首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni‐rich Fe‐Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic‐ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.  相似文献   

2.
《Planetary and Space Science》1999,47(3-4):577-584
The idea of extraterrestrial delivery of organic matter to the early Earth is strongly supported by the detection of a large variety of organic compounds in the interstellar medium, comets, and carbonaceous chondrites. Whether organic compounds essential for the emergence and evolution of life, particularly amino acids and nucleic acid bases found in the meteorites, can be efficiently delivered by other space bodies is unclear and depends primarily on capability of the biomolecules to survive high temperatures during atmospheric deceleration and impacts to the terrestrial surface. In the present study we estimated survivability of simple amino acids (glycine, Lalanine, α-aminoisobutyric acid, L-valine and L-leucine), purines (adenine and guanine) and pyrimidines (uracil and cytosine) under rapid heating to temperatures of 400-1000°C under N2 or CO2 atmosphere. We have found that most of the compounds studied cannot survive the temperatures substantially higher than 700°C; however at 500600°C, the recovery can be at a percent level (or even 10%-level for adenine, uracil, alanine, and valine). The final fate of amino acids and nucleobases during the atmospheric deceleration and surface impacts is discussed depending on such factors as size of the space body, nature and altitude of the heating, chemical composition of the space body and of the atmosphere.  相似文献   

3.
Miller Range 07273 is a chondritic melt breccia that contains clasts of equilibrated ordinary chondrite set in a fine‐grained (<5 μm), largely crystalline, igneous matrix. Data indicate that MIL was derived from the H chondrite parent asteroid, although it has an oxygen isotope composition that approaches but falls outside of the established H group. MIL also is distinctive in having low porosity, cone‐like shapes for coarse metal grains, unusual internal textures and compositions for coarse metal, a matrix composed chiefly of clinoenstatite and omphacitic pigeonite, and troilite veining most common in coarse olivine and orthopyroxene. These features can be explained by a model involving impact into a porous target that produced brief but intense heating at high pressure, a sudden pressure drop, and a slower drop in temperature. Olivine and orthopyroxene in chondrule clasts were the least melted and the most deformed, whereas matrix and troilite melted completely and crystallized to nearly strain‐free minerals. Coarse metal was largely but incompletely liquefied, and matrix silicates formed by the breakdown during melting of albitic feldspar and some olivine to form pyroxene at high pressure (>3 GPa, possibly to ~15–19 GPa) and temperature (>1350 °C, possibly to ≥2000 °C). The higher pressures and temperatures would have involved back‐reaction of high‐pressure polymorphs to pyroxene and olivine upon cooling. Silicates outside of melt matrix have compositions that were relatively unchanged owing to brief heating duration.  相似文献   

4.
Impact breccia 14311, was collected from the Apollo 14 landing site as a potential sample of the underlying Fra Mauro Formation. Published zircon U‐Pb ages of >4000 Ma date the source material of the breccia and the apatite U‐Pb age of ~3940 Ma is interpreted as dating thermal resetting of the apatite U‐Pb systems. In this contribution we present new age information on the late stage thermal history of the breccia based on the annealing of radiation damage in the zircons. From Raman spectroscopic determination of the radiation damage within SIMS analytical spots on the zircons and the U and Th concentrations determined on these spots, we demonstrate that the radiation damage in the zircons has been annealed and we estimate the age of annealing at 3410 ± 80 Ma. This age is interpreted as a cooling age following heating of the breccia to above the annealing temperature of ~230 °C for stage 1 radiation damage in zircon, but below the temperature needed to reset the U‐Pb system of apatite (~500 °C). It is proposed that this thermal event was associated with the prolonged period of Mare volcanism, from 3150 to 3750 Ma, that generated massive basalt flows in the vicinity of the sample location.  相似文献   

5.
Fluid inclusions studies in quartz and calcite in samples from the ICDP‐Chicxulub drill core Yaxcopoil‐1 (Yax‐1) have revealed compelling evidence for impact‐induced hydrothermal alteration. Fluid circulation through the melt breccia and the underlying sedimentary rocks was not homogeneous in time and space. The formation of euhedral quartz crystals in vugs hosted by Cretaceous limestones is related to the migration of hot (>200 °C), highly saline, metal‐rich, hydrocarbon‐bearing brines. Hydrocarbons present in some inclusions in quartz are assumed to derive from cracking of pre‐impact organic matter. The center of the crater is assumed to be the source of the hot quartz‐forming brines. Fluid inclusions in abundant newly‐formed calcite indicate lower cyrstallization temperatures (75–100 °C). Calcite crystallization is likely related to a later stage of hydrothermal alteration. Calcite precipitated from saline fluids, most probably from formation water. Carbon and oxygen isotope compositions and REE distributions in calcites and carbonate host rocks suggest that the calcite‐forming fluids have achieved close equilibrium conditions with the Cretaceous limestones. The precipitation of calcite may be related to the convection of local pore fluids, possibly triggered by impact‐induced conductive heating of the sediments.  相似文献   

6.
Collisions between planetesimals in the early solar system were a common and fundamental process. Most collisions occurred at an oblique incidence angle, yet the influence of impact angle on heating in collisions is not fully understood. We have conducted a series of shock physics simulations to quantify oblique heating processes, and find that both impact angle and target curvature are important in quantifying the amount of heating in a collision. We find an expression to estimate the heating in an oblique collision compared to that in a vertical incidence collision. We have used this expression to quantify heating in the Rhealsilvia‐forming impact on Vesta, and find that there is slightly more heating in a 45° impact than in a vertical impact. Finally, we apply these results to Monte Carlo simulations of collisional processes in the early solar system, and determine the overall effect of impact obliquity from the range of impacts that occurred on a meteorite parent body. For those bodies that survived 100 Myr without disruption, it is not necessary to account for the natural variation in impact angle, as the amount of heating was well approximated by a fixed impact angle of 45°. However, for disruptive impacts, this natural variation in impact angle should be accounted for, as around a quarter of bodies were globally heated by at least 100 K in a variable‐angle model, an order of magnitude higher than under an assumption of a fixed angle of 45°.  相似文献   

7.
We present in this study the effects of short‐term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent body's heating extent with common cosmothermometers. The kinetics of short‐term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondrites—potential analogues of the target asteroid Ryugu of the Hayabusa2 mission—which had experienced posthydration, short‐duration local heating. In an attempt to understand the effects of short‐term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X‐ray microscopy utilizing X‐ray absorption near edge structure spectroscopy, and ultraperformance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 °C for 96 h, as the OM maturity trend was influenced by the heating conditions, kinetics, and the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s?σ* exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long‐term internal heating.  相似文献   

8.
Abstract– To evaluate kinetic parameters for thermal degradation of organic matter, in situ heating experiments of insoluble organic matter (IOM) and bulk of Murchison (CM2) meteorite were conducted under Fourier transform infrared micro‐spectroscopy combined with a heating stage. Decreases of aliphatic C–H band area under Ar flow were well fitted with Ginstling‐Brounshtein three‐dimensional diffusion model, and the rate constants for decreases of aliphatic C–H were determined. Activation energies Ea and frequency factors A obtained from these rate constants at different temperatures using the Arrhenius equation were Ea = 109 ± 3 kJ mol?1 and A = 8.7 × 104 s?1 for IOM, and Ea = 61 ± 6 kJ mol?1 and A = 3.8 s?1 for bulk, respectively. Activation energy values of aliphatic C–H decrease are larger for IOM than bulk. Hence, the mineral assemblage of the Murchison meteorite might have catalytic effects for the organic matter degradation. Using obtained kinetic expressions, the time scale for metamorphism can be estimated for a given temperature with aliphatic C–H band area, or the temperature of metamorphism can be estimated for a given time scale. For example, using the obtained kinetic parameters of IOM, aliphatic C–H is lost approximately within 200 years at 100 °C and 100 Myr at 0 °C. Assuming alteration period of 7.5 Myr, alteration temperatures could be calculated to be <15 ± 12 °C. Aliphatic C–H decrease profiles in a parent body can be estimated using time–temperature history model. The kinetic expression obtained by the infrared spectral band of aliphatic C–H could be used as an alternative method to evaluate thermal processes of organic matter in carbonaceous chondrites.  相似文献   

9.
The Northwest Africa (NWA) 7475 meteorite is one of the several stones of paired regolith breccias from Mars based on petrography, oxygen isotope, mineral compositions, and bulk rock compositions. Its inventory of lithic clasts is dominated by vitrophyre impact melts that were emplaced while they were still molten. Other clast types include crystallized impact melt rocks, evolved plutonic rocks, possible basalts, contact metamorphosed rocks, and siltstones. Impact spherules and vitrophyre shards record airborne transport, and accreted dust rims were sintered on most clasts, presumably during residence in an ejecta plume. The clast assemblage records at least three impact events, one that formed an impact melt sheet on Mars ≤4.4 Ga ago, a second that assembled NWA 7475 from impactites associated with the impact melt sheet at 1.7–1.4 Ga, and a third that launched NWA 7475 from Mars ~5 Ma ago. Mildly shocked pyroxene and plagioclase constrain shock metamorphic conditions during launch to >5 and <15 GPa. The mild postshock‐heating that resulted from these shock pressures would have been insufficient to sterilize this water‐bearing lithology during launch. Magnetite, maghemite, and pyrite are likely products of secondary alteration on Mars. Textural relationships suggest that calcium‐carbonate and goethite are probably of terrestrial origin, yet trace element chemistry indicates relatively low terrestrial alteration. Comparison of Mars Odyssey gamma‐ray spectrometer data with the Fe and Th abundances of NWA 7475 points to a provenance in the ancient southern highlands of Mars. Gratteri crater, with an age of ~5 Ma and an apparent diameter of 6.9 km, marks one possible launch site of NWA 7475.  相似文献   

10.
Here we report in situ secondary ionization mass spectrometry Ca-phosphate U-Pb ages for an L-impact melt breccia (NWA 7251), which are integrated with petrological and mineral chemical studies of this meteorite. NWA 7251 is a heavily shocked rock that is composed mainly of the chondrite host, impact melt portion, and melt veins (crosscutting and pervasive type). The host is an L4 chondrite that has been shocked to S4. The impact melt portion has a fine-grained igneous texture, and is composed mainly of olivine, low-Ca pyroxene, high-Ca pyroxene, and albitic glass. The impact melt was generated at pressure of >30–35 GPa and temperature of >1300–1500 °C during an impact event. The Ca-phosphate grains in the host were affected by a shock heating event. Most of the Ca-phosphate grains in the melt were neocrystallized, but relatively large grains enclosed by or adjacent to metal veins or melt globules are likely inherited. The U-Pb isotopic systematics of Ca-phosphates in NWA 7251 yield an upper intercept age of 4457 ± 56 Ma and a lower intercept age of 574 ± 82 Ma on the normal U-Pb concordia diagram. The age of 4457 ± 56 Ma is interpreted to be related to an early shocking event rather than the thermal metamorphism of the parent body. The impact melt and veins in NWA 7251 were generated at 574 ± 82 Ma, resulting from disruption of the L chondrite parent body.  相似文献   

11.
Shock‐induced features are abundantly observed in meteorites. Especially, shock veins, including high‐pressure minerals, characterize many kinds of heavily shocked meteorite. On the other hand, no high‐pressure phases have been yet reported from enstatite chondrites. We studied a heavily shocked EH3 chondrite, Asuka 10164, containing a vein, which comprises fragments of fine‐grained silicate and opaque minerals, and chondrules. In this vein, we found a silica polymorph, coesite. This is the first discovery of a high‐pressure phase in enstatite chondrites. Other high‐pressure polymorphs were not observed in the vein. The assemblages and chemical compositions of minerals, and the occurrence of coesite indicate that the vein was subjected to the high‐pressure and temperature condition at about 3–10 GPa and 1000 °C. The host also experienced heating for a short time under lower temperature conditions, from ~700 to ~1000 °C, based on the opaque minerals typical of EH chondrites and textural features. Although the pressure condition of the vein in this chondrite is much lower than those in the other meteorites, our results suggest that all major meteorite groups contain high‐pressure polymorphs. Heavy shock events commonly took place in the solar system.  相似文献   

12.
The two neighboring Suvasvesi North and South impact structures in central‐east Finland have been discussed as a possible impact crater doublet produced by the impact of a binary asteroid. This study presents 40Ar/39Ar geochronologic data for impact melt rocks recovered from the drilling into the center of the Suvasvesi North impact structure and melt rock from glacially transported boulders linked to Suvasvesi South. 40Ar/39Ar step‐heating analysis yielded two essentially flat age spectra indicating a Late Cretaceous age of ~85 Ma for the Suvasvesi North melt rock, whereas the Suvasvesi South melt sample gave a Neoproterozoic minimum (alteration) age of ~710 Ma. Although the statistical likelihood for two independent meteorite strikes in close proximity to each other is rather low, the remarkable difference in 40Ar/39Ar ages of >600 Myr for the two Suvasvesi impact melt samples is interpreted as evidence for two temporally separate, but geographically closely spaced, impacts into the Fennoscandian Shield. The Suvasvesi North and South impact structures are, thus, interpreted as a “false” crater doublet, similar to the larger East and West Clearwater Lake impact structures in Québec, Canada, recently shown to be unrelated. Our findings have implications for the reliable recognition of impact crater doublets and the apparent rate of binary asteroid impacts on Earth and other planetary bodies in the inner solar system.  相似文献   

13.
Jbilet Winselwan is one of the largest CM carbonaceous chondrites available for study. Its light, major, and trace elemental compositions are within the range of other CM chondrites. Chondrules are surrounded by dusty rims and set within a matrix of phyllosilicates, oxides, and sulfides. Calcium‐ and aluminum‐rich inclusions (CAIs) are present at ≤1 vol% and at least one contains melilite. Jbilet Winselwan is a breccia containing diverse lithologies that experienced varying degrees of aqueous alteration. In most lithologies, the chondrules and CAIs are partially altered and the metal abundance is low (<1 vol%), consistent with petrologic subtypes 2.7–2.4 on the Rubin et al. ( 2007 ) scale. However, chondrules and CAIs in some lithologies are completely altered suggesting more extensive hydration to petrologic subtypes ≤2.3. Following hydration, some lithologies suffered thermal metamorphism at 400–500 °C. Bulk X‐ray diffraction shows that Jbilet Winselwan consists of a highly disordered and/or very fine‐grained phase (73 vol%), which we infer was originally phyllosilicates prior to dehydration during a thermal metamorphic event(s). Some aliquots of Jbilet Winselwan also show significant depletions in volatile elements such as He and Cd. The heating was probably short‐lived and caused by impacts. Jbilet Winselwan samples a mixture of hydrated and dehydrated materials from a primitive water‐rich asteroid. It may therefore be a good analog for the types of materials that will be encountered by the Hayabusa‐2 and OSIRIS‐REx asteroid sample‐return missions.  相似文献   

14.
In Stardust tracks C2044,0,38, C2044,0,39, and C2044,0,42 (Brennan et al. 2007 ) and Stardust track 10 (this work) gold is present in excess of its cosmochemical abundance. Ultra‐thin sections of allocation FC6,0,10,0,26 (track 10) show a somewhat wavy, compressed silica aerogel/silica glass interface which challenges exact location identification, i.e., silica glass, compressed silica aerogel, or areas of overlap. In addition to domains of pure silica ranging from SiO2 to SiO3 glass, there is MgO‐rich silica glass with a deep metastable composition, MgO = 14 ± 6 wt%, due to assimilation of Wild 2 Mg‐silicate matter in silica melt. This magnesiosilica composition formed when temperatures during hypervelocity capture reached >2000 °C followed by ultrafast quenching of the magnesiosilica melt when it came into contact with compressed aerogel at ~155 °C. The compressed silica aerogel in track 10 has a continuous Au background as result of the melting point depression of gold particles <5 nm that showed liquid‐like behavior. Larger gold particles are scattered found throughout the silica aerogel matrix and in aggregates up to ~50 nm in size. No gold is found in MgO‐rich silica glass. Gold in track 10 is present at the silica aerogel/silica glass interface. In the other tracks gold was likely near‐surface contamination possibly from an autoclave used in processing of these particular aerogel tiles. So far gold contamination is documented in these four different tracks. Whether they are the only tiles with gold present in excess of its cosmochemical abundance or whether more tiles will show excess gold abundances is unknown.  相似文献   

15.
Abstract– Insight into the chemical history of an ungrouped type 2 carbonaceous chondrite meteorite, Wisconsin Range (WIS) 91600, is gained through molecular analyses of insoluble organic matter (IOM) using solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy, X‐ray absorption near edge structure spectroscopy (XANES), and pyrolysis‐gas chromatography coupled with mass spectrometry (pyr‐GC/MS), and our previous bulk elemental and isotopic data. The IOM from WIS 91600 exhibits similarities in its abundance and bulk δ15N value with IOM from another ungrouped carbonaceous chondrite Tagish Lake, while it exhibits H/C, δ13C, and δD values that are more similar to IOM from the heated CM, Pecora Escarpment (PCA) 91008. The 13C NMR spectra of IOM of WIS 91600 and Tagish Lake are similar, except for a greater abundance of CHxO species in the latter and sharper carbonyl absorption in the former. Unusual cross‐polarization (CP) dynamics is observed for WIS 91600 that indicate the presence of two physically distinct organic domains, in which the degrees of aromatic condensation are distinctly different. The presence of two different organic domains in WIS 91600 is consistent with its brecciated nature. The formation of more condensed aromatics is the likely result of short duration thermal excursions during impacts. The fact that both WIS 91600 and PCA 91008 were subjected to short duration heating that is distinct from the thermal history of type 3 chondrites is confirmed by Carbon‐XANES. Finally, after being briefly heated (400 °C for 10 s), the pyrolysis behavior of Tagish Lake IOM is similar to that of WIS 91600 and PCA 91008. We conclude that WIS 91600 experienced very moderate, short duration heating at low temperatures (<500 °C) after an episode of aqueous alteration under conditions that were similar to those experienced by Tagish Lake.  相似文献   

16.
Here, we report the mineralogy, petrography, C‐N‐O‐stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo‐like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano‐like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole‐rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre‐accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable.  相似文献   

17.
Granitoid rock samples from the assumed center of the Keurusselkä impact site were subjected to a systematic study of fluid‐inclusion compositions and densities in various microstructures of the shocked quartz. The results are consistent with the following impact‐induced model of formation. After cessation of all major regional tectonic activity and advanced erosional uplift of the Fennoscandian shield, a meteorite impact (approximately 1.1 Ga) caused the formation of planar fractures (PFs) and planar deformation features (PDFs) and the migration of shock‐liberated metamorphic fluid (CO2 ± H2O) to the glass in the PDFs. Postimpact annealing of the PDFs led to the formation of CO2 (±H2O) fluid‐inclusion decorated PDFs. The scarce fluid‐inclusion implosion textures (IPs) suggest a shock pressure of 7.6–10 GPa. The postimpact pressure release and associated heating initiated hydrothermal activity that caused re‐opening of some PFs and their partial filling by moderate‐salinity/high temperature (>200 °C) H2O (+ chlorite + quartz) and moderate‐density CO2. The youngest postimpact endogenic sub‐ and nonplanar microfractures (MFs) are characterized by low‐density CO2 and low‐salinity/low‐temperature (<200 °C) H2O.  相似文献   

18.
The atmospheric entry heating of micrometeorites (MMs) can significantly alter their pre‐existing mineralogy, texture, and organic material. The degree of heating depends predominantly on the gravity and atmospheric density of the planet on which they fall. For particles falling on Earth, the alteration can be significant, leading to the destruction of much of the pre‐entry organics; however, the weaker gravity and thinner atmosphere of Mars enhance the survival of MMs and increase the fraction of particles that preserve organic material. This paper investigates the entry heating of MMs on the Earth and Mars in order to examine the MM population on each planet and give insights into the survival of extraterrestrial organic material. The results show that particles reaching the surface of Mars experience a lower peak temperature compared to Earth and, therefore, experience less evaporative mass loss. Of the particles which reach the surface, 68.2% remain unmelted on Mars compared to only 22.8% on Earth. Due to evaporative mass loss, unmelted particles that reach the surface of Earth are restricted to sizes <70 μm whereas particles >475 μm survive unmelted on Mars. Approximately 10% of particles experience temperatures below ~800 K, that is, the sublimation temperature of refractory organics found in MMs. On Earth, this fraction is significantly lower with less than 1% expected to remain below this temperature. Lower peak temperatures coupled with the larger sizes of particles surviving without significant heating on Mars suggest a much higher fraction of organic material surviving to the Martian surface.  相似文献   

19.
The Fe‐FeS system maintains a eutectic temperature of 990 ± 10 °C to at least 8 GPa if starting materials and pressure media are rigorously dehydrated. Literature reports of pressure‐induced freezing point depression of the eutectic for the Fe‐FeS system are not confirmed. Modest addition of oxygen alone is confirmed to cause negligible freezing point depression at 6 GPa. Addition of H alone causes a progressive decrease in the eutectic temperature with P in the Fe‐FeS‐H system to below 965 °C at 6 GPa to below 950 °C at 8 GPa. It is our hypothesis that moisture contamination in unrigorously dried experiments may be an H source for freezing point depression. O released from H2O disproportionation reacts with Fe and is sequestered as ferropericlase along the sample capsules walls, leaving the H to escape the system and/or enter the Fe‐FeS mixture. The observed occurrence of ferropericlase on undried MgO capsule margins is otherwise difficult to explain, because an alternate source for the oxygen in the ferropericlase layer is difficult to identify. This study questions the use of pressure‐depressed Fe‐S eutectic temperatures and suggests that the lower eutectic temperatures sometimes reported are achieved by moving into the ternary Fe‐S‐H system. These results adjust slightly the constraints on eutectic temperatures allowed for partly solidified cores on small planets. H substantially diminishes the temperature extent of the melting interval in Fe‐S by reducing the melting points of the crystalline phases more than it depresses the eutectic.  相似文献   

20.
We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow‐ and rapid‐heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space‐weathering processes. Our slow‐heating experiments show that the formation of Fe nanoparticles begins at ~575 °C. These nanoparticles also form as a result of rapid‐heating experiments, and electron energy‐loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space‐weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid‐heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space‐weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号