首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
Nanophase Fe metal grains (np-Fe°) are a product of space weathering, formed by processes related to meteorite impacts, and solar-wind sputtering on airless planetary bodies, such as the Moon. Iron isotopes of lunar soils are fractionated during these processes, and the np-Fe° in the finest (<10 μm), mature, size fractions of the soil become enriched in heavier isotopes by ∼0.3‰ in 56Fe/54Fe in comparison to the bulk rocks (0.03±0.05‰), from which the soil was formed. A positive correlation of δ56Fe values with the soil maturity index, IS/FeO, suggests that the high δ56Fe values reflect production of nanophase Fe metal that is produced by space weathering that occurs on airless planetary bodies. Furthermore, the enrichment of δ56Fe in the smallest size fraction of lunar soils supports a model for creation of np-Fe° through vapor deposition induced by micrometeorites, as well as that by solar-wind sputtering.  相似文献   

2.
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δ18O values (− 0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ = 0.5259 ± 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Δ17O for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01‰ and are indistinguishable from the TFL. The δ18O values of high- and low-Ti lunar basalts are distinct. Average whole-rock δ18O values for low-Ti lunar basalts from the Apollo 12 (5.72 ± 0.06‰) and Apollo 15 landing sites (5.65 ± 0.12‰) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 ± 0.11‰). Evolved low-Ti LaPaz mare-basalt meteorite δ18O values (5.67 ± 0.05‰) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in δ18O do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine–pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average δ18O (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Δ=0.18‰) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the δ18O of lunar mantle olivine in this study are only 0.05‰ higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth–Moon system.  相似文献   

3.
Silica alteration zones and cherts are a conspicuous feature of Archaean greenstone belts worldwide and provide evidence of extensive mobilisation of silica in the marine environment of the early Earth. In order to understand the process(es) of silicification we measured the silicon and oxygen isotope composition of sections of variably silicified basalts and overlying bedded cherts from the Theespruit, Hooggenoeg and Kromberg Formations of the Barberton Greenstone Belt, South Africa.The δ30Si and δ18O values of bulk rock increase with increasing amount of silicification from unsilicified basalts (?0.64‰ < δ30Si < ?0.01‰ and + 8.6‰ < δ18O < + 11.9‰) to silicified basalts (δ30Si and δ18O values as high as + 0.81‰ and + 15.6‰, respectively). Cherts generally have positive isotope ratios (+ 0.21‰ < δ30Si < + 1.05‰ and + 10.9 < δ18O < + 17.1), except two cherts, which have negative δ30Si values, but high δ18O (up to + 19.5‰).The pronounced positive correlations between δ30Si, δ18O and SiO2 imply that the isotope variation is driven by the silicification process which coevally introduced both 18O and 30Si into the basalts. The oxygen isotope variation in the basalts from about 8.6‰ to 15.6‰ is likely to represent temperature-dependent isotope fractionation during alteration. Our proposed model for the observed silicon isotope variation relies on a temperature-controlled basalt dissolution vs. silica deposition process.  相似文献   

4.
The Miocene Tejeda caldera on Gran Canaria erupted ~ 20 rhyolite–trachyte ignimbrites (Mogán Group 14–13.3 Ma), followed by ~ 20 phonolitic lava flows and ignimbrites (Fataga Group 13–8.5 Ma). Upper-Mogán tuffs have been severely altered immediately within the caldera margin, whereas extra-caldera Mogán ignimbrites, and overlying Fataga units, are apparently unaltered. The altered intra-caldera samples contain minerals characteristic of secondary fluid–rock interaction (clays, zeolites, adularia), and relics of the primary mineral assemblage identified in unaltered ignimbrites (K-feldspar, plagioclase, pyroxene, amphibole, and groundmass quartz). Major and trace-element data indicate that Si, Na, K, Pb, Sr, and Rb, were strongly mobilized during fluid–rock interaction, whereas Ti, Zr, and Nb behaved in a more refractory manner, experiencing only minor mobilization. The δ18O values of the altered intra-caldera tuffs are significantly higher than in unaltered extra-caldera ignimbrites, consistent with an overall low-temperature alteration environment. Unaltered extra-caldera ignimbrites have δD values between − 110‰ and − 173‰, which may reflect Rayleigh-type magma degassing and/or post-depositional vapour release. The δD values of the altered intra-caldera tuffs range from − 52‰ to − 131‰, with ambient meteoric water at the alteration site estimated at ca. − 15‰. Interaction and equilibration of the intra-caldera tuffs with ambient meteoric water at low temperature can only account for whole-rock δD values of around − 45‰, given that ?Dclay–water is ca. − 30‰ at 100 °C, and decreases in magnitude at higher temperatures. All altered tuff samples have δD values that are substantially lower than − 45‰, indicating interaction with a meteoric water source with a δD value more negative than − 15‰, which may have been produced in low-temperature steam fumaroles. Supported by numerical modeling, our Gran Canaria data reflect the near-surface, epithermal part of a larger, fault-controlled hydrothermal system associated with the emplacement of the high-level Fataga magma chamber system. In this near-surface environment, fluid temperatures probably did not exceed 200–250 °C.  相似文献   

5.
We investigated the effects of salinity (5‰, 15‰, 25‰ and 35‰) on metal ion (Cu and Zn) and nanoparticle (NP) CuO and ZnO toxicity to Tigriopus japonicus. Increasing the test media volume without renewal increased the 96-h LC50 for Cu (32.75 mg L−1) compared to the reported value (3.9 mg L−1). There was no significant difference in acute toxicity at different salinities between acclimated and unacclimated T. japonicus (> 0.05). Increasing salinity decreased the dissolved concentrations of Cu and Zn ions due to the precipitation of the metal ions, consequently reducing the acute toxicity to T. japonicus. The effect of salinity on acute CuO and ZnO NP toxicity was similar to that on metal ion toxicity. Since the aggregation of NPs generally enhanced at higher salinities, both the dissolution and aggregation of CuO and ZnO NPs may control the effect of salinity on acute toxicity to T. japonicus.  相似文献   

6.
In the Jungwon area, South Korea, two contrasting types of deep thermal groundwater (around 20–33 °C) occur together in granite. Compared to shallow groundwater and surface water, thermal groundwaters have significantly lower δ18O and δD values (> 1‰ lower in δ18O) and negligible tritium content (mostly < 2 TU), suggesting a relatively high age of these waters (at least pre-thermonuclear period) and relatively long subsurface circulation. However, the hydrochemical evolution yielded two distinct water types. CO2-rich water (PCO2 = 0.1 to 2 atm) is characterized by lower pH (5.7–6.4) and higher TDS content (up to 3300 mg/L), whereas alkaline water (PCO2 = 10− 4.1–10− 4.6 atm) has higher pH (9.1–9.5) and lower TDS (< 254 mg/L). Carbon isotope data indicate that the CO2-rich water is influenced by a local supply of deep CO2 (potentially, magmatic), which enhanced dissolution of silicate minerals in surrounding rocks and resulted in elevated concentrations of Ca2+, Na+, Mg2+, K+, HCO3 and silica under lower pH conditions. In contrast, the evolution of the alkaline water was characterized by a lesser degree of water–rock (granite) interaction under the negligible inflow of CO2. The application of chemical thermometers indicates that the alkaline water represents partially equilibrated waters coming from a geothermal reservoir with a temperature of about 40 °C, while the immature characteristics of the CO2-rich water resulted from the input of CO2 in Na–HCO3 waters and subsequent rock leaching.  相似文献   

7.
The Hf isotope composition of original igneous or detrital zircons in high-grade metamorphic rocks can be used to trace protolith origin, but metamorphic effect on the Hf isotope composition of newly grown domains remains to evaluate. We report a detailed in situ combined study of intragrain U-Pb and Lu-Hf isotopes in zircons from granitic gneiss and eclogite in the Dabie orogen of China that experienced ultrahigh-pressure eclogite-facies metamorphism. The results show correlations in 206Pb / 238U age, initial Hf isotope composition, and Th / U and Lu / Hf ratios between the domains of different origins. The metamorphic domains are characterized by low Th / U and Lu / Hf ratios but high ?Hf(t) values relative to the igneous core and mantle of pre-metamorphic ages. Positive correlations are observed between Th / U and Lu / Hf ratios, pointing to the similar effect of metamorphism on both U-Th-Pb and Lu-Hf isotope systems. Thus the metamorphic domains are distinguished from the igneous core and mantle by their low Lu / Hf ratios that are less than 0.001 for the granitic gneiss and less than 0.0001 for the eclogite. Despite differences in both protolith age and geochemical source between granitic gneiss and eclogite, rim ?Hf(t) values are variably 3.1 to 13.5 greater than core ?Hf(t) values when calculated at timing of protolith formation. This indicates that the zircon overgrowth was associated with a metamorphic medium that has high 176Hf / 177Hf but low 176Lu / 177Hf ratios. While the metamorphic domains contain more radiogenic Hf isotopes than the original igneous core and mantle, their Lu / Hf ratios are significantly lower than those of core and mantle. Therefore, the metamorphic zircons acquired their initial Hf isotope ratios from metamorphic fluids that have high 176Hf / 177Hf ratios but low Lu / Hf ratios with sound variability depending on the Lu-Hf isotope compositions of pre-existing and co-precipitating phases.  相似文献   

8.
Our understanding of the ancient ocean-atmosphere system has focused on oceanic proxies. However, the study of terrestrial proxies is equally necessary to constrain our understanding of ancient climates and linkages between the terrestrial and oceanic carbon reservoirs. We have analyzed carbon-isotope ratios from fossil plant material through the Valanginian and Lower Hauterivian from a shallow-marine, ammonite-constrained succession in the Crimean Peninsula of the southern Ukraine in order to determine if the Upper Valanginian positive carbon-isotope excursion is expressed in the atmosphere. δ13Cplant values fluctuate around − 23‰ to − 22‰ for the Valanginian-Hauterivian, except during the Upper Valanginian where δ13Cplant values record a positive excursion to ∼− 18‰. Based upon ammonite biostratigraphy from Crimea, and in conjunction with a composite Tethyan marine δ13Ccarb curve, several conclusions can be drawn: (1) the δ13Cplant record indicates that the atmospheric carbon reservoir was affected; (2) the defined ammonite correlations between Europe and Crimea are synchronous; and (3) a change in photosynthetic carbon-isotope fractionation, caused by a decrease in atmospheric pCO2, occurred during the Upper Valanginian positive δ13C excursion. Our new data, combined with other paleoenvironmental and paleoclimatic information, indicate that the Upper Valanginian was a cool period (icehouse) and highlights that the Cretaceous period was interrupted by periods of cooling and was not an equable climate as previously thought.  相似文献   

9.
This paper presents 19 months of stable isotope (δ2H and δ18O) data to enhance understanding of water and solute transport at two spatial scales (2.3 km2 and 122 km2) in the agricultural Lunan catchment, Scotland. Daily precipitation and stream isotope data, weekly lake and spring isotope data and monthly groundwater isotope data revealed important insights into flow pathways and mixing of water at both scales. In particular, a deeper groundwater flow path significantly contributes to total streamflow (25-50%). Upstream lake isotope dynamics, susceptible to evaporative fractionation, also appeared to have an important influence on the downstream isotope composition. This unique tracer data set facilitated the conceptualization of a lumped catchment-scale flow-tracer model. The incorporation of hydrological, mixing and fractionation processes based on these data improved simulations of the stream δ2H isotope response at the catchment outlet from 0.37 to 0.56 for the Nash-Sutcliffe statistic. The stable isotope data successfully aided model conceptualization and calibration in the quest for a simple water and solute transport model with improved representation of process dynamics.  相似文献   

10.
Concentrations of lead were assessed in the sea turtle, Lepidochelys olivacea, from a nesting colony of the Eastern Pacific. Twenty-five female turtles were sampled and a total of 250 eggs were collected during the “arribada” event of the 2005-2006 season. Considering the nesting season, the maternal transfer of lead (Pb) via egg-laying, in terms of metal burden in whole body, was 0.5%. Pb concentrations (in dry weight) in blood (0.95 ± 0.18 μg g−1) and egg samples (yolk, 0.80 ± 0.10 μg g−1; albumen, 1.08 ± 0.20 μg g−1; eggshell, 1.05 ± 0.20 μg g−1) were comparable or even lower than those found in other sea turtles. The isotope ratios (206Pb/207Pb and 206Pb/208Pb) in blood (1.183 ± 0.0006 and 2.452 ± 0.0006, respectively) were comparable to that of natural Pb-bearing bedrock in Mexico (1.188 ± 0.005 and 2.455 ± 0.008, respectively). According to international norms of Pb, the health of this population and its habitats is acceptable for Pb and corresponds to basic levels of a nearly pristine environment.  相似文献   

11.
Authigenic carbonates were sampled in methane-enriched piston core sediments collected from gas venting sites on the western continental slope of the Ulleung Basin, East Sea of Korea. Multidisciplinary investigations on these carbonates, including the scanning electronic microscope (SEM) observations and mineralogical-geochemical compositions, were carried out to identify the carbon and oxygen sources and the forming mechanism of these carbonates. The authigenic carbonates from the study area correspond to semi-consolidated, compact concretions or nodules ranging from 2 to 9 cm in size. X-ray diffraction and electron microprobe analyses showed that most of the sampled carbonate concretions were composed of almost purely authigenic high-Mg calcite (10.7–14.3 mol% MgCO3). Characteristically, microbial structures such as filaments and rods, which were probably associated with the authigenic minerals, were abundantly observed within the carbonate matrix. The carbonates were strongly depleted in δ13C (−33.85‰ to −39.53‰ Peedee Belemnite (PDB)) and were enriched in δ18O (5.16–5.60‰ PDB), indicating that the primary source of carbon is mainly derived from the anaerobic oxidation of methane. Such methane probably originated from the destabilization of the underlying gas hydrates as strongly supporting from the enriched 18O levels. Furthermore, the strongly depleted δ13C values (−60.7‰ to −61.6‰ PDB) of the sediment void gases demonstrate that the majority of the gas venting at the Ulleung Basin is microbial methane by CO2 reduction. This study provides another example for the formation mechanism of methane-derived authigenic carbonates associated with gas-hydrate decomposition in gas-seeping pockmark environments.  相似文献   

12.
Drifting sediment traps were deployed at 9 stations in May-June (ice-covered conditions) and July-August (ice-free conditions) 2004 in the Chukchi Sea to investigate the variability in export fluxes of biogenic matter in the presence and absence of sea ice cover. Measurements of chlorophyll-a (Chl-a), particulate organic carbon (POC), particulate nitrogen (PN), phytoplankton, zooplankton fecal pellets, and the stable carbon isotope composition (δ13C) of the sinking material were performed along Barrow Canyon (BC) and a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. POC export fluxes were similarly high in the presence (378±106 mg C m−2 d−1) and in the absence of ice cover (442±203 mg C m−2 d−1) at the BC stations, while fluxes were significantly higher in the absence (129±98 mg C m−2 d−1) than in the presence of ice cover (44±29 mg C m−2 d−1) at the EHS stations. The C/N ratios and δ13C values of sinking organic particles indicated that POC export fluxes on the Chukchi continental shelf were mostly composed of freshly produced labile material, except at the EHS stations under ice cover where the exported matter was mostly composed of refractory material probably advected into the EHS region. Chl-a fluxes were higher under ice cover than in ice-free water, however, relatively low daily loss rates of Chl-a and similar phytoplankton carbon fluxes in ice-covered and ice-free water suggest the retention of phytoplankton in the upper water column. An increase in fecal pellet carbon fluxes in ice-free water reflected higher grazing pressure in the absence of ice cover. Elevated daily loss rates of POC at the BC stations confirmed other indications that Barrow Canyon is an important area of carbon export to the basin and/or benthos. These results support the conclusion that there are large spatial and temporal variations in export fluxes of biogenic matter on the Chukchi continental shelf, although export fluxes may be similar in the presence and in the absence of ice cover in highly productive regions.  相似文献   

13.
Revealing of the sources and distributions of sedimentary organic matter in the East China Sea (ECS) is important for understanding its carbon cycle, which has significant temporal and spatial variability due to the influences of recent climate changes and anthropogenic activities. In this study, we report the contents of both terrestrial and marine biomarkers including ∑C27+C29+C31n-alkanes (38.6-580 ng/g), C37 alkenones (5.6-124.6 ng/g), brassicasterol (98-913 ng/g) and dinosterol (125-1521 ng/g) from the surface sediments in the Changjiang River Estuary (CRE) and shelf areas of the ECS. Several indices based on biomarker contents and ratios are calculated to assess the spatial distributions of both terrestrial and marine organic matter in the ECS surface sediments, and these results are compared with organic matter distribution patterns revealed by the δ13C (−20.1‰ to −22.7‰) and C/N ratio (5-7.5) of total organic matter. The contents of terrestrial biomarkers in the ECS surface sediments decrease seaward, controlled mostly by Changjiang River (CR) inputs and surface currents; while higher contents of the two marine biomarkers (brassicasterol and dinosterol) occur in upwelling areas outside the CRE and in the Zhejiang-Fujian coastal zone, controlled mostly by marine productivity. Four proxies, fTerr(δ13C) (the fraction of terrestrial organic matter in TOC estimated by TOC δ13C), odd-alkanes (∑C27+C29+C31n-alkanes), 1/Pmar-aq ((C23+C25+C29+C31)/(C23+C25) n-alkanes) and TMBR (terrestrial and marine biomarker ratio) (C27+C29+C31n-alkanes)/((C27+C29+C31) n-alkanes+(brassicasterol+dinosterol+alkenones)), reveal a consistent pattern showing the relative contribution of terrestrial organic matter (TOM) is higher in the CRE and along the Zhejiang-Fujian coastline, controlled mostly by CR inputs and currents, but the TOM contribution decreases seaward, as the influences of the CR discharge decrease.  相似文献   

14.
15.
To clarify the sources and transformation of NO3 on the Pacific coast of Japan, observations over the continental shelf were conducted during the summer in 2005 and 2006 when the Kuroshio flowed close to and away from the coastal area, respectively. Below the halocline, there are two prominent salinity peaks that originated in two different waters. In the subsurface layer, the salinity maximum (Smax) was indicative of the Kuroshio Water (KW), while the salinity minimum (Smin) in the middle layer at ∼400 m depth was indicative of the North Pacific Intermediate Water (NPIW). δ15NNO3 ranged from 4.1‰ to 5.1‰ with a mean of 4.8±0.4‰ in the deeper water around Smin. Below 50 m depth over the shelf break, δ15NNO3 values (3.1±0.8‰ in 2005 and 4.6±0.3‰ in 2006) clearly increased as contribution of NPIW increased in 2006. On the contrary, subsurface δ15N of NO3 values (−1.1±0.1‰) remained unchanged in both years, although the contribution of the KW to the subsurface water changed significantly. This suggests that the source of NO3 has little effect on the δ15N of NO3 in this layer. The negative δ15N values also coincided with the base of the chlorophyll maximum layer suggesting that these isotopic signals must be evidence of active nitrification in the upper layer.  相似文献   

16.
The present work aimed at studying the origin of particulate organic matter in Guanabara Bay and in some rivers of the Guanabara basin by using elemental composition, isotopic ratios (δ13C and δ15N) and molecular markers (sterols) in samples collected in two periods (winter and summer). Elemental and isotopic compositions were determined by dry combustion and mass spectrometry, respectively, while sterols were investigated by GC–FID and GC–MS. Higher sterol concentrations were present in the north-western part of the bay in winter (5.10–23.5 μg L–1). The high abundance of algal sterols (26–57% of total sterols), the elemental composition (C/N=6–8) and the isotopic signatures (δ13C=−21.3‰ to −15.1‰ and δ15N=+7.3‰ to +11.1‰) suggested the predominance of autochthonous organic matter, as expected for an eutrophic bay, although seasonal variation in phytoplankton activity was observed. Coprostanol concentration (fecal sterol) was at least one order of magnitude higher in the particulate material from fluvial samples (4.65–55.98 μg L–1) than in the bay waters (<0.33 μg L–1). This could be ascribed to a combination of factors including efficient particle removal to sediments in the estuarine transition zone, dilution with bay water and bacterial degradation during particle transport in the water column.  相似文献   

17.
Carbonatites are mantle-derived, intraplate magmas that provide a means of documenting isotopic variations of the Earth's mantle through time. To investigate the secular Li isotopic evolution of the mantle and to test whether Li isotopes document systematic recycling of material processed at or near the Earth's surface into the mantle, we analyzed the Li isotopic compositions of carbonatites and spatially associated mafic silicate rocks. The Li isotopic compositions of Archean (2.7 Ga) to Recent carbonatites (δ7Li = 4.1 ± 1.3 (n = 23, 1σ)) overlap the range typical for modern mantle-derived rocks, and do not change with time, despite ongoing crustal recycling. Thus, the average Li isotopic composition of recycled crustal components has not deviated greatly from the mantle value (~ + 4) and/or Li diffusion is sufficiently fast to attenuate significant heterogeneities over timescales of 108 years. Modeling of Li diffusion at mantle temperatures suggests that limited δ7Li variation in the mantle through time reflects the more effective homogenization of Li in the mantle compared to radiogenic isotope systems. The real (but limited) variations in δ7Li that exist in modern mantle-derived magmas as well as carbonatites studied here may reflect isotopic fractionation associated with shallow-level processes, such as crustal assimilation and diffusive isotopic fractionation in magmatic systems, with some of the scatter possibly related to low-temperature alteration.  相似文献   

18.
Carbon and nitrogen stable isotope ratios of particulate organic matter (POM) in surface water and 63–200 μm-sized microphytoplankton collected at the fluorescence maximum were studied in four sites in the Gulf of Lions (NW Mediterranean), a marine area influenced by the Rhone River inputs, in May and November 2004. Some environmental (temperature, salinity) and biological (POM, Chlorophyll a and phaeopigments contents, phytoplankton biomass and composition) parameters were also analysed. Significantly different C and N isotopic signatures between surface water POM and microphytoplankton were recorded in all sites and seasons. Surface water POM presented systematically lower δ13C (∼4.2‰) and higher δ15N (∼2.8‰) values than those of microphytoplankton, due to a higher content of continental and detrital material. Seasonal variations were observed for all environmental and biological parameters, except salinity. Water temperature was lower in May than in November, the fluorescence maximum was located deeper and the Chlorophyll a content and the phytoplankton biomass were higher, along with low PON/Chl a ratio, corresponding to spring bloom conditions. At all sites and seasons, diatoms dominated the phytoplankton community in abundance, whereas dinoflagellate importance increased in autumn particularly in coastal sites. C and N isotopic signatures of phytoplankton did not vary with season. However, the δ15N of surface water POM was significantly higher in November than in May in all sites likely in relation to an increase in 15N/14N ratio of the Rhone River POM which influenced surface water in the Gulf of Lions. As it is important to determine true baseline values of primary producers for analysing marine food webs, this study demonstrated that C and N isotopic values of surface water POM cannot be used as phytoplankton proxy in coastal areas submitted to high river inputs.  相似文献   

19.
An 8-m continuous sediment core, approximately 250-ky-old at the bottom, from Academician Ridge in Lake Baikal, has been analyzed for the stable isotopes of carbon, nitrogen and sulfur, in order to study the paleoclimatic and paleobiological changes that occurred in the Eurasian continental interior. These isotopic changes are closely related to changes in vertical lake-water circulation between glacial and interglacial periods. Sedimentary organic carbon in cool periods is more enriched in 13C (−23.8‰ on average) than that in warm periods (−27.0‰ on average). The 13C-enrichment of organic carbon suggests a decrease of land-derived organic matter influx to the lake, less precipitation, and loss of terrestrial vegetation around Lake Baikal in cool periods. Pyrite in high total sulfur/total organic carbon (TS/TOC) layers shows strong depletion in 34S (−20.8‰ to −32.4‰) during climate transitions from glacial to interglacial periods at the beginning of oxygen isotope stages (OIS) 1, 5 and 7. The 34S-depleted pyrite indicates augmentation of dissimilatory sulfate reduction by sulfate reducing bacteria (SRB) at the sediment-water interface. Enhancement of aqueous sulfate concentrations and limitation of oxygen circulation to the surface sediments might also occur in the climate transition periods. The δ15N values of total nitrogen increase abruptly by ∼2‰ just after the δ34S negative peaks, which may result from low nutrient concentrations in the euphotic zone associated with water circulation changes in Lake Baikal.  相似文献   

20.
Oxygen isotope analyses have been made on 27 tholeiitic basalts from the Lau and Mariana marginal ocean basins and from mid-ocean ridges. The 18O values are related to the extent of hydration by submarine weathering as indicated by H2O? and total water content. Extrapolation to zero H2O? content gives a δ18O value of 5.5‰ on the SMOW scale for unaltered marginal basin basalts, in exact agreement with the oxygen isotope “signature” of ocean-ridge tholeiites. Three alkali basalts from seamount provinces also fit the tholeiite relationship. A Lau Basin gabbro has the tholeiitic 18O content, but an Indian Ocean gabbro is unusually light (δ18O = 4.0 for whole rock, plagioclase, and amphibole), and resembles the low -18O Iceland basalts. The basalt data confirm petrologic and chemical evidence for origin of marginal basins by extensional processes with production of basalts from depleted mantle material isotopically identical to the source of ocean-ridge tholeiites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号