wave properties and material properties were deduced from the Grain-Shearing (G-S) theory of wave propagation in saturated granular media. The type of sediment extracted from the G-S theory correlates well with the results obtained from sieve and particle size analysis of grab samples, collected from all the sites. The study clearly shows the application of ambient noise in extracting environmental information in shallow water, and further applying it to improve sonar performance modeling.  相似文献   

18.
Near-bottom normal incidence acoustic reflection data and sediment physical property data are used to study the relationships between acoustic reflections and sediment physical properties. A pinger-hydrophone experiment was performed to obtain the necessary acoustic reflection data. In addition, a standard piston core was retrieved in the acoustic survey area for physical property analysis. The piston core was sampled and 13 properties were measured at 55 locations within the top 12 m of the core. Correlation studies amongst the sediment physical properties resulted in the following strong correlations: acoustic impedance (Z) and porosity (N), (0.96); water content (WC) and Z, (0.95); bulk density (BD) and Z, (0.99).The empirical orthonormal function (EOF) method was employed for acoustic signal analysis. This method assumes no a-priori models of the sediment or causality. The EOF method reduced the acoustic data to 8 functions that contained 97.6% of the sample variance. The EOFs were subsequently analysed by using cepstrum analysis which reveals time delay information and enhances detecting zones of reflectivity. The result of the sediment physical property and cepstrum analysis indicates that zones of reflectivity are essentially zones of relatively high acoustic impedance, low porosity, and low phi (high mean grain size).  相似文献   

19.
Quantitative application study on remote sensing of suspended sediment   总被引:1,自引:0,他引:1  
Quantitative application on remote sensing of suspended sediment is an important aspect of the engineering application of remote sensing study.In this paper,the Xiamen Bay is chosen as the study area.Eleven different phases of the remote sensing data are selected to establish a quantitative remote sensing model to map suspended sediment by using remote sensing images and the quasi-synchronous measured sediment data.Based on empirical statistics developed are the conversion models between instantaneous suspended sediment concentration and tidally-averaged suspended sediment concentration as well as the conversion models between surface layer suspended sediment concentration and the depth-averaged suspended sediment concentration.On this basis,the quantitative application integrated model on remote sensing of suspended sediment is developed.By using this model as well as multi-temporal remote sensing images,multi-year averaged suspended sediment concentration of the Xiamen Bay are predicted.The comparison between model prediction and observed data shows that the multi-year averaged suspended sediment concentration of studied sites as well as the concentration difference of neighboring sites can be well predicted by the remote sensing model with an error rate of 21.61% or less,which can satisfy the engineering requirements of channel deposition calculation.  相似文献   

20.
Analytical results of sound velocity and spectrum for seafloor sediment ore obtained by VWA (velocity-wave-amplitude) discrimination technique. Based on velocity-wave-amplitude, an understanding is gained of the physical condition and structural characteristics of seafloor sediment, which is combined with other geological information of the sedimentary layer to synthetically discriminate the properties of seafloor sediment. Experimental results show that, by using the relationship between sound velocity, wave form envelope, amplitude shape and size, and such parameters as sedimentary structure, microstructure, bedding, grain composition, mineral composition, and physical-mechanics, etc., the basic properties of the shallow surface seafloor sediment in the experimental sea area can be discriminated and the burial depth of traces of ancient marine transgression and regression events in the borehole cores of seafloor sediment can be divided, thus making an attempt of and contribution to the practice of acoustically remote-sensing and telemetering seafloor sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号