首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
张国祥 《岩土力学》2014,299(2):334-338
采用旋转挡土墙计算模型的变换法,将在地震和拟静力法条件下主动土压力的求解问题转化为在静力条件下主动土压力的求解问题。根据在静力条件下水平层分析法的主动土压力推导结果,直接获得在地震条件下主动土压力强度分布、土压力合力及其作用点位置的表达式,并运用图解法得到了临界破裂角的解析解。公式可考虑水平和垂直地震加速度、不同墙背倾角、墙背和坡面倾角与填料存在黏结力和外摩擦角、存在均布超载等诸多因素的影响,公式可以适用于在常用边界和地震条件下黏性土的主动土压力计算。旋转地震角法是将在地震和拟静力法条件下挡土墙计算模型旋转为在静力条件下挡土墙计算模型,但旋转挡土墙计算模型并不改变挡土墙和墙后填土的应力状态,按在静力条件下挡土墙主动土压力求解方法求解在地震和拟静力法条件下主动土压力,该方法大大简化了在地震和拟静力法条件下的主动土压力计算公式推导过程,统一了在拟静力法条件下的地震土压力求解,理论更加完善。  相似文献   

2.
考虑土拱效应的挡土墙主动土压力与被动土压力统一解   总被引:1,自引:0,他引:1  
朱建明  赵琦 《岩土力学》2014,35(9):2501-2506
土拱效应对倾斜挡土墙下的主动土压力及被动土压力有重要的影响,但是相关计算理论研究略显不足。为了将土拱效应考虑到倾斜挡土墙下的土压力计算中,首先通过应力摩尔圆及静力平衡法分别给出了考虑土拱效应下主动土压力及被动土压力计算所需的两大因素:侧向土压力系数及竖向平均应力公式。在此基础上建立了考虑土拱效应的倾斜挡土墙主动土压力及被动土压力的统一表达式,并将其应用到求解土压力合力及其作用点高度的计算中。算例表明,土拱效应对于主动土压力与被动土压力的影响不同。随着墙体倾角的增大,主动土压力作用点高度逐渐降低,即土拱效应随着墙体倾角的增大而降低。与前述相反,随着墙体倾角的增大,被动土压力作用点高度逐渐降低,即土拱效应的影响随着墙体倾角的增大而增大。  相似文献   

3.
黏性土填料下考虑土拱效应的挡土墙被动土压力计算   总被引:1,自引:0,他引:1  
周晓龙  马亢  钱明  刘德稳  赵琦 《岩土力学》2014,35(Z1):245-250
为解释挡土墙后填土被动土压力的非线性分布现象,在考虑土拱形状为圆弧,滑裂面采用朗肯滑裂面的基础上,给出考虑土拱效应的被动土压力系数Kawn,进而基于应力状态法及土楔形体静力平衡两种思想求解了竖向平均应力 公式,在该基础上,给出黏性土填料下的挡土墙被动土压力分布公式、合力公式及作用点高度计算公式。通过与试验与其他方法对比,文中提出的方法得到验证。最后,研究了黏性土填料下的挡土墙被动土压力变化规律,即考虑土拱效应求得的黏性土填料的被动土压力分布呈现上小下大的指数型分布。此外,随着δ/φ(δ为墙土摩擦角,φ为内摩擦角)的增大,土拱效应逐渐增强,土压力合力点逐渐降低。  相似文献   

4.
改进的主动土压力计算方法   总被引:1,自引:0,他引:1  
王仕传  孙本杰  邵艳 《岩土力学》2015,36(5):1375-1379
墙背土压力分布与挡土墙的位移大小和转动模式密切相关。针对绕墙底向外转动的刚性挡土墙,基于土压力形成机制的分析及已有的研究成果,建立挡土墙位移与墙背土体内摩擦角发挥值之间的关系式,反映了墙背土体内摩擦角随着挡土墙位移的增加而渐进发挥的过程。在此基础上,提出一种改进的考虑位移影响的主动土压力计算方法。计算结果表明,随着挡土墙位移的增大,墙背土压力由静止土压力逐步减小。当挡土墙位移达到临界值后,相应的墙背土压力均收敛于库仑主动土压力。墙底背面土压力也是随着挡土墙位移的增长而逐步收敛于库仑主动土压力。与模型试验结果对比表明,理论计算值与试验实测值基本吻合。  相似文献   

5.
陈建功  杨扬  陈彦含  陈小兵 《岩土力学》2020,41(6):1829-1835
挡土墙后黏性土处于主动土压力状态时,墙顶一定深度范围内会产生裂缝,使其较大范围形成零压力区即开裂深度,关于开裂深度问题一直没有得到很好解决。针对变分法求解黏性填土主动土压力中未考虑裂缝的情况,通过一个算例说明了黏性填土表面在主动土压力状态下会产生裂缝。采用折线简化摩尔?库仑强度包络线,利用实际的土体抗拉强度推导了墙背土体开裂深度的计算公式。根据滑裂面上端点的应力边界状态和几何边界条件,对土压力变分计算方法进行了改进,使主动土压力的不确定问题变成了确定性问题。分析了填土内摩擦角、黏聚力、抗拉强度对开裂深度的影响,结果表明,随着内摩擦角和内聚力的增大,土体开裂深度逐渐增加,滑裂面向墙背方法偏移,土压力减小;随着土体抗拉强度的增加,开裂深度逐渐减小,土压力减小,当抗拉强度大到足以抵抗土体的开裂破坏,墙后土体开裂深度为0,这时土压力不再受抗拉强度的影响。  相似文献   

6.
黏性土的非极限主动土压力计算方法研究   总被引:1,自引:0,他引:1  
徐日庆  廖斌  吴渐  畅帅 《岩土力学》2013,34(1):148-154
经典土压力理论只能计算挡土墙位移达到极限状态时的土压力。为了更贴近工程实际,需要发展非极性土压力理论,但以往的研究仅限于砂土。对于黏性土的非极限主动土压力,在已有成果的基础上,从黏性土的应力莫尔圆出发,推导了介于初始状态和极限主动状态之间的中间状态时,黏性土的内摩擦角? 随墙体位移变化的关系公式;同时考虑了墙土接触面上外摩擦角? 和黏聚力cw的影响,根据黏性土应力莫尔圆的几何关系得到了土体黏聚力c与墙体位移的关系;最后应用水平分层法求得了非极限状态时黏性土的主动土压力计算公式。与模型试验数据的对比分析表明,理论计算值和试验实测值基本吻合。研究表明,计算方法对于计算黏性土在非极限状态时的主动土压力具有一定的理论意义,在实际工程中也具有相应的实用价值。  相似文献   

7.
对库仑土压力理论的若干修正   总被引:1,自引:0,他引:1  
库仑土压力理论至今仍是计算土压力的重要方法而被人们所熟知。通过分析库仑土压力的墙后土楔体的受力特点,特别是深入研究了土楔体与墙的作用力关系,对库仑土压力理论给出了一些修正。认为土楔体和挡土墙之间的作用力(即定义的土压力),并非一定要达到极限状态,所以不能确定土压力的作用方向,但土压力的作用方向必须在其允许的角度范围之内。所以,认为库仑主动土压力为作用方向角度变化范围内的最大值,库仑被动土压力为作用方向角度变化范围内的最小值。对于墙后土楔体,认为墙体和土楔体是两个不同物体,土楔体的形成是因为土中产生潜在破裂面,而原库仑土压力理论要求墙体与土之间也达到临界状态是不必要的。墙体对土楔体的作用力(即土压力)实质就是相当于一物(墙)施加于另一物(土楔体)的力,即使土楔体滑动了,两物之间也并非要滑动。推导了主动土压力计算公式,给出了被动土压力的近似计算方案。算例证明,计算结果与原库仑理论有明显不同。该研究对库仑土压力的修正和求解值得引起重视。  相似文献   

8.
朱建明  林庆涛  高晓将  高林生 《岩土力学》2016,37(12):3417-3426
目前关于临近地下室外墙影响的挡土墙空间土压力的计算理论的研究还比较少,原有的平面应变条件下的理论不能满足挡土墙的长高比B/H较小时的挡土墙土压力计算要求。通过将土拱效应原理引入顾慰慈[8]建立的空间土压力计算模型,建立了考虑土拱效应的临近地下室外墙影响的空间土压力计算模型,根据挡土墙和地下室外墙的间距与土体破裂面状态的关系将该模型分为3种情况,并将各模型划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,通过在各个区域内取水平微分单元体,建立各微分单元体的水平和竖向静力平衡方程,推导出了各区相应的挡土墙空间主动土压力计算公式,该公式可以计算出墙背任意位置的主动土压力;并提出了空间土压力合力及其合力作用点的计算方法。通过算例计算可以直观地看出挡土墙后主动土压力的空间分布,由此可以看出,当空间效应存在时,考虑土拱效应的挡土墙主动土压力沿墙长的分布与平面应变条件时有很大的不同,此时挡土墙两端附近区域的主动土压力远小于平面应变条件下计算出的主动土压力,同时可以看出,考虑空间效应的挡土墙主动土压力合力作用点要比平面应变条件下的位置要高,挡土墙长高比B/H越小,空间效应对主动土压力沿墙长的分布和主动土压力合力作用点位置的影响越大。  相似文献   

9.
挡土墙后三维被动滑裂面的空间形态难以确定。基于数值模拟,取墙-土接触面摩擦角比值δ/?=0(δ为墙-土接触面摩擦角,?为土体内摩擦角),采用薄板光顺样条函数搜索出不同土体内摩擦角下挡土墙端部三维滑裂面,类比地基承载力破坏对不同土体内摩擦角下挡土墙端部三维滑裂面进行函数方程的拟合,拟合效果较好,并归纳总结挡土墙端部三维滑裂面方程。在刚性挡土墙平移模式、墙背直立、填土水平且为无黏性土、δ/?=0等条件下,基于挡土墙端部三维滑裂面方程,求出三维滑裂面的体积。通过力学分析推导了一种三维被动土压力计算方法,并对该方法进行了验证分析。分析结果表明:相较于Soubra被动土压力系数,计算方法得出的三维土压力系数更加接近数值模拟被动土压力系数。三维计算被动土压力系数和朗肯被动土压力系数在挡土墙长深比小于4的时候有明显的差异。随着挡土墙的长深比的增大和土体内摩擦角的减小,三维计算被动土压力系数趋向朗肯被动土压力系数,三维计算被动土压力合力作用点的位置趋向朗肯被动土压力合力作用点位置。  相似文献   

10.
张国祥  曹鑫 《岩土力学》2007,28(12):2629-2633
本文采用非线性破坏准则分析和确定了刚性挡土墙主动土压力大小和滑动面位置。首先应用“切线法”引入了变量 和 ,然后运用迭代法计算得出对应于不同潜在滑动面上的 和 值,再运用广义库仑土压力理论求解主动土压力大小。其中对应于最大主动土压力的滑动面即为最危险滑动面,此时的所求即为主动土压力。通过与采用线性Mohr-Coulomb破坏准则下的研究结果比较得出,采用非线性破坏准则确定刚性挡土墙主动土压力更加符合实际工程,结果更加准确,而采用线性Mohr-Coulomb破坏准则计算的主动土压力结果偏小,在实际工程设计中偏于不安全。  相似文献   

11.
陈昌富  唐仁华  梁冠亭 《岩土力学》2012,33(6):1845-1850
假定挡土墙后填土滑动面为通过墙踵的对数螺线滑动面,基于能量法,推导出了墙背倾斜、粗糙、墙后填土向上倾斜,适用于砂性土与黏性土的主动土压力上限解。以对数螺线通过斜坡的旋入角? 0和旋出角? h为变量,使用基于自然选择的混合粒子群优化算法对最危险滑动面进行全局搜索,从而获得主动土压力最优解。对于砂性土,将土压力系数与经典的极限分析上限解相比,发现在墙面倾角较小时两者基本一致,但当墙面倾角大于30°时,经典解明显偏小,而文中解与基于最优性原理的极限平衡解较接近。至于黏性土,对一工程实例进行计算,计算结果与实测值的相对误差为5.4%。  相似文献   

12.
放坡状态有限土体刚性挡土墙主动土压力研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对现有有限土体刚性挡土墙主动土压力研究大都集中于临近建筑物墙体或地下室外墙的狭窄土体,相邻基坑、路堤与切坡挡土墙形成放坡状态有限土体研究甚少,本文考虑填土黏聚力及墙土间黏结力、墙土间摩擦作用、墙背倾角及填土顶面竖向荷载等的影响,利用刚体极限平衡理论进行研究。根据相邻基坑与边坡挡土墙放坡状有限土体的工程特性,分析挡土墙平动位移模式下平面滑动破裂面的形成特征,建立放坡状态有限土体主动土压力计算模型,并利用数值计算方法可以求解。通过对放坡状有限土体主动土压力进行算例分析与参数分析,表明极限破裂角与宽高比、黏聚力、墙背倾角及墙土间外摩擦角为负相关,不同黏聚力下随着宽高比增大,极限破裂角趋近于考虑黏聚力作用库伦方法得到的极限破裂角值,不同黏聚力下有限土体宽度临界值亦是变化的;主动土压力随黏聚力、墙背倾角及墙土外摩擦角增大而减小,随着宽高比增大而增大并逐步趋近于库伦方法计算的土压力值。最后,通过模型试验验证表明按本文方法计算的极限破裂角与实测破裂角吻合,PIV系统测试得到的临界宽高比与库伦方法的结果一致。  相似文献   

13.
王杰  夏唐代  贺鹏飞  黄博 《岩土力学》2014,35(7):1914-1920
以墙后填土为无黏性土的刚性挡土墙为研究对象,考虑墙后土体的土拱效应,修改了Shubhra Geol 抛物线形土拱表达式,推导了对应不同内摩擦角和墙-土摩擦角的挡土墙平动模式下的主动土压力系数。基于水平微分单元法,得到考虑土拱效应的主动土压力分布、合力大小和合力作用点高度的理论表达式,并与现有经典理论解及前人理论研究成果和模型试验数据进行对比分析,结果表明,主动土压力与墙-土接触面摩擦角、土体内摩擦角、土体重度和挡墙高度相关,土压力分布为非线性,与其他结果比较吻合,从而验证了该研究成果的正确性。  相似文献   

14.
陈建功  徐晓核  张海权 《岩土力学》2015,36(Z2):310-314
基于库仑土压力理论的假设,主动土压力是由墙后填土在极限平衡状态下出现的滑动体产生,从墙后滑动体整体静力平衡方程出发,推导出坡面起伏且有不均匀超载、倾斜墙背、黏性填土等一般情况下的主动土压力泛函极值的等周模型。在该基础上,引入拉格朗日乘子,将主动土压力问题转化为确定含有两个函数自变量的泛函极值问题。依据泛函取极值时必须满足的欧拉方程,得到了线性的滑面函数和沿滑面线性分布的法向应力函数。结合边界条件和横截条件,主动土压力泛函极值问题进一步转化为单个未知量的一维方程问题。通过算例,土压力计算结果与库仑土压力理论解完全一致,但土压力作用点在墙体的相对位置却并非总是作用在墙高的1/3 处。通过算例进一步表明,坡面的起伏和坡面超载的不均匀性对主动土压力大小和作用点位置有显著的影响。  相似文献   

15.
刘忠玉  陈捷  李东阳 《岩土力学》2016,37(9):2443-2450
以墙后为无黏性填土的竖直刚性挡土墙作为研究对象,假定墙后土体中形成圆弧形土拱,考虑水平土层间的剪应力,修正了水平层分析法,从而得到平动模式下主动土压力分布、合力大小及其作用点位置的表达式。通过与模型试验结果和现有理论成果的对比分析,证明了修正方法的合理性。参数分析表明,水平土层间的平均剪应力受墙土摩擦角、填土内摩擦角等因素的影响,与主动土压力一样沿墙高为非线性分布。同时,考虑水平土层间剪应力作用得到的侧向主动土压力系数、主动土压力合力与不考虑剪应力作用的理论解答相同,但合力作用点位置高于库仑解,且低于不考虑剪应力作用的理论解答。  相似文献   

16.
刘新喜  李彬  王玮玮  贺程  李松 《岩土力学》2022,43(5):1175-1186
为了研究挡墙后有限土体的主动土压力,以墙后无黏性土体为研究对象,假定破裂面为通过墙踵的平面,且在挡墙平动模式下,墙后土体形成圆弧形小主应力拱。采用沿小主应力迹线分层的方法,将挡墙后土体划分为若干个圆弧形曲线薄层单元,考虑了单元体上下表面应力分布的不均匀性,提出了一种有限土体挡墙主动土压力计算方法,给出了主动土压力合力及其作用点高度的表达式,并验证了该方法的正确性。研究结果表明:采用曲线薄层单元法可以准确考虑单元体复杂的受力情况,能更好地反映挡墙后有限土体主动土压力的变化规律;有限填土时主动土压力沿墙高 呈非线性分布,土压力先随着土体深度增加呈单调递增趋势,然后在接近墙底位置处呈单调递减趋势。分析参数敏感性时取不同土体宽高比与墙背粗糙程度对挡墙主动土压力分布及合力作用点高度进行分析,结果表明:随着土体宽高比n的增大,主动土压力值逐渐增大,土压力分布曲线非线性越来越明显,合力作用点高度逐渐降低且恒大于 。当 0.71时,均趋于稳定。可将 0.71作为有限土体与半无限土体的临界宽高比。随着摩擦角 的增大,主动土压力值逐渐减小,土压力分布曲线非线性越来越明显,合力作用点高度逐渐增大且恒大于 。  相似文献   

17.
依据库仑土压力理论假设,挡土墙土压力由墙后填土在极限平衡状态下出现滑动楔体产生,推导出考虑滑裂面上填土的黏聚力、墙土间黏聚力、黏性土表面出现张拉裂缝、条形荷载下的黏性土主动土压力计算式,并给出临界破裂角的显式解答。当墙后作用有连续均布荷载或不考虑黏性填土表面出现裂缝时,只需取条形荷载到墙顶的距离或计算的裂缝深度为0即可按相同的方法求解。研究表明,由于未考虑条形荷载对临界破裂角的影响,规范方法得到土压力值偏小。该公式适用范围广,尤其对于条形荷载作用墙后任意位置时均可应用,对实际工程中挡土墙的设计计算具有一定应用价值。  相似文献   

18.
Knowledge of seismic active earth pressure behind rigid retaining wall is very important in the design of retaining wall in earthquake prone region. Commonly used Mononobe-Okabe method considers pseudo-static approach, which gives the linear distribution of seismic earth pressure in an approximate way. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic active earth pressure on a rigid retaining wall supporting cohesionless backfill in more realistic manner by considering time and phase difference within the backfill. Planar rupture surface is considered in the analysis. Effects of a wide range of parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity and horizontal and vertical seismic accelerations on seismic active earth pressure have been studied. Results are provided in tabular and graphical non-dimensional form with a comparison to pseudo-static method to highlight the realistic non-linearity of seismic active earth pressures distribution.  相似文献   

19.
地震条件下挡土墙主动土压力及其分布的统一解   总被引:3,自引:0,他引:3  
孙勇 《岩土力学》2012,33(1):255-261
在非地震主动土压力公式的基础上,用微分薄层法给出了地震条件下主动土压力公式,其中填土面倾斜、墙背倾斜、填土为黏性土、墙背与填土间同时存在凝聚力c和内摩擦角? 作用、墙后破裂体存在水平向和竖向的地震加速度,目前所见的地震情况下和非地震情况下的主动土压力均是此公式的特例。对上述同一条件下的挡墙用过墙踵的整块破裂体作静力平衡分析(如库仑分析),得到的总土压力与文中微分薄层法得到的总土压力大小相等,但微分薄层法作用点位置明显增加,研究表明:设计抗震和非抗震各类挡墙时要引起足够的重视。  相似文献   

20.
The current study was undertaken to study the effect of soil arching on active earth pressure distribution in retaining walls with c–φ backfill. An analytical approach is presented to develop a general solution considering the effects of surcharge, backfill soil cohesion and slip surface inclination. The magnitude and height of the application of lateral active force is also derived. The results from the proposed equation corresponded to the measured results from a full-scale test, shows non-linear pressure distribution with zero pressure at wall base and less pressure in deeper heights compared to Coulomb’s method. According to the results of parametric analysis, the proposed equation predicts the active earth thrust nearly equal to that of the Coulomb’s equation, however, the surcharge-induced soil pressure is obtained approximately 50% greater than the conventional equation. Moreover, the height of application of active thrust is located at the height of 0.4H from the wall base. These indicate that using the Coulomb’s active equation for retaining walls design, is not in the safe side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号