首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
Interactions between catchment variables and sediment transport processes in rivers are complex, and sediment transport behaviour during high‐flow events is not well documented. This paper presents an investigation into sediment transport processes in a short‐duration, high‐discharge event in the Burdekin River, a large sand‐ and gravel‐bed river in the monsoon‐ and cyclone‐influenced, semi‐arid tropics of north Queensland. The Burdekin's discharge is highly variable and strongly seasonal, with a recorded maximum of 40 400 m3 s?1. Sediment was sampled systematically across an 800 m wide, 12 m deep and straight reach using Helley‐Smith bedload and US P‐61 suspended sediment samplers over 16 days of a 29‐day discharge event in February and March 2000 (peak 11 155 m3 s?1). About 3·7 × 106 tonnes of suspended sediment and 3 × 105 tonnes of bedload are estimated to have been transported past the sample site during the flow event. The sediment load was predominantly supply limited. Wash load included clay, silt and very fine sand. The concentration of suspended bed material (including very coarse sand) varied with bedload transport rate, discharge and height above the bed. Bedload transport rate and changes in channel shape were greatest several days after peak discharge. Comparison between these data and sparse published data from other events on this river shows that the control on sediment load varies between supply limited and hydraulically limited transport, and that antecedent weather is an important control on suspended sediment concentration. Neither the empirical relationships widely used to estimate suspended sediment concentrations and bedload (e.g. Ackers & White, 1973) nor observations of sediment transport characteristics in ephemeral streams (e.g. Reid & Frostick, 1987) are directly applicable to this river.  相似文献   

2.
The Susquehanna River is the major contributor to sediment loadings in the Chesapeake Bay. Because many environmental contaminants are associated with suspended particulates, the degree of particle retention within the reservoirs of the lower Susquehanna River is an important consideration in evaluating contaminant loadings to the Chesapeake Bay. Profiles of weapons-test Cs-137, nuclear power plant-related Cs-134 and Cs-137, and naturally-derived Pb-120 were used to estimate rates of sediment accretion in the conowingo Reservioir, an impoundment of the Susquehanna River along the Maryland-Pennsylvania border. Net accretion rates ranged from about 2 cm yr?1 downstream of a nuclear power plant cooling discharge to a high of about 7 cm yr?1 at the mount of an incoming creek. Slight, but consistent, increases in the annual rate of accretion since the creation of the reservoir in 1928 are apparent. The current net average annual sediment load reatined by the reservoir is estimated to be 0.4×106 to 1.5 × 106 metric tons yr?1. The retained sediment load represents about 8–23% of the long-time average sediment input to the reservoir.  相似文献   

3.
A material balance is constructed for excess 210Pb (relative to 226Ra) as a test of the retentivity of Long Island Sound for a reactive heavy metal. Excess 210Pb is supplied to Long Island Sound chiefly by direct atmospheric deposition [1 ± 0.2(dis·min?1)cm?2·yr?1]. Rivers supply less than 20% of the atmospheric flux, and other inputs, from open ocean waters, 226Ra decay, groundwater seepage, and sewage discharge, appear to be negligible. The total input of excess 210Pb represents approximately the flux required to maintain the inventory of excess 210Pb measured in sediment cores from central Long Island Sound; that is, excess 210Pb is lost from Long Island Sound chiefly by radioactive decay. The retention of excess 210Pb within Long Island Sound is achieved in two steps: a rapid removal of soluble 210Pb onto suspended particles and the ongoing entrapment of particles in the basin by the residual bottom-water influx from the east.  相似文献   

4.
Current deformation in Pribaikalia, Western and Central Mongolia, and Tuva has been studied from measured horizontal GPS velocities and respective computed strain and rotation rates using 1994–2007 data of the Baikal–Mongolian GPS triangulation network.The GPS velocity field shows two main trends: an NE trend within Jonggaria, the Mongolian Altay, and the Great Lakes Valley and an SE trend in the Hangayn and eastern Gobi Altay mountains, and in the Transbaikalian block of the Amur plate. The velocity magnitudes and vectors are consistent with an SE motion of the Amur plate at a rate of ~2 mm/year.The derived strain pattern includes domains of crustal contraction and extension recognized from the magnitudes of relative strains. Shortening predominates in the Gobi and Mongolian Altay and in the Khamar-Daban Range, where it is at ?2 = (19.2 ± 6.0)×10?9 yr?1 being directed northeastward. Extension domains exist in the Baikal rift and in the Busiyngol–West Hangayn area, where the crust is stretching along NW axes at ?1 = (22.2 ± 3.1) × 10–9 yr–1. The eastern Hangayn dome and the Gobi peneplain on its eastern border show low and unstable strain rates. In central and northern Mongolia (Orhon–Selenge basin), shortening and extension are at similar rates: ?2 = (15.4 ± 5.4)×10?9 yr?1 and ?1 = (18.1 ± 3.1)×10?9 yr?1. The strain pattern changes notably in the area of the Mogod earthquake of 1967.Most of rotation throughout Central Asia is clockwise at a low rate of about Ω = 6×10?9 deg·yr?1. High rates of clockwise rotation are observed in the Hangayn domain (18.1 ± 5.2)×10?9 deg·yr?1, in the Gobi Altay (10.4 ± 7.5)×10?9 deg·yr?1, and in the Orhon–Selenge domain (11.9 ± 5.2)×10?9 deg·yr?1. Counterclockwise rotation is restricted to several domains. One is in western Tuva and northwestern Great Lakes Valley of Mongolia (Ω = 3.7×10?9 deg·yr?1). Two more counterclockwise rotation regions occur on both flanks of the Baikal rift: along the craton edge and in basins of Transbaikalia on the rift eastern border, where rotation rates are as high as (13.0 ± 3.9)×10?9 deg·yr?1, while rotation within the Baikal basin does not exceed the measurement error. Another such domain extends from the eastern Hövsgöl area to the Hangayn northern foothills, with the counterclockwise rotation at a highest rate of (16.3 ± 2.8)×10?9 deg·yr?1.  相似文献   

5.
Fluoride analyses display downward decreasing pore water gradients in Peru shelf phosphatic muds that require diffusion from the overlying seawater into the sediment column and removal by reaction within the upper few tens of centimeters, presumably by incorporation into carbonate fluorapatite. The profiles can be modeled as first-order F-removal with rate constants of ~3 yr?1 and asymptotic F-concentrations deep in the cores of 35–45 μM, almost one-half the seawater value. The integrated flux of fluoride from seawater into organic-rich shelf sediments in coastal-upwelling zones (phosphatic muds) yields a contemporaneous global F-burial of 0.54 × 1010 mol-F yr?1, about one-fifth the burial in other sinks (mostly carbonates and opal). The associated burial flux of phosphorus in shelf phosphorites is about 1.6 × 1010 mol-P yr?1, comparable to P-burial in the deep sea with organic matter (~1.4 × 1010 mol yr?1) and biogenic carbonates (~1.4 × 1010 mol yr?1). Thus phosphorite formation on the Peru shelf is a significant contemporaneous process.  相似文献   

6.
Methane produced in anoxic organic-rich sediments of Cape Lookout Bight, North Carolina, enters the water column via two seasonally dependent mechanisms: diffusion and bubble ebullition. Diffusive transport measured in situ with benthic chambers averages 49 and 163 μmol · m ?2 · hr ?1 during November–May and June–October respectively. High summer sediment methane production causes saturation concentrations and formation of bubbles near the sediment-water interface. Subsequent bubble ebullition is triggered by low-tide hydrostatic pressure release. June–October sediment-water gas fluxes at the surface average 411 ml (377 ml STP: 16.8 mmol) · m?2 per low tide. Bubbling maintains open bubble tubes which apparently enhance diffusive transport. When tubes are present, apparent sediment diffusivities are 1.2–3.1-fold higher than theoretical molecular values reaching a peak value of 5.2 × 10?5 cm2 · sec?1. Dissolution of 15% of the rising bubble flux containing 86% methane supplies 170μmol · m?2 · hr?1 of methane to the bight water column during summer months; the remainder is lost to the troposphere. Bottom water methane concentration increases observed during bubbling can be predicted using a 5–15 μm stagnant boundary layer dissolution model. Advective transport to surrounding waters is the major dissolved methane sink: aerobic oxidation and diffusive atmospheric evasion losses are minor within the bight.  相似文献   

7.
The 1800-km2 Okavango alluvial fan of northern Botswana represents an unusual depositional setting in which peat-forming perennial swamps (6000 km2) occur in a region of aeolian and semi-arid sedimentation within an incipient graben of the East African Rift. A channel system distributes water and sediment on the fan surface but cannot contain seasonal flood water, which spreads laterally from the channels through permeable channel margins, sustaining the flanking swamps. All sediment introduced is deposited on the fan. A detailed study of sediment movement and associated hydrological conditions in the channels was undertaken to examine sediment dispersal. Bedload greatly exceeds suspended load (at least by a factor of four). Vegetation and peat form permeable levees which confine the channels. In the upper reaches, two-way exchange of water occurs between channel and swamp depending on the season, but on the fan itself, channels lose water to the swamp. Bedload measurements reveal that the channel system is in a state of grade disequilibrium, with interspersed depositional and erosional reaches. Deposition of most of the incoming bedload occurs on the upper portion of the fan in a meandering and anastomosed channel system, but on the midfan, deposition of bedload occurs by channel-bed aggradation, at a rate of up to 5 cm yr–1. Further down slope, the channel enters a large lake where all remaining bedload is deposited. The presently observed sedimentation patterns may be due to a recent disturbance of the fluvial system, either by avulsion or neotectonics.  相似文献   

8.
Monthly measurements of suspended sediment concentration and salinity were made at 29 stations along the axis of Long Island Sound from August 1987 through February 1988. The measurements were combined in a 29-segment, two-layer box model to calculate the total sediment fluxes and accumulation rates. Estimates of the total suspended load range from 300,000 metric tons, corresponding to an average residence time of about 2.3 months. Average accumulation rates calculated with the model ranged from about 0.024 mm month?1 to 0.150 mm month?1 for a net annual rate of 0.92 mm yr?1. This is in good agreement with geochemically determined sedimentation rates of 0.75±0.13 mm yr?1 and suggests an oceanic source of sediment equivalent to about 45% of the mud accumulated in the sound.  相似文献   

9.
10.
The stability of sublittoral, fine-grained sediments in a subarctic estuary   总被引:1,自引:0,他引:1  
The erodibility of natural estuarine sediments was measured in sit along a longitudinal transect of Manitounuk Sound, Hudson Bay, using the benthic flume Sea Carousel. Sedimentation processes along the transect varied from continuous, rapid, post-glacial sedimentation in the inner Sound, to glacial outcrops and seabed reworking of the outer Sound. The grain size and physical bulk properties reflect changes in depositional environment and correlate with sediment erosion threshold stress (τc), erosion rate (E), erosion type and still-water mass settling rate. There was a steady increase in τc (0·8–2·0 Pa) with distance down the Sound in parallel with the decreasing sedimentation rate (0·003–0·001 m yr?1) and increasing sediment bulk density (1650–2010 kg m?3). The near-surface friction coefficient varied up to 68° in proportion to the clay content of post-glacial material. Glacial sediments were characterized by variable results and generally higher friction coefficients. Seabed erosion in Sea Carousel began with surface creep of loose aggregates, pellets and organic debris. This was followed by Type I bed erosion at rates that varied between 0·0002 and 0·0032 kg m?2 s?1 (mean 0·0015). Type I peak erosion rate was inversely related to applied bed shear stress (τo). Type II erosion succeeded Type I, often after a broad transitional period. Simulations of suspended sediment concentration in Sea Carousel were made using four commonly used erosion (E) algorithms. The best results were obtained using Krone's dimensionless ratio relationship: E=Moc-1). Simulations were highly sensitive to the definition of erosion threshold with sediment depth [τc(z)]. Small errors in definition of τc(z) caused large errors in the prediction of suspended sediment concentration which far exceeded differences between the methods tested.  相似文献   

11.
In situ carbon flux measurements and calculated burial rates are utilized to construct an organic carbon budget for the upper meter of sediment at a single station in Cape Lookout Bight, a small marine basin located on the Outer Banks of North Carolina, U.S.A. (34°37′N, 76°33′W). Of 149 ± 20 mole · m?2 · yr?1 of total organic carbon deposited, 35.6 ± 5.2 mole · m?2 · yr?1 is recycled to overlying waters, 84 ± 18% as ∑CO2 and 16 ± 8% as CH4. Approximately 68 ± 20% of the upward carbon flux is supported by sulfate reduction while 32 ± 16% takes place as the result of underlying methanogenesis. Measured ∑CO2 and CH4 sediment-water fluxes range seasonally from 1900–6300 and 50–2500 μmole · m?2 · hr?1 respectively.The mean residence time of metabolizable organic carbon in the upper 80 cm of sediment is approximately four months with greater than 98% of the calculated total remineralization taking place within three years. In spite of large upward fluxes of methane, larger molecules derived from metabolizable sedimentary organic carbon appear to be the dominant reductants for dissolved sulfate.  相似文献   

12.
The distribution of Mn was examined in the bottom sediments and water column (suspended paniculate matter) of the Laurentian Trough. Gulf of St. Lawrence. A characteristic profile of Mn with depth in the sediment consisted of a Mn-enriched surface oxidized zone, less than 20 mm thick, and a Mn-depleted subsurface reducing zone. A subsurface Mn maximum occurred within the oxidized zone. Below this maximum the concentration dropped sharply to nearly constant residual levels in the reducing zone. The accumulating estuarine sediments are deficient in Mn compared to the river input of suspended matter and are definitely not the ultimate sink for manganese. Manganese escapes from the sediment by diffusion and resuspension, forming Mn-enriched, fine-grained particles which are flushed out in the estuarine circulation. 5.0 × 109gyr?1 of Mn, or 50% more than the river input of dissolved Mn. are exported to the open ocean. In spite of the efficient mobilization and export of Mn, the quantity exported is a small fraction (0.2%) of the total flux to the deep-sea sediments. This is related to the low levels of paniculate matter transported by the St. Lawrence River. The export phénomenon, however, is probably true of many coastal regions of muddy sediments and thus has interesting implications for the oceanic budget of Mn.  相似文献   

13.
Sediment accumulation rate studies utilizing excess 210Pb and 137Cs were conducted as part of recent investigations of biogeochemical cycling at a single site in Cape Lookout Bight, a rapidly changing coastal basin on the Outer Banks of North Carolina (U.S.A.). Cores three meters in length reveal a depositional history for the bight interior characterized by a gradual transition in texture from coarse-grained to fine-grained material over the period 1946–1979. This transition is controlled by progressive enclosure of the bight by an active northerly migrating recurved spit. The textural gradation is periodically interrupted by layers of well-sorted sand associated with major storm events. Lead-210 data indicate that the upper meter of the sediment has accumulated at a rate of 3.35 to 4.71 g · cm?2 · yr?1 or approximately 8.4 to 11.8 cm · yr?1 (at ø = 0.84). Below 120 cm depth, dilution of clay and silt by low activity sand necessitates correction of the 210Pb profile in order to establish a geochronology. Grain size 210Pb distribution measurements at three depths reveal that the specific activity (dpm · g?1) of clay is 3.2 times that of silt and 24.7 times that of sand. Corrections of bulk sediment excess 210Pb activities based on these measurements lead to dates for textural changes which are consistent with charted changes in basin morphology and major storm events.Sixteen 137Cs measurements between 33–241 cm depth reveal a peak activity at 105–115 cm and indicate a minimum sedimentation rate of approximately 2.7 g · cm?2 · yr?1.  相似文献   

14.
Roughly 200 tonnes of arsenic are produced annually with the base metal ores at Sudbury about 125 tonnes of which are released to the ambient environment via the atmosphere. The dispersion of this highly toxic element in lakes around the smelters is described. The total As concentrations in unfiltered lake waters vary from 0.2 to 0.6 ug 1?1. The suspended particulates in the water column (with As contents of 2–6 ug g?1) play a major role in the flux of arsenic to the lake sediments. The present-day rates of As accumulation in the sediments are found to be 1.5–6.4 mg m?2 yr?1; these rates exceed those of precolonial times by factors of 5–47. The changes in the rates of As flux to the sediments are shown to parallel the history of Cu and Ni production in the district.  相似文献   

15.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

16.
Aeolian sand and dust in polar regions are transported offshore over sea ice and released to the ocean during summer melt. This process has long been considered an important contributor to polar sea floor sedimentation and as a source of bioavailable iron that triggers vast phytoplankton blooms. Reported here are aeolian sediment dispersal patterns and accumulation rates varying between 0·2 g m?2 yr?1 and 55 g m?2 yr?1 over 3000 km2 of sea ice in McMurdo Sound, south‐west Ross Sea, adjacent to the largest ice free area in Antarctica. Sediment distribution and the abundance of southern McMurdo Volcanic Group‐derived glass, show that most sediment originates from the McMurdo Ice Shelf and nearby coastal outcrops. Almost no sediment is derived from the extensive ice free areas of the McMurdo Dry Valleys due to winnowed surficial layers shielding sand‐sized and silt‐sized material from wind erosion and because of the imposing topographic barrier of the north‐south aligned piedmont glaciers. Southerly winds of intermediate strength (ca 20 m sec?1) are primarily responsible for transporting sediment northwards and offshore. The results presented here indicate that sand‐sized sediment does not travel more than ca 5 km offshore, but very‐fine sand and silt grains can travel >100 km from source. For sites >10 km from the coast, the mass accumulation rate is relatively uniform (1·14 ± 0·57 g m?2 yr?1), three orders of magnitude above estimated global atmospheric dust values for the region. This uniformity represents a sea floor sedimentation rate of only 0·2 cm kyr?1, well below the rates of >9 cm kyr?1 reported for biogenic‐dominated sedimentation measured over much of the Ross Sea. These results show that, even for this region of high‐windblown sediment flux, aeolian processes are only a minor contributor to sea floor sedimentation, excepting areas proximal to coastal sources.  相似文献   

17.
Thick bay‐fill sequences that often culminate in strandplain development serve as important sedimentary archives of land–ocean interaction, although distinguishing between internal and external forcings is an ongoing challenge. This study employs sediment cores, ground‐penetrating radar surveys, radiocarbon dates, palaeogeographic reconstructions and hydrodynamic modelling to explore the role of autogenic processes – notably a reduction in wave energy in response to coastal embayment infilling – in coastal evolution and shoreline morphodynamics. Following a regional 2 to 4 m highstand at ca 5·8 ka, the 75 km2 Tijucas Strandplain in southern Brazil built from fluvial sediments deposited into a semi‐enclosed bay. Holocene regressive deposits are underlain by fluvial sands and a Pleistocene transgressive–regressive sequence, and backed by a highstand barrier‐island. The strandplain is immediately underlain by 5 to 16 m of seaward‐thickening, fluvially derived, Holocene‐age, basin‐fill mud. Several trends are observed from the landward (oldest) to the seaward (youngest) sections of the strandplain: (i) the upper shoreface and foreshore become finer and thinner and shift from sand‐dominated to mud‐dominated; (ii) beachface slopes decrease from >11° to ca 7°; and (iii) progradation rates increase from 0·4 to 1·8 m yr?1. Hydrodynamic modelling demonstrates a correlation between progressive shoaling of Tijucas Bay driven by sea‐level fall and sediment infilling and a decrease in onshore wave‐energy transport from 18 to 4 kW m?1. The combination of allogenic (sediment supply, falling relative sea‐level and geology) and autogenic (decrease in wave energy due to bay shoaling) processes drove the development of a regressive system with characteristics that are rare, if not unique, in the Holocene and rock records. These findings demonstrate the complexities in architecture styles of highstand and regressive systems tracts. Furthermore, this article highlights the diverse internal and external processes and feedbacks responsible for the development of these intricate marginal marine sedimentary systems.  相似文献   

18.
Data from a moderate energy, meso-tidal beach on the east side of Delaware Bay, New Jersey, USA, revealed the significance of both beach width as a source for aeolian transport and the effect of tidal rise on source width. Wind speeds averaged over 17·1 min, recorded 6 m above the crest of a 0·5 m high dune, ranged from 11·6 to 12·7 m s?1 during the experiment. The highest observed rate of transport on the beach was 0·0085 kg m?1 s?1, monitored at rising low tide when the average wind speed was 11·6 m s?1 across 0·35 mm diameter surface sediments. The wind direction was oblique to the shoreline, creating a source width of 34 m. The reduction in the width of the beach as a source for aeolian transport during rising tide was approximately arithmetic, whereas the reduction in volume of sediment trapped was exponential. Aeolian transport effectively ceased when source width was less than 8 m. Wind conditions, moisture content of the surface sediments and presence of binding salts did not appear to vary dramatically, and no coarse grained lag deposit formed on the surface of the beach. The decrease in rate of sediment trapped through time in the tidal cycle is attributed to differences in source width. Sediment deposited in the litter behind the active beach by strong winds during the rising tide was eroded during the high water period by the high waves and storm surge generated by these winds, and net losses of sediment were observed despite initial aeolian accretion.  相似文献   

19.
A 4·7 km2 field of sediment waves occurs in front of the Slims River delta in Kluane Lake, the largest lake in the Yukon Territory. Slims River heads in the Kaskawulsh Glacier, part of the St Elias Ice Field and discharges up to 400 m3 s?1 of water with suspended sediment concentrations of up to 7 g l?1. The 19 km long sandur of Slims River was created in the past 400 years since Kaskawulsh Glacier advanced and dammed the lake and the sandur has advanced into Kluane Lake at an average rate of 48 m a?1. However, this rate is decreasing as flow is diverted from Slims River because of the retreat of the Kaskawulsh Glacier. The sandur and a road constructed on the delta remove coarse‐grained sediment, so the river delivers dominantly mud to the lake. Inflow during summer generates quasi‐continuous turbidity currents with velocities up to 0·6 m s?1. The front of the delta consists of a plane surface sloping lakeward at 0·0188 (1·08°). A field of sediment waves averaging 130 m in length and 2·3 m in amplitude has developed on this surface. Slopes on the waves vary from ?0·067 (?3·83°, i.e. sloping in the opposite direction to the regional slope) to 0·135 (7·69°). The internal structure of the sediment waves, as documented by seismic profiling, shows that sedimentation on the stoss portion of the wave averages 2·7 times that on the lee portion. Rates of sediment accumulation in the wave field are about 0·3 m a?1, so these lacustrine waves have formed in a much shorter period of time (less than 200 years) and are advancing upslope towards the delta much more quickly (1 to 2 m a?1) than typical marine sediment waves. These waves formed on the flat surface of the lake floor, apparently in the absence of pre‐existing forms, and they are altered and destroyed as the wave field advances and the characteristics of the turbidity currents change.  相似文献   

20.
High rates of wetland loss in the Mississippi deltaic plain have been attributed to a combination of insufficient marsh sedimentation and relative sea-level rise rates of over 1.2 cm yr?1. This study examines contemporary patterns of sediment delivery to the marsh surface by evaluating the contribution of individual marsh flooding events. Strong meteorological effects on water level in Terrebonne Bay often mask the usual microtidal fluctuations in water level and cause flood events to be of unpredictable frequency and duration. Sediment deposited on the marsh surface was collected weekly at two sites. Preliminary results allow the relative contributions of tidal and storm inundations to be calculated. Maximum sedimentation is associated with strong southerly winds both causing increased flooding and mobilizing sediment from open bay areas. Sediment deposition is limited by the availability of suspended sediment and the opportunity for its transport onto the marsh surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号