首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The Fe oxidation state and coordination number of 29 impact glass spherules recently recovered from the Transantarctic Mountains (Antarctica) have been determined by X‐ray absorption near edge structure (XANES) spectroscopy. Based on geochemical, isotopic, and fission track data, these spherules are considered as microtektites from the Australasian tektite/microtektite strewn field. Their find location is the farthest so far discovered from the possible source crater region, and their alkali content is the lowest compared with other published data on Australasian microtektite glasses. The Fe3+/(Fe2++Fe3+) ratio, determined from the analysis of the pre‐edge peak energy position and integrated intensity, is below 0.1 (±0.04) for all the samples, and is comparable to that of most tektites and microtektites from the Australasian strewn field. Also, the pre‐edge peak integrated intensity, which is sensitive to the average Fe coordination geometry, is comparable to that of other Australasian microtektites reported in the literature. The agreement of the Fe oxidation state and coordination number, between the Transantarctic Mountain microtektites (TAM) and the Australasian tektites and microtektites, further confirms the impact origin of these glass spherules and provides an independent suggestion that they represent a major extension southeastward of the Australasian strewn field. The fact that similar redox conditions are observed in tektites and microtektites within the Australasian strewn field regardless of the distance from the source crater area (up to approximately 11000 km) could be an important constraint for better understanding the different processes affecting microtektite formation and transport. The fact that the Fe oxidation state of microtektites does not increase with distance, as in the case of North American microtektites, means that thermal and redox histories of Australasian and TAM microtektites could differ significantly from those of North American microtektites.  相似文献   

2.
Ice divide–dome behaviour is used for ice sheet mass balance studies and interpretation of ice core records. In order to characterize the historical behaviour (last 400 yr) of Dome C and Talos Dome (East Antarctica), ice velocities have been measured since 1996 using a GPS system, and the palaeo-spatial variability of snow accumulation has been surveyed using snow radar and firn cores. The snow accumulation distribution of both domes indicates distributions of accumulation that are non-symmetrical in relation to dome morphology. Changes in spatial distributions have been observed over the last few centuries, with a decrease in snow accumulation gradient along the wind direction at Talos Dome and a counter-clockwise rotation of accumulation distribution in the northern part of Dome C. Observations at Dome C reveal a significant increase in accumulation since the 1950s, which could correlate to altered snow accumulation patterns due to changes in snowfall trajectory. Snow accumulation mechanisms are different at the two domes: a wind-driven snow accumulation process operates at Talos Dome, whereas snowfall trajectory direction is the main factor at Dome C. Repeated GPS measurements made at Talos Dome have highlighted changes in ice velocity, with a deceleration in the NE portion, acceleration in the SW portion and migration of dome summit, which are apparently correlated with changes in accumulation distribution. The observed behaviour in accumulation and velocity indicates that even the most remote areas of East Antarctica have changed from a decadal to secular scale.  相似文献   

3.
Abstract— Due to their small size, the mineralogical and chemical properties of micrometeorites (MMs) are not representative of their parent bodies on the centimeter to meter scales that are used to define parent body groups through the petrological study of meteorites. Identifying which groups of MM are derived from the same type of parent body is problematic and requires particles to be rigorously grouped on the basis of mineralogical, textural, and chemical properties that reflect the fundamental genetic differences between meteorite parent bodies, albeit with minimal bias towards preconceived genetic models. Specifically, the interpretation of MMs requires a rigorous and meaningful classification scheme. At present the classification of MMs is, however, at best ambiguous. A unified petrological‐chemical classification scheme is proposed in the current study and is based on observations of several thousand MMs collected from Antarctic ice.  相似文献   

4.
Abstract— Australasian microtektites were discovered in Ocean Drilling Program (ODP) Hole 1143A in the central part of the South China Sea. Unmelted ejecta were found associated with the microtektites at this site and with Australasian microtektites in Core SO95–17957–2 and ODP Hole 1144A from the central and northern part of the South China Sea, respectively. A few opaque, irregular, rounded, partly melted particles containing highly fractured mineral inclusions (generally quartz and some K feldspar) and some partially melted mineral grains, in a glassy matrix were also found in the microtektite layer. The unmelted ejecta at all three sites include abundant white, opaque grains consisting of mixtures of quartz, coesite, and stishovite, and abundant rock fragments which also contain coesite and, rarely, stishovite. This is the first time that shock‐metamorphosed rock fragments have been found in the Australasian microtektite layer. The rock fragments have major and trace element contents similar to the Australasian microtektites and tektites, except for higher volatile element contents. Assuming that the Australasian tektites and microtektites were formed from the same target material as the rock fragments, the parent material for the Australasian tektites and microtektites appears to have been a fine‐grained sedimentary deposit. Hole 1144A has the highest abundance of microtektites (number/cm2) of any known Australasian microtektite‐bearing site and may be closer to the source crater than any previously identified Australasian microtektite‐bearing site. A source crater in the vicinity of 22° N and 104° E seems to explain geographic variations in abundance of both the microtektites and the unmelted ejecta the best; however, a region extending NW into southern China and SE into the Gulf of Tonkin explains the geographic variation in abundance of microtektites and unmelted ejecta almost as well. The size of the source crater is estimated to be 43 ± 9 km based on estimated thickness of the ejecta layer at each site and distance from the proposed source. A volcanic ash layer occurs just above the Australasian microtektite layer, which some authors suggest is from a supereruption of the Toba caldera complex. We estimate that deposition of the ash occurred ?800 ka ago and that it is spread over an area of at least 3.7 times 107 km2.  相似文献   

5.
Carbonaceous chondrites of the Vigarano group (CV) are primitive (nearly un-metamorphosed) meteorites that provide a wealth of information about the early solar system, including constraints on chondrule formation, origin of calcium-aluminum inclusions, stability of organic compounds, and redox conditions. The US Antarctic meteorite collection contains 119 CV samples from 15 dense collection areas (DCAs) from the TransAntarctic Mountains; these samples have been assigned a preliminary classification as CVs, but not to the subgroups oxidized A, oxidized B, and reduced. Furthermore, variation in petrologic grade can be determined non-destructively using Raman spectroscopy. To update the classification of both subgroups and petrologic types in the collection, we have acquired magnetic susceptibility, metal and sulfide compositions, and Raman spectra. Overall, there are 55 oxidized A samples, 18 oxidized B samples, and 46 reduced samples. Several of the CVs are quite primitive (Lewis Cliffs Ice Tongue and MacAlpine Hills) but are also very small. Multiple pairing groups have been identified in the Miller Range (MIL), Queen Alexandra Range, and Larkman Nunatak DCAs, including all of the subgroups. In MIL 090981, there is evidence for multiple lithologies. We make suggested updates for all the samples, knowing that this information will help to better guide researchers interested in studying the CV chondrites in the US Antarctic meteorite collection.  相似文献   

6.
Abstract— Large area sampling with a box core in the Indian Ocean has led to the discovery of minitektites (>1–3.75 mm long) and a tektite fragment (~1.25 mm) occurring with microtektites belonging to the Australasian tektite strewn field. Minitektites and the microtektites are found to have similar major element compositions conforming to the Australasian tektite/microtektite chemistry. Earlier studies based on isotopic evidence, dating, and chemistry had provided evidence of a single large tektite strewn field; however, the physical association of tektites occurring with microtektites has been lacking. The present study provides such an association.  相似文献   

7.
Dust particles obtained by filtering fresh snow collected from May to September 2017 in the vicinity of Vostok station in Antarctica were examined using a scanning electron microscope. The collection of dust particles contains 197 spherules ranging from 0.5 to 117 μm in diameter, the most abundant ones (n = 188) by far being iron oxide spherules. Analyses of meteorological and human activity data suggest an extraterrestrial origin of most of the spherical particles. The particle size distribution histogram showed a smooth increase in their number with decreasing size and a dramatic drop at sizes smaller than 3 μm. The number of spherical particles has an uneven distribution over time, with an intense peak in July 27–28, 2017 which correlates by dates with the peak of the Southern Delta Aquariids meteor shower. The size distribution of the particles collected during the same period indicates the presence of a mechanism that accelerates their fall to the Earth. We propose that they are effective centers of condensation of ice crystals in stratospheric clouds. Our data indicate that collection of micrometeorites with sizes of several microns from the fresh snow is possible, opening a new way for sampling micrometeorites, including separate meteor showers.  相似文献   

8.
Abstract— Using a nuclear microprobe, we measured the carbon and nitrogen concentrations and distributions in several interplanetary dust particles (IDPs) and Antarctic micrometeorites (MMs), and compared them to 2 carbonaceous chondrites: Tagish Lake and Murchison. We observed that IDPs are richest in both elements. All the MMs studied contain carbon, and all but the coarse‐grained and 1 melted MM contained nitrogen. We also observed a correlation in the distribution of carbon and nitrogen, suggesting that they may be held in an organic material. The implications for astrobiology of these results are discussed, as small extraterrestrial particles could have contributed to the origin of life on Earth by delivering important quantities of these 2 bio‐elements to the Earth's surface and their gas counterparts, CO2 and N2, to the early atmosphere.  相似文献   

9.
Evidence of individual solar proton events in Antarctic snow   总被引:1,自引:0,他引:1  
The high-resolution nitrate analyses of a snow sequence in Antarctica reveals clear evidence that the snow contains a chemical record of ionization from charged particles incident upon the upper atmosphere of the Earth. The Antarctic continent acts as a cold trap that effectively freezes out this signal and retains it in the stratigraphy of the ice shelves and the continental ice sheet. The signal that we measure results from the ionization of nitrogen and oxygen, the two primary constituents of the Earth's atmosphere, which subsequently react to form oxides of nitrogen. A large portion of the nitrogen oxides produced are ultimately oxidized to nitric acid and incorporated in snow crystals together with nitrates from tropospheric sources that also contribute to the general background. The nitrate concentration in a firn core was measured in Antarctica by ultraviolet spectrophotometry under tightly controlled experimental procedures. Based on uninterrupted, high-resolution sampling, variations in nitrate concentration were found to average about 53% (one standard deviation) of the mean concentration for the entire core. Short pulses of high nitrate concentration were found to show a variance of up to 11 standard deviations above the mean. At the series mean, the precision of analysis is better than 2%.The firn core was drilled by hand to a depth of 21.7 m corresponding to 62 years and including more than 5 solar cycles. The time series that resulted from a total of 1393 individual analyses shows a statistically significant modulation of the background signal that is clearly tracable to solar activity. Several anomalously large concentration peaks were observed that have been dated and found to correlate with the major solar proton events of August 1972, July 1946, and the white-light flare of July 1928.  相似文献   

10.
11.
Abstract— The enrichment of F on Antarctic meteorites is the result of their exposure to the atmosphere, and its measurement allows a subdivision of the terrestrial age into a duration of exposure on the ice and the time a meteorite was enclosed by the ice. In many cases, the periods of surface exposure are only small fractions of the terrestrial ages of meteorites collected in Antarctica. The enrichment of F on the surfaces of Antarctic achondrites was investigated by means of nuclear reaction analysis (NRA): scanning proton beams with an energy of 2.7 and 3.4 MeV were used to induce the reactions 19F(p,αγ)16O and 19F(p, p'γ)19F, respectively. Gamma signals proportional to the F content were measured. The following Antarctic achondrites were investigated: Martian meteorite ALH 84001; diogenite ALHA77256; the eucrites ALHA81011 and ALHA78132; and in addition, the H5 chondrite ALHA79025. For ALH 84001, our data indicate a period of exposure on the ice of <500 years. Thus, this specimen was enclosed in the ice >95% of its terrestrial age of 13 000 years.  相似文献   

12.
Abstract— Microtektites from two deep‐sea cores in the South China Sea and the West Philippine Sea are identified as belonging to the Australasian tektite strewn field based on the morphology, chronostratigraphic occurrence, and geographical location of these microtektites. The higher concentrations of microtektites (>1000/cm2) in the marginal seas of the western Pacific, with the peak concentration in the South China Sea, support the hypothesis of a large impact crater in Indochina. These two new occurrences lead to a more precise dating of the impact event at 793 ka, whereas the size of the Australasian source crater on the Indochina Peninsula is estimated to be 90–116 km.  相似文献   

13.
Recent geological observations in the northern mid-latitudes of Mars show evidence for past glacial activity during the late Amazonian, similar to the integrated glacial landsystems in the Dry Valleys of Antarctica. The large accumulation of ice (many hundreds of meters) required to create the observed glacial deposits points to significant atmospheric precipitation, snow and ice accumulation, and glacial flow. In order to understand the climate scenario required for these conditions, we used the LMD (Laboratoire de Météorologie Dynamique) Mars GCM (General Circulation Model), which is able to reproduce the present-day water cycle, and to predict past deposition of ice consistent with geological observations in many cases. Prior to this analysis, however, significant mid-latitude glaciation had not been simulated by the model, run under a range of parameters.In this analysis, we studied the response of the GCM to a wider range of orbital configurations and water ice reservoirs, and show that during periods of moderate obliquity (? = 25-35°) and high dust opacity (τdust = 1.5-2.5), broad-scale glaciation in the northern mid-latitudes occurs if water ice deposited on the flanks of the Tharsis volcanoes at higher obliquity is available for sublimation. We find that high dust contents of the atmosphere increase its water vapor holding capacity, thereby moving the saturation region to the northern mid-latitudes. Precipitation events are then controlled by topographic forcing of stationary planetary waves and transient weather systems, producing surface ice distribution and amounts that are consistent with the geological record. Ice accumulation rates of ∼10 mm yr−1 lead to the formation of a 500-1000 m thick regional ice sheet that will produce glacial flow patterns consistent with the geological observations.  相似文献   

14.
Abstract— We report electron microprobe determinations of the elemental compositions of 11 Australasian layered tektites and 28 Australasian microtektites; and ion microprobe determinations of the 41K/39K ratios of all 11 tektites and 13 of the microtektites. The elemental compositions agree well with literature values, although the average potassium concentrations measured here for microtektites, 1.1‐1.6 wt%, are lower than published average values, 1.9‐2.9 wt%. The potassium isotope abundances of the Australasian layered tektites vary little. The average value of δ41K, 0.02 ± 0.12%0 (1 s? mean), is indistinguishable from the terrestrial value (= 0 by definition) as represented by our standard, thereby confirming four earlier tektite analyses of Humayun and Koeberl (2004). In agreement with those authors, we conclude that evaporation has significantly altered neither the isotopic nor the elemental composition of Australasian layered tektites for elements less volatile than potassium. Although the average 41K/39K ratio of the microtektites, 1.1 ± 1.7%0 (1 s? mean), is also statistically indistinguishable from the value for the standard, the individual ratios vary over a very large range, from ?10.6 ± 1.4%0 to +13.8 ± 1.5%0 and at least three of them are significantly different from zero. We interpret these larger variations in terms of the evaporation of isotopically light potassium; condensation of potassium in the vapor plume; partial or complete stirring and quenching of the melts; and the possible uptake of potassium from seawater. That the average 41K/39K ratio of the microtektites equals the terrestrial value suggests that the microtektite‐forming system was compositionally closed with respect to potassium and less volatile elements. The possibility remains open that 41K/39K ratios of microtektites vary systematically with location in the strewn field.  相似文献   

15.
Abstract— We report on the effectiveness of using magnetic measurements in the search for meteorites on the Antarctic ice sheet, which is thus far the Earth's most productive terrain. Magnetic susceptibility measurements carried out with a pocket meter (SM30) during the 2003/04 PNRA meteorite collection expedition to northern Victoria Land (Antarctica) proved to be a rapid, sensitive, non‐destructive means for the in situ identification, pairing, and classification of meteorites. In blue ice fields characterized by the presence of moraines and glacial drifts (e.g., Miller Butte, Roberts Butte, and Frontier Mountain), magnetic susceptibility measurements allowed discrimination of meteorites from abundant terrestrial stones that look like meteorites thanks to the relatively high magnetic susceptibility of the former with respect to terrestrial rocks. Comparative measurements helped identify 16 paired fragments found at Johannessen Nunataks, thereby reducing unnecessary duplication of laboratory analyses and statistical bias. Following classifications schemes developed by us in this and previous works, magnetic susceptibility measurements also helped classify stony meteorites directly in the field, thereby providing a means for selecting samples with higher research priority. A magnetic gradiometer capable of detecting perturbations in the Earth's magnetic field induced by the presence of meteorites was an efficient tool for locating meteorites buried in snow along the downwind margin of the Frontier Mountain blue ice field. Based on these results, we believe that magnetic sensors should constitute an additional payload for robotic search for meteorites on the Antarctic ice sheet and, by extension, on the surface of Mars where meteorite accumulations are predicted by theoretical works. Lastly, magnetic susceptibility data was successfully used to crosscheck the later petrographic classification of the 123 recovered meteorites, allowing the detection of misclassified or peculiar specimens.  相似文献   

16.
The atmospheric entry heating of micrometeorites (MMs) can significantly alter their pre‐existing mineralogy, texture, and organic material. The degree of heating depends predominantly on the gravity and atmospheric density of the planet on which they fall. For particles falling on Earth, the alteration can be significant, leading to the destruction of much of the pre‐entry organics; however, the weaker gravity and thinner atmosphere of Mars enhance the survival of MMs and increase the fraction of particles that preserve organic material. This paper investigates the entry heating of MMs on the Earth and Mars in order to examine the MM population on each planet and give insights into the survival of extraterrestrial organic material. The results show that particles reaching the surface of Mars experience a lower peak temperature compared to Earth and, therefore, experience less evaporative mass loss. Of the particles which reach the surface, 68.2% remain unmelted on Mars compared to only 22.8% on Earth. Due to evaporative mass loss, unmelted particles that reach the surface of Earth are restricted to sizes <70 μm whereas particles >475 μm survive unmelted on Mars. Approximately 10% of particles experience temperatures below ~800 K, that is, the sublimation temperature of refractory organics found in MMs. On Earth, this fraction is significantly lower with less than 1% expected to remain below this temperature. Lower peak temperatures coupled with the larger sizes of particles surviving without significant heating on Mars suggest a much higher fraction of organic material surviving to the Martian surface.  相似文献   

17.
Basaltic micrometeorites (MMs) derived from HED‐like parent bodies have been found among particles collected from the Antarctic and from Arctic glaciers and are to date the only achondritic particles reported among cosmic dust. The majority of Antarctic basaltic particles are completely melted cosmic spherules with only one unmelted particle recognized from the region. This paper investigates the entry heating of basaltic MMs in order to predict the relative abundances of unmelted to melted basaltic particles and to evaluate how mineralogical differences in precursor materials influence the final products of atmospheric entry collected on the Earth's surface. Thermodynamic modeling is used to simulate the melting behavior of particles with compositions corresponding to eucrites, diogenites, and ordinary chondrites in order to evaluate degree of partial melting and to make a comparison between the behavior of chondritic particles that dominate the terrestrial dust flux and basaltic micrometeroids. The results of 120,000 simulations were compiled to predict relative abundances and indicate that the phase relations of precursor materials are crucial in determining the relative abundances of particle types. Diogenite and ordinary chondrite materials exhibit similar behavior, although diogenite precursors are more likely to form cosmic spherules under similar entry parameters. Eucrite particles, however, are much more likely to melt due to their lower liquidus temperatures and small temperature interval of partial melting. Eucrite MMs, therefore, usually form completely molten cosmic spherules except at particle diameters <100 μm. The low abundance of unmelted basaltic MMs compared with spherules, if statistically valid, is also shown to be inconsistent with a low velocity population (12 km s?1) and is more compatible with higher velocities which may suggest a near‐Earth asteroid source dominates the current dust production of basaltic MMs.  相似文献   

18.
Abstract— Antarctic meteorites are considerably smaller, on average, than those recovered elsewhere in the world, and seem to represent a different portion of the mass distribution of infalling meteorites. When an infall rate appropriate to the size of Antarctic meteorites is used (1000 meteorites 10 grams or larger/km2/106 years), it is found that direct infall can produce the meteorite accumulations found on eight ice fields in the Allan Hills region in times ranging from a few thousand to nearly 200 000 years, with all but the Allan Hills Main and Near Western ice fields requiring less than 30 000 years. Meteorites incorporated into the ice over time are concentrated on the surface when the ice flows into a local area of rapid ablation. The calculated accumulation times, which can be considered the average age of the exposed ice, agree well with terrestrial ages for the meteorites and measured ages of exposed ice. Since vertical concentration of meteorites through removal of ice by ablation is sufficient to explain the observed meteorite accumulations, there is no need to invoke mechanisms to bring meteorites from large areas to the relatively small blue-ice patches where they are found. Once a meteorite is on a bare ice surface, freeze-thaw cycling and wind break down the meteorite and remove it from the ice. The weathering lifetime of a 100-gram meteorite on Antarctic ice is on the order of 10 000 ± 5000 years.  相似文献   

19.
Abstract— We have investigated the texture, bulk chemistry, mineralogy, as well as the anhydrous minerals oxygen isotopic composition of 67 small Antarctic micrometeorites (AMMs) collected at Cap Prudhomme, Antarctica, and belonging to the currently poorly studied size fraction 25–50 μm. When compared to larger (50–400 μm) micrometeorites collected at the same site in Antarctica with the same techniques, no significant differences are found between the two populations. We therefore conclude that the population of Cap Prudhomme AMMs is homogeneous over the size range 25–400 μm. In contrast, small AMMs have different textures, mineralogy, and oxygen isotopic compositions than those of stratospheric interplanetary dust particles (IDPs). Because small AMMs (<50 μm) overlap in size with IDPs, the differences between these two important sources of micrometeorites can no longer be attributed to a variation of the micrometeorite composition with size. Physical biases introduced by the collection procedures might account for these differences.  相似文献   

20.
Abstract– Over 4600 Australasian microtektites from 11 sediment cores along an N–S transect in the Central Indian Ocean have been investigated optically for microimpact features on their surfaces. Detailed scanning electron microscope examination of 68 microtektites along this transect shows 4091 such features. These samples are located between approximate distances of 3900–5000 km from the suggested impact site in Indochina and therefore constitute distal ejecta. The morphology of the microimpacts seems to show distinct variations with distance from the source crater. The total number of microcraters on each microtektite decreases drastically from North to South indicating systematic decrease in the spatial density of the ejecta, and decrease in collisional activity between microtektites with distance from the proposed source crater location. Closer to the proposed source crater location, the microcraters are predominantly small (few μm), pit bearing with radial and concentric cracks, suggestive of violent interparticle collisions. The scenario is reverse farther from the source crater with smaller numbers of impacted microtektites due to increased dispersion of the ejecta and the microcraters are large and shallow, implying gentle collisions with larger particles. These observations provide systematic ground truth for the processes that take place as the ejecta of a large oblique impact which generated the Australasian tektite strewn field is emplaced. The microimpacts appear to take place during the descent of the ejecta and their intensity and number density decrease as a function of the spatial density of the ejecta at any given place and with distance from the source region. These features could help understand processes that take place during ejecta emplacement on planets with substantial atmosphere such as Mars and Venus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号