首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— We report the spectral reflectance of Martian meteorites from 0.3‐2.6 microns for the purpose of cataloguing spectra and the association of their spectral properties with mineralogy and petrology. We fit the spectra to a series of overlapping, modified Gaussian absorptions using least squares fitting. The results are validated against established relationships between photon interactions with mineral chemistry and the band parameters. These resultant band parameters can be used to constrain interpretations of Martian reflectance spectra in the search for the source region of meteorites from Mars. The limitations of the fitting method are discussed.  相似文献   

2.
Reliable quantitative mapping of minerals exposed on Vesta's surface is crucial for understanding the crustal composition, petrologic evolution, and surface modification of the howardite, eucrite, and diogenite (HED) parent body. However, mineral abundance estimates derived from visible–near infrared (VIS–NIR) reflectance spectra are complicated by multiple scattering, particle size, and nonlinear mixing effects. Radiative transfer models can be employed to accommodate these issues, and here we assess the utility of such models to accurately and efficiently determine modal mineralogy for a suite of eucrite and olivine‐bearing (harzburgitic) diogenite meteorites. Hapke and Shkuratov radiative transfer models were implemented to simultaneously estimate mineral abundances and particle size from VIS–NIR reflectance spectra of these samples. The models were tested and compared for laboratory‐made binary (pyroxene–plagioclase) and ternary mixtures (pyroxene–olivine–plagioclase) as well as eucrite and diogenite meteorite samples. Results for both models show that the derived mineral abundances are commonly within 5–10% of modal values and the estimated particle sizes are within the expected ranges. Results for the Hapke model suggest a lower detection limit for olivine in HEDs when compared with the Shkuratov model (5% versus 15%). Our current implementation yields lower uncertainties in mineral abundance (commonly <5%) for the Hapke model, though both models have an advantage over typically used parameters such as band depth, position, and shape in that they provide quantitative information on mineral abundance and particle size. These results indicate that both the Hapke and Shkuratov models may be applied to Dawn VIR data in a computationally efficient manner to quantify the spatial distribution of pyroxene, plagioclase, and olivine on the surface of Vesta.  相似文献   

3.
M. Parente  J.L. Bishop 《Icarus》2009,203(2):421-436
The objective of this work is to propose an automated unmixing technique for the analysis of 11-channel Mars Exploration Rover Panoramic Camera (MER/Pancam) spectra. Our approach is to provide a screening tool for identifying unique/distinct reflectance spectra. We demonstrate the utility of this unmixing technique in a study of the mineralogy of the bright salty soils exposed by the rover wheels in images of Gusev crater regions known as Paso Robles (Sols 400,426), Arad (Sol 721), and Tyrone (Sol 790). The unmixing algorithm is based on a novel derivation of the Nonnegative Matrix Factorization technique and includes added features that preclude the adverse effects of low abundance materials that would otherwise skew the unmixing. In order to create a full 11-channel spectrum out of the left and right eye stereo pairs, we also developed a new registration procedure that includes rectification and disparity calculation of the images. We identified two classes of endmember spectra for the bright soils imaged on Sols 426 and 790. One of these endmember classes is also observed for soils imaged on Sols 400 and 721 and has a unique spectral shape that is distinct from most iron oxide, sulfate and silicate spectra and differs from typical martian surface spectra. Instead, its unique spectral character resembles the spectral shape of the ferric sulfate minerals fibroferrite (Fe3+(SO4)(OH) · 5H2O) and ferricopiapite and the phosphate mineral ferristrunzite . The other endmember class is less consistent with specific minerals and is likely a mixture of altered volcanic material and some bright salts. Further analyses of data from Sols 400 and 790 using an anomaly detection algorithm as a tool for detecting low abundance materials additionally suggests the identification of the sulfate mineral paracoquimbite (Fe2(SO4)3 · 9H2O). This spectral study of Pancam images of the bright S- and P-enriched soils of Gusev crater identifies specific ferric sulfate and ferric phosphate minerals that are consistent with the unique spectral properties observed here in the 0.4-1 μm range.  相似文献   

4.
We present the Messinian evaporite suite (Mediterranean region) and the Solfatara hydrothermal system (Phlegraean Fields volcanic province, Italy), discuss their implications for understanding the origin of sulfates on Mars and show preliminary sets of VNIR laboratory and in situ reflectance spectra of rocks from these geologic systems. The choice was based on a number of evidence relative to Mars: (1) the chemistry of the Martian sulfates, suggesting fluid interactions with possibly alkali-basaltic rocks and/or regolith; (2) close range evidence of sulfates within sedimentary formations on Mars; (3) sulfate spectral signatures associated to large-scale layered patterns interpreted as thick depositional systems on Mars. The Messinian evaporites comprise three units: primary shallow-water sulfates (primary lower gypsum: PLG), shallow- to deep-water mixed sulfates and clastic terrigenous deposits (resedimented lower gypsum: RLG), and shallow-water associations of primary sulfates and clastic fluvio-deltaic deposits (upper evaporites: UE). The onset of the Messinian evaporites records the transition to negative hydrologic budget conditions associated with the Messinian Salinity Crisis, which affected the entire Mediterranean basin and lasted about 640 kyr. The Solfatara is a still evolving hydrothermal system that provides epithermal deposits precipitated from the interaction of fluids and trachybasaltic to phonolitic rocks. Thermal waters include alkali-chloride, alkali-carbonate and alkali-sulfate endmembers.The wide spectrum of sedimentary gypsum facies within the Messinian formation includes some of the depositional environments hitherto identified on Mars and others not found on Mars. The PLG unit includes facies associations correlated over long distances, that could be a possible analog of the stratified rock units exposed from Arabia Terra at least as far as Valles Marineris. The facies cycles within the UE unit can be compared to the sequences of strata observed in craters such as Holden and Eberswalden. The UE unit records paleoenvironmental changes which are ultimately controlled by terrestrial climatic variations. They can be considered as a reliable climatic proxy and may be useful for the reconstruction of climatic events on Mars. The intermediate Messinian RLG unit has not, at present, a well-defined depositional counterpart on Mars, although there are some similarities with the northern lowlands and Vastitas Borealis Formation. The dramatic variation of hydrologic budget conditions at the onset of the Messinian evaporites may provide criteria for the interpretation of similar variations on Mars.The volcanic rocks at the Solfatara bear some similarities with the “alkaline magmatic province” observed at the Gusev crater on Mars, and the assemblages of hydrothermal phases resulting from the Solfatara's parent rocks could be analogues for processes involving Gusev-type rocks.The Messinian sulfates have a prevalent Ca-sulfatic composition and wide textural variability. Preliminary laboratory reflectance spectra of rock samples in the VNIR region reveal the signature of sulfates and mixtures of several Fe-bearing phases. At the Solfatara, in situ reflectance measurements of epithermal minerals close to active fumaroles showed the presence of Fe-bearing sulfates, hematite, Al- and K-sulfates and abundant amorphous fraction. XRD analysis supported this interpretation.The range of depositional facies observed in the Messinian units and the variety of minerals detected in the Solfatara will be useful for the interpretation of close range data of Mars. The spectral characterization at various scales of the Messinian sedimentary facies and the Solfatara hydrothermal minerals will both help in the exploration of Mars from orbit and with close range inspection.  相似文献   

5.
The mineralogical composition of the Martian surface is investigated by a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM) of the Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) imaging spectrometer onboard Mars Express. OMEGA has fully covered the surface of the red planet at medium to low resolution (2–4 km per pixel). Several areas have been imaged at a resolution up to 300 m per pixel. One difficulty in the data processing is to extract the mineralogical composition, since rocks are mixtures of several components. MELSUM is an algorithm that selects the best linear combination of spectra among the families of minerals available in a reference library. The best fit of the observed spectrum on each pixel is calculated by the same unmixing equation used in the classical Spectral Mixture Analysis (SMA). This study shows the importance of the choice of the input library, which contains in our case 24 laboratory spectra (endmembers) of minerals that cover the diversity of the mineral families that may be found on the Martian surface. The analysis is restricted to the 1.0–2.5 μm wavelength range. Grain size variations and atmospheric scattering by aerosols induce changes in overall albedo level and continuum slopes. Synthetic flat and pure slope spectra have therefore been included in the input mineral spectral endmembers library in order to take these effects into account. The selection process for the endmembers is a systematic exploration of whole set of combinations of four components plus the straight line spectra. When negative coefficients occur, the results are discarded. This strategy is successfully tested on the terrestrial Cuprite site (Nevada, USA), for which extensive ground observations exist. It is then applied to different areas on Mars including Syrtis Major, Aram Chaos and Olympia Undae near the North Polar Cap. MELSUM on Syrtis Major reveals a region dominated by mafic minerals, with the oldest crustal regions composed of a mixing between low-calcium pyroxenes (LCPs) (orthopyroxenes (OPx)) and high-calcium pyroxenes (HCPs) (clinopyroxenes (CPx)). The Syrtis volcanic edifice appears depleted in LCP (OPx) and enriched in HCP (CPx), which is consistent with materials produced with a lower partial fusion degree at an age younger to the surrounding crust. Strong olivine signatures are found between the two calderas Nili Patera and Meroe Patera and in Nili Fossae. A strong signature of iron oxides is found within Aram Chaos, with a spatial distribution also consistent with thermal emission spectrometer (TES). Gypsum is unambiguously detected in the northern polar region, in agreement with the study of Langevin et al. [2005. Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science 307(5715), 1584–1586]. Our results show that the linear spectral unmixing provides good first order results in a variety of mineralogical contexts, and can therefore confidently be used on a wider scale to analyze the complete archive of OMEGA data.  相似文献   

6.
Chemical analyses of soil samples performed at different landing sites on Mars suggest the presence of sulfate minerals. These minerals are also thought to be present in the globally mixed Martian bright soils covering large areas of the planet. However, remote soil spectra have so far provided only tentative identification of sulfates regarding mineral types and abundances. This paper concentrates on the detectability of four Ca- and Mg-sulfates (anhydrite, gypsum, kieserite, hexahydrite) in the 4–5 μm range of Martian remote soil spectra. This spectral range is important for sulfate detection as most fine-grained sulfates exhibit significant absorption bands between 4 and 5 μm, independent of the texture of the host soils (e.g., loose powdered or cemented soils). Furthermore, this is the spectral range for which the Planetary Fourier Spectrometer (PFS) and Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) instruments onboard ESA/Mars Express mission provide high spectral and spatial resolution data. Laboratory near- and mid-IR reflectance spectra of the pure sulfates and their mixtures with a terrestrial Martian soil analog were acquired. The results show that even the smallest amount of admixed sulfate (∼5 wt%) generates significant absorption features in the portion of the 4–5 μm range not covered by the saturated Martian atmospheric CO2 absorption band between 4.2 and 4.4 μm. Model calculations of the influence of emitted surface radiation on the detectability of sulfate features show that the depth of the features decreases strongly with increasing surface temperature of an observed area resulting in the fact that all sulfates are spectrally hidden at surface temperatures around 270 K even at ∼14 or ∼25 wt% sulfate content in the soils. Sulfates become increasingly detectable depending on the sulfate content if the surface temperature is below 260 K. The outcome of this work helps to constrain the conditions needed for remote detection of sulfates within Martian bright soils in the 4–5 μm range.  相似文献   

7.
Infrared spectra of Mars are made up of three separate components, each of which may dominate the spectrum under different Martian meteorological and observational conditions. By means of laboratory examples we show that both the shape and spectral contrast of the spectral curves change dramatically, depending on which component is dominant. Each experimental condition has been experienced during either the Mariner 69 or 71 observations. Comparing the preliminary Mariner 71 radiance data with laboratory transmission spectra, we suggest that the clay mineral montmorillonite could be the major component of the Martian dust cloud.  相似文献   

8.
Reflectance spectroscopy in the infrared is a powerful tool to characterise the optical properties of analogue materials for Mars. In this work we present laboratory studies of four Martian analogues: calcite, montmordlonite, palagonite and andesite. Diffuse and specular reflectance and transmittance spectra in the IR are shown. The spectral effect produced by small grains clung to the larger ones is analysed for calcite. Significant variations in the diffuse reflectance spectrum, especially in the reststrahlen region, are observed. The diffuse reflectance spectra of the other materials show the shift of the reststrahlen features with Si content in the materials. Optical constants of andesite are retrieved, by using the Lorentz model, from the specular reflectance spectrum. These values are fundamental in performing modelling of the radiance coming from the planet Mars.  相似文献   

9.
Aluminous clay deposits on Mars are recognized from remotely sensed infrared spectral features similar to those of montmorillonite, beidellite, and/or kaolinite. The nature of aluminous clay deposits on Mars is of interest because they likely indicate a different formation mechanism than that of Fe–Mg clays, which are widespread on Mars and likely alteration products of the Fe–Mg-rich basaltic crust. The near-infrared reflectance spectra of aluminous martian clay deposits frequently display characteristics typical of both montmorillonite and kaolinite. The question arises whether such mixed character is due to the existence of end-member phases or to kaolinite–smectite mixed-layer (K–S). The issue is relevant because K–S implies the existence of a smectite precursor that alters into kaolinite, and thus constrains the timing and intensity of the alteration processes that generates it. A mixture of kaolinite and smectite end-members may indicate locally heterogeneous alteration processes, or alternatively, could result from the physical mixing of altered materials of different provenance. A group of natural K–S samples and synthetic kaolinite/smectite mixtures of known proportion, all of which had been thoroughly characterized in previous work using several analytical techniques, were investigated here using near-infrared (NIR) spectroscopy. The NIR spectral features correlate well with their kaolinite–smectite relative proportions. The shape of spectral features attributed to Al–OH in K–S is subtly different from those in physical mixtures of kaolinite and smectite. Based on qualitative comparison, some regions on Mars appear to have spectral signatures similar to K–S. We also applied a quantitative technique using the second derivative of spectra. In this technique, plots of the height of the features at (λ=) 2.21 μm (band present in kaolinite and montmorillonite) and 2.17 μm (kaolinite only) were able to discriminate between K–S and kaolinite–smectite physical mixtures, as they generated correlations with different slopes. The method of discrimination was applied to Mars spectra, which resulted in reasonable evidence for the existence of K–S in Nili Fossae and Mawrth Vallis, and mixtures of end-members in Mawrth Vallis and Leighton Crater. This is one of the first times that evidence for mixed-layer clay minerals, and particularly K–S, on Mars has been gathered. The ability to detect mixed-layer clays is an important step forward for further development of our understanding of the processes that generated clay on Mars.  相似文献   

10.
Abstract— Spectroscopic measurement and analysis of Martian meteorites provide important information about the mineralogy of Mars, as well as necessary ground-truths for deconvolving remote sensing spectra of the Martian surface rocks. The spectroscopic properties of particulate ALH 84001 from 0.3 to 25 μm correctly identify low-Ca pyroxene as the dominant mineralogy. Absorption bands due to electronic transitions of ferrous iron are observed at 0.94 and 1.97 μm that are typical for low-Ca pyroxene. A strong, broad water band is observed near 3 μm that is characteristic of the water band typically associated with pyroxenes. Weaker features near 4.8, 5.2 and 6.2 μm are characteristic of particulate low-Ca pyroxene and can be distinguished readily from the features due to high-Ca pyroxene and other silicate minerals. The reflectance minimum occurs near 8.6 μm for the ALH 84001 powder, which is more consistent with high-Ca pyroxene and augite than low-Ca pyroxene. The dominant mid-infrared (IR) spectral features for the ALH 84001 powder are observed near 9 and 19.5 μm; however, there are multiple features in this region. These mid-IR features are generally characteristic of low-Ca pyroxene but cannot be explained by low-Ca pyroxene alone. Spectral features from 2.5–5 μm are typically associated with water, organics and carbonates and have been studied in spectra of the ALH 84001, split 92 powder and ALH 84001, splits 92 and 271 chip surfaces. Weak features have been identified near 3.5 and 4 μm that are assigned to organic material and carbonates. Another feature is observed at 4.27 μm in many surface spots and in the powder but has not yet been uniquely identified. Spectroscopic identification of minor organic and carbonate components in this probable piece of Mars suggests that detection of small amounts of organics and carbonates in the Martian surface regolith would also be possible using visible-infrared hyperspectral analyses. Laboratory spectroscopic analysis of Martian meteorites provides a unique opportunity to identify the spectral features of minerals and other components while they are embedded in their natural medium.  相似文献   

11.
12.
Curve fitting techniques are a widespread approach to spectral modeling in the VNIR range [Burns, R.G., 1970. Am. Mineral. 55, 1608-1632; Singer, R.B., 1981. J. Geophys. Res. 86, 7967-7982; Roush, T.L., Singer, R.B., 1986. J. Geophys. Res. 91, 10301-10308; Sunshine, J.M., Pieters, C.M., Pratt, S.F., 1990. J. Geophys. Res. 95, 6955-6966]. They have been successfully used to model reflectance spectra of powdered minerals and mixtures, natural rock samples and meteorites, and unknown remote spectra of the Moon, Mars and asteroids. Here, we test a new decomposition algorithm to model VNIR reflectance spectra and call it Exponential Gaussian Optimization (EGO). The EGO algorithm is derived from and complementary to the MGM of Sunshine et al. [Sunshine, J.M., Pieters, C.M., Pratt, S.F., 1990. J. Geophys. Res. 95, 6955-6966]. The general EGO equation has been especially designed to account for absorption bands affected by saturation and asymmetry. Here we present a special case of EGO and address it to model saturated electronic transition bands. Our main goals are: (1) to recognize and model band saturation in reflectance spectra; (2) to develop a basic approach for decomposition of rock spectra, where effects due to saturation are most prevalent; (3) to reduce the uncertainty related to quantitative estimation when band saturation is occurring. In order to accomplish these objectives, we simulate flat bands starting from pure Gaussians and test the EGO algorithm on those simulated spectra first. Then we test the EGO algorithm on a number of measurements acquired on powdered pyroxenes having different compositions and average grain size and binary mixtures of orthopyroxenes with barium sulfate. The main results arising from this study are: (1) EGO model is able to numerically account for the occurrence of saturation effects on reflectance spectra of powdered minerals and mixtures; (2) the systematic dilution of a strong absorber using a bright neutral material is not responsible for band deformation. Further work is still required in order to analyze the behavior of the EGO algorithm with respect to the saturation phenomena using more complex band shapes than pyroxene bands.  相似文献   

13.
Visible and near-infrared (VNIR) reflectance is an important spectroscopic technique to identify minerals, and their associations, on planetary body surfaces. Howardites, eucrites, and diogenites (HED) are a class of igneous-like meteorites whose genetic connection with asteroid 4 Vesta has since long been inferred and recently confirmed by Dawn mission results. Pyroxene and olivine are the two major mafic minerals present in HED which can be identified with VNIR reflectance measurements. Thus, studying the compositional variability of those phases and their mixtures by means of laboratory spectroscopic measurements on different diogenitic or eucritic samples is one of the prime methods to better understand the evolution of 4 Vesta's crust. Here, we report the VNIR reflectance spectral analysis of a harzburgitic olivine diogenite, Northwest Africa 6232 (probably paired with Northwest Africa 5480), containing variable amounts of olivine as small grains or aggregates. We found that the olivine diogenite spectral parameters (e.g., band position) of powdered samples and polished slabs are in agreement. Moreover, the olivine diogenite band position shifts from synthetic orthopyroxene in accordance with the presence of olivine and chromite. In particular, the presence of a large olivine clast permits us to determine a linear variation of the band position from synthetic orthopyroxene and olivine, but underestimates the presence of olivine in the olivine diogenite spot.  相似文献   

14.
Abstract— Reflectance spectra of splits 92 and 271 from the Martian meteorite Allan Hills (ALH) 84001 are presented and analyzed in this paper. Although the visible and infrared spectra of both chips show that the dominant mineralogy is low-Ca pyroxene, the focus here is on identification of the minor constituents. Infrared spectra measured at multiple spots along the surface of chips 92 and 271 show subtle spectroscopic variations due to changes in the low-Ca pyroxene texture and composition and to the presence of secondary minerals. Absorption bands observed near 0.93 and 1.95 μm are characteristic of low-Ca pyroxene. Strong mid-infrared reststrahlen bands are observed near 9 and 19.5 μm in all surface spectra, and additional bands near 7, 10.5, 11.4, 17.8, 20.5 and 23 μm are variable depending on the low-Ca pyroxene texture and the presence of secondary minerals. Selected spectra exhibit carbonate features near 4, 6.4–7.1 and 11.3 μm. Detailed analysis of these carbonate features indicates the presence of Mg-Fe carbonate, which is consistent with petrographic studies. Many of these spectra with strong carbonate features exhibit a magnetite feature near 17.9 μm and a shoulder near 20.5 μm that cannot be uniquely ascribed to one mineral. Spectroscopic identification of the minor carbonate and magnetite minerals in this probable piece of Mars indicates that detection of small amounts of these minerals of possible biological significance will be possible using infrared hyperspectral analyses of the Martian surface. Also of importance for remote sensing on Mars is the result that Mg, Fe and Mg-Fe carbonates in a low-Ca pyroxene matrix should be distinguishable from one another in the spectral region measured by the thermal emmitance spectrometer (TES).  相似文献   

15.
Microimaging spectroscopy is going to be the new frontier for validating reflectance remote sensed data from missions to solar system bodies. In this field, microimaging spectroscopy of Martian meteorites can provide important and new contributions to interpret data that will be collected by next instruments onboard rover missions to Mars, such as for example Exomars‐2020/Ma_MISS spectrometer. In this paper, a slab from the Northwest Africa (NWA) 8657 shergottite was studied using the SPectral IMager (SPIM) microimaging spectrometer, in the visible‐infrared (VIS‐IR) range, with the aim to subsequently validate the spectral data by means of different independent techniques. The validation was thus carried out, for the first time, comparing SPIM spectral images, characterized by high spatial and spectral resolution, with mineralogical–petrological analyses, obtained by scanning electron microscopy (SEM). The suitability of the SPIM resolution to detect and map augite, pigeonite, maskelynite, and other minor phases as calcite, Ca‐phosphates, and troilite/pyrrhotite with no loss of information about mineral distribution on the slab surface, was ascertained. The good agreement found between spectral and mineralogical data suggests that spectral‐petrography of meteorites may be useful to support in situ investigations on Martian rocks carried out by MaMiss spectrometer during Exomars2020 mission. Moreover, micro spectral images could be also useful to characterize, in a nondestructive way, Martian meteorites and other rare minerals occurring in meteorites. The results obtained in this work represent not only a methodological contribution to the study of meteorites but furnish also elements to reconstruct the history of this sample. The finding of zoned pyroxene, symplectitic texture, amorphous phases as maskelynite, and Fe‐merrillite permits us to hypothesize four stages, i.e., (1) igneous formation of rimmed pyroxenes and other minerals, (2) retrograde metamorphism, (3) shock by impact, and (4) secondary minerals by terrestrial contamination.  相似文献   

16.
James L. Gooding 《Icarus》1978,33(3):483-513
Chemical weathering on Mars is examined theoretically from the standpoint of heterogeneous equilibrium between solid mineral phases and gaseous O2, H2O, and CO2 in the Martian atmosphere. Thermochemical calculations are performed in order to identify important gas-solid decomposition reactions involving the major mineral constituents of mafic igneous rocks. Where unavailable in the thermochemical literature, Gibbs free energy and enthalpy of formation are estimated for certain minerals and details of these estimation procedures are given. Partial pressure stability diagrams are presented to show pertinent mineral reaction boundaries at 298 and at 240°K. In the present Martian environment, the thermodynamically stable products of gas-solid weathering of individual minerals at 240°K should be Fe2O3, as hematite or maghemite (from fayalite, magnetite, and Fe-bearing pyroxenes), quartz (from all silicates), calcite (from Ca-bearing pyroxenes and plagioclase), magnesite (from forsterite and Mg-bearing pyroxenes), corundum (from all Al-bearing silicates), Ca-beidellite (from anorthite), and szomolnokite, FeSO4 or FeSO4·H2O (from iron sulfides). Albite, microcline, and apatite should be stable with respect to gas-solid decomposition, suggesting that gas-solid weathering products on Mars may be depleted in Na, K, and P (and, possibly, Cl and F). Certain montmorillonite-type clay minerals are thermodynamically favorable intermediate gas-solid decomposition products of Al-bearing pyroxenes and may be metastable intermediate products of special mineral surface reaction mechanisms. However, the predicted high thermodynamic susceptibility of these clay minerals to subsequent gas-solid decomposition implies that they should ultimately decompose in the present Martian surface environment. Kaolinite is apparently the only clay mineral which should be thermodynamically stable over all ranges of temperature and water vapor abundance in the present environment at the Martian surface. Considering thermodynamic criteria, including possible gas-solid decomposition reactions, it is doubtful that significant amounts of goethite and clay minerals can be currently forming on Mars by mechanisms known to operate to Earth. If major amounts of goethite and clay minerals occur on Mars, they probably owe their existence to formation in an environment characterized by the presence of liquid water or by mechanism possibly unique to Mars. In any case, any goethite or montmorillonite-type clay mineral on Mars must ultimately decompose.  相似文献   

17.
An AOST Fourier spectrometer of the Phobos-Soil project is intended for studying Mars and Phobos by means of measurements of IR radiation spectra of the Martian surface and atmosphere, the Phobos surface, and the spectrum of solar radiation passing through the Martian atmosphere on its limb. The main scientific problems to be solved with the spectrometer on Mars are measurements of methane content, search for minor constituents, and study of diurnal variations in the temperature and atmospheric aerosol. The spectrometer will also study the Martian and Phobos surface both remotely and after landing. The spectral range of the instrument is 2.5?C25 ??m, the best spectral resolution (without apodization) is 0.6 cm?1, and the instantaneous field of view is 2.5°. The recording time of one spectrum is equal to 5 s in solar observations and 50 s in observations of Mars and Phobos. The instrument has self-thermal stabilization and two-axis pointing systems, as well as a built-in radiation source for flight calibration. The spectrometer mass is 4 kg, and power consumption is up to 13 W. Scientific problems, measurement modes, and, briefly, engineering implementation of the experiment are discussed in this work.  相似文献   

18.
Multiple datasets have demonstrated that the crust of Mars is fundamentally basaltic. However, spectral libraries used to interrogate thermal infrared spectra of Martian dark regions through spectral deconvolution have heretofore lacked mafic glasses despite the importance of amorphous phases (or phases with amorphous-like spectral signatures) in Martian mineralogy. To establish the presence and importance of basaltic-to-intermediate glasses in Martian lithologies, we created five such glasses, obtained their thermal infrared spectra and included the spectra in a library used to deconvolve nine regional Thermal Emission Spectrometer spectra from Mars. We employed the nonnegative least squares (NNLS) deconvolution method, which yields deconvolved phase abundances and the uncertainties associated with those abundances. The basaltic-to-intermediate glasses do not appear in the deconvolution solutions, indicating they are not globally or regionally important phases. Because Martian igneous or impact processes are capable of basaltic-to-intermediate glass formation, the lack of such glasses in the deconvolved mineralogies suggests either the glasses did not form in detectable quantities or they (or their signatures) have been removed. The masking or replacement of basaltic-to-intermediate glasses through alteration is supported by the appearance in the deconvolution solutions of amorphous phases (e.g., silica-rich glasses, opal) or phases with amorphous-like spectral signatures (e.g., clays, zeolites) that commonly form through aqueous alteration of mafic glasses. The glasses may still be important to local-scale thermal infrared studies given the basaltic nature of Mars and the variety of local-scale lithologies detected by various missions. The regional mineralogies derived from the NNLS deconvolution analysis divide into five statistically separable groups, which provide insight into regional trends in mineralogy.  相似文献   

19.
Schroeter's ratios (ratios of the rim volume to the apparent volume) are determined for a sample of 29 large, degraded Martian craters selected from the Goldstone Mars radar altimetry data. On the average, the values of the calculated Schroeter's ratios are about two orders of magnitude smaller than the same ratios for fresh lunar craters. This indicates a severe rim volume deficit in degraded Martian craters and it provides an additional support to the notion of a widespread resurfacing of intercrater plains on Mars. Schroeter's ratios for degraded craters could provide a semi-quantitative measure of the effects of the modification processes that had been active on Mars and on the other planetary bodies.  相似文献   

20.
A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H2O, with some structural groups showing more rapid H2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe3+- and H2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in CH related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号