首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
对十个活动区出现的卫星黑子进行分析,据它们不同的形态,发展状况及在耀斑活动中的作用大致分成三种类型。结果表明,高能耀斑与卫星黑子有密切关系。随着卫星黑子的出现,发展在活动区中可经常产生耀斑。如果卫星黑子是静止的,通常没有耀斑爆发。  相似文献   

2.
本文研究了22周中的9个强质子耀斑活动区的共同特征,研究结果表明:单个团状结构黑子,即众多异极性黑子本影核紧锁在同一半影结构中的δ型黑子是强质子耀斑活动区的典型形态特征。黑子群的旋转是质子耀斑活动区的又一重要特征,黑子群的旋转方向与日面南、北半球无关。强质子耀斑的爆发总是在黑子群旋转角度达到正或负相极大之后出现。质子耀斑后,磁绳的松弛,黑子群可能会出现反向旋转,强的剪切过程和质子耀斑可能会再度出现。  相似文献   

3.
本文研究结果表明:同一黑子群在日面期间的顺或反时针方向的旋转运动会先后并存.质子耀斑前1~2无,黑子群的旋转角速度达到极大.耀斑后,磁绳的松弛,黑子群可能会反向旋转,强的剪切过程和质子耀斑可能会再度出现.强质子耀斑活动区的共同特征是:(1)形态为单个团状结构δ型黑子,即众多异极性本影核紧锁在同一黑子半影中;(2)黑子面积>1000×10-6半球面积,日面跨度>10°;(3)黑子群都有快速的旋转运动.这类活动区,如果在日面西部活动性明显地增强,那么这个活动区在未来转到日面边缘及其背后、或再次从日面东边缘转出时,定能再次爆发耀斑和伴随较强质子事件。  相似文献   

4.
1984年2月25日,日面爆发了一个高能大耀斑。我们取得了该耀斑过程的光球黑子活动区强磁场以及黑子、H_α色球等光学资料。分析表明:1.这种高能大耀斑是产生在有黑子剪切运动、新浮磁流和磁场梯度大的磁中性线(H_n=0)两侧;2.耀斑发展到极大前后,不但会掩盖部分后随黑子半影,而且还会进一步掩盖这些后随黑子本影;3.在高能大耀斑爆发过程中,相应的光球黑子活动区的强磁场会出现变化,磁通量增长率为1.0×10~8韦伯/秒,磁场梯度最大为0.2高斯/公里;4.黑子间的相对运动速度最大可达0.3公里/秒。  相似文献   

5.
本文对第22周以来产生M级以上(包括M级)的X射线耀斑的太阳黑子活动区进行了统计分析,得到如下结果:(1)黑子活动区在南北半球上分布是不均匀的。具体表现是:南半球出现的黑子活动区多于北半球出现的。南半球活动较强的黑子群主要集中在80°,160°,200°和340°经度附近;北半球活动较强的黑子群主要集中在240°-280°和340°-360°经度带。(2)黑子群的面积(S_p)越大越易产生X级的X射线耀斑。对黑子群面积S_p在大于1000,500-1000和小于500单位时,它们产生X级的X射线耀斑的比率分别约为41%,33%和9%。  相似文献   

6.
AR5060是No.Ⅳ联测期中的第二个目标活动区。它从1988年6月25日东边缘初现到7月8日转出西边缘消失的14天中,黑子群一直保持最复杂的FKC、EKC型和最复杂的BGD磁型。6月29日黑子群面积发展到3000面积单位,是第22周以来第一群最大的黑子(更大的是1989年3月的AR5395,面积达3600单位)。该活动区的黑子群发生过强烈的运动和磁性重联。似乎具备发生强烈大耀斑的位形特征和动力学条件,可是在这期间,全球耀斑监测所观测到的120多个耀斑(据SGD)中,亚耀斑占81%,1级耀斑占15%,2级耀斑只有3个占4%,而且这3个2级耀斑的X射线级别只达到M6.5,M9.2,M3.9,没有一个达到X级。 在AR5060活动区耀斑活动高峰期的6月28日,29日,30日和7月1日这四天中,云南天文台26CM太阳望远镜观测到其中一个2B/M6.5耀斑(1988年6月29日0737UT)、几个1级耀斑和其它许多亚耀斑。从黑子群和色球单色照片上作耀斑发生点同黑子相对位置的比较,结果是出乎意料的,在结构复杂、运动剧烈的黑子群内部发生的都是小耀斑,而3个2B/M级耀斑都发生在黑子群以外只有卫星黑子浮现和消失的时期和地点。  相似文献   

7.
本文对太阳活动第21周、22周(1976年—1992年间)97个质子活动区进行统计分析,包括活动区的面积、型别、磁结构、半影纤维等,结果表明:75%的质子耀斑产生于面积为500≤Sp≤3000单位的黑子群中;耀斑爆发前一天及后一天活动区面积有显著减少;质子活动区含δ复杂磁结构的占70%;具有半影旋涡形态的质子活动区中,约77%的耀斑发生在旋涡黑子出现以后。  相似文献   

8.
本文在综合分析质子耀斑活动区观测特点的基础上,指出在密集的多极黑子构成的局部区域中,同极黑子分裂,互相排斥,异极黑子相互靠近,向异极区中场强较弱部分的挤压和渗入,是一大批质子耀斑活动区的共同特点.这种黑子间的相对运动,使中性线严重扭曲,呈现出质子耀斑活动区特有的“S”型。根据这些观测特点,寻找到了一种定量估计无力因子的方法。对三个典型的质子耀斑活动区估计了无力因子的变化,并在常无力因子的假定下进行了无力场结构和势场磁能的计算。计算表明质子耀斑发生前无力因子逐渐增加,而势场磁能逐渐减小,减少的势场能量可能正是无力场得到发展的能源,足够质子耀斑的需要。  相似文献   

9.
本文分析了廿一周峰年期间云南天文台观测到的廿个无黑子区耀斑,得到如下结果: 1.无黑子区耀斑的一般特征是:1) 无黑子区耀斑的自然产率约3%,2) 其卡林顿经度分布有向东飘移的趋势,3) 无黑子区的耀斑多为低能耀斑,4) 无黑子区耀斑产生的背景条件和黑子区耀斑一样,必须在耀斑区的太阳大气中存在异极性磁场结构。无黑子区耀斑都发生在沿大尺度磁场中性线(H_=0)延伸的暗条两侧或其附近。 2.在耀斑前,由于磁场的扰动,使被浮托在H_=0线上的宁静暗条在耀斑前几小时到一两天激活,临近耀斑位置的一段暗条先是发展增大,同时伴随着谱斑增亮,在耀斑爆发前几分钟或与耀斑发展的同时,该暗条迅速衰减乃至完全消失。与此同时,有的无黑子活动区的可见纤维与暗条的交角由大变小,表明活动区所受的力由挤压力逐渐转化为剪切力。本文还粗略地估计了无黑子区耀斑的能量。  相似文献   

10.
质子活动与太阳黑子群   总被引:1,自引:1,他引:0  
本文对太阳活动第21周、22周(1976年-1992年间)97个质子活动区进行统计分析,包括活动区的面积、型别、磁结构、半影纤维等,结果表明:75%的质子耀斑产生于面积为500≤Sp≤3000单位的黑子群中;耀斑爆发前一天及后一天活动区面积有显著减少,质子活动区含δ复杂磁结构的占70%;具有半影旋涡形态的质子活动区中,约77%的耀斑发生在旋涡黑子出现以后。  相似文献   

11.
In this paper we present the results obtained from a statistical analysis carried out by correlating sunspot‐group data collected at the INAF‐Catania Astrophysical Observatory and in the NOAA reports with data on Mand X flares obtained by the GOES‐8 satellite in the soft X‐ray range during the period January 1996–June 2003. These results allow us to provide a quantitative estimate of the parameters typical for an active region with very energetic flares. Moreover, the analysis of the flare productivity as a function of the group evolutionary stage indicates that the flaring probability of sunspots slightly increases with the spot age during the first passage across the solar disk, and that flaring groups are characterized by longer lifetimes than non‐flaring ones. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Solar activity, such as flares and CMEs, affect the interplanetary medium, and Earth’s atmosphere. Therefore, to understand the Space Weather, we need to understand the mechanisms of solar activity. Towards this end, we use 1135 events of solar Hα flares and the positional data of sunspots from the archive of Solar Geophysical Data (SGD) for the period January–April, 2000 and compute the abnormal rotation rates that lead to high flare productivity. We report that the occurrence of 5 or more flares in a day in association with a given sunspot group can be defined as high flare productivity and the sunspots that have an abnormal rotation rates of ~4–10 deg day?1 trigger high flare productivity. Further, in order to compare the flare productivity expressed as the strength of the flux emitted, especially the soft X-ray (SXR) flares in the frequency range of 1–8 Å, we compute the flare index of SXR flares and find that 8 out of 28 active regions used in this study satisfy the requirement for being flare productive. This enables us to conclude that the high rotation rates of sunspots are an important mechanism to understand the flare productivity, especially numerical flare productivity that includes flares of all class.  相似文献   

13.
In this study, the statistical relationship between sunspots and major flares observed in the descending branch of the 20th and in the ascending branch of the 21st solar cycle is evaluated. It is found that the sunspots which produced these major flares are of the type Dki or Eki with magnetic class D and the largest magnetic field strength between 1600 and 2500 G.  相似文献   

14.
Letfus  V. 《Solar physics》2000,197(1):203-213
The extremely low sunspot activity during the period of the Maunder minimum 1645–1715 was confirmed by group sunspot numbers, a new sunspot index constructed by Hoyt and Schatten (1998a,b). Neither sunspots nor auroral data time behavior indicate the presence of 11-year solar cycles as stated by Eddy (1976). The evidence for solar cycles was found in the butterfly diagram, constructed from observations made at Observatoire de Paris. After Clivier, Boriakoff, and Bounar (1998) the solar cycles were reflected also in geomagnetic activity. Results are supported by the variation of cosmogenic isotopes 10Be and 14C. The majority of the observed 14 naked-eye sunspots occurred on days when telescopic observations were not available. A part of them appeared in the years when no spot was allegedly observed. Two-ribbon flares appear in plages with only very small or no sunspots. Some of these flares are geoactive. Most aurorae (90%), which were observed during the Maunder minimum, appeared in years when no spot was observed. Auroral events as a consequence of proton flares indicate that regions with enhanced magnetic field can occur on the Sun when these regions do not produce any sunspots.  相似文献   

15.
H-alpha flares accompanied by the X-radiation f ?? 10?6 wm?2 in power are examined; 2331 flares were registered during the first half of the 23rd solar cycle (1997?C2000). The specific power of the X-radiation of the flares monotonically doubles from the minimum to the maximum of the sunspot. An increase in the number of flares in each solar rotation is nonmonotonic and disproportional to the relative number of sunspots. Several longitudinal intervals with increased flare activity can be distinguished in the entire time interval of five to ten rotations. The longitudinal distributions of flares and boundaries of the sector structures of a large-scale magnetic field differ considerably. This confirms the existence of two types of zero lines; the first type is determined by active regions, and the second one is determined by large-scale structures with weak magnetic fields. The flares concentrate near Hale??s zero lines of the first type.  相似文献   

16.
This paper considers 3246 solar flares in the line Hα, which were accompanied by X-ray emission with a power f ≥ 5 × 10?6 Wm?2 in the solar cycle 22 (CR1797-CR1864). During 33 rotations, the specific power of X-ray emission of the flares increased monotonically by a factor of 4 from the cycle minimum up to its first maximum. The number of flares in each solar turnover rises non-monotonically and disproportionately to the relative number of sunspots. For the entire interval of time, one can identify several longitudinal intervals with increased flare activity. They exist during 5–10 rotations. The characteristics of the flares for 33 rotations in cycles 22 and 23 (CR1797-CR1961) are compared. It is concluded that the Sun is more active in cycle 22 than in cycle 23.  相似文献   

17.
We study the association of solar flares with coronal mass ejections (CMEs) during the deep, extended solar minimum of 2007?–?2009, using extreme-ultraviolet (EUV) and white-light (coronagraph) images from the Solar Terrestrial Relations Observatory (STEREO). Although all of the fast (v>900 km?s?1), wide (θ>100°) CMEs are associated with a flare that is at least identified in GOES soft X-ray light curves, a majority of flares with relatively high X-ray intensity for the deep solar minimum (e.g. ?1×10?6 W?m?2 or C1) are not associated with CMEs. Intense flares tend to occur in active regions with a strong and complex photospheric magnetic field, but the active regions that produce CME-associated flares tend to be small, including those that have no sunspots and therefore no NOAA active-region numbers. Other factors on scales similar to and larger than active regions seem to exist that contribute to the association of flares with CMEs. We find the possible low coronal signatures of CMEs, namely eruptions, dimmings, EUV waves, and Type III bursts, in 91 %, 74 %, 57 %, and 74 %, respectively, of the 35 flares that we associate with CMEs. None of these observables can fully replace direct observations of CMEs by coronagraphs.  相似文献   

18.
The cyclical behaviors of sunspots,flares and coronal mass ejections(CMEs) for 54 months from 2008 November to 2013 April after the onset of Solar Cycle(SC) 24 are compared,for the first time,with those of SC 23 from 1996 November to 2001 April.The results are summarized below.(i) During the maximum phase,the number of sunspots in SC 24 is significantly smaller than that for SC 23 and the number of flares in SC 24 is comparable to that of SC 23.(ii) The number of CMEs in SC 24 is larger than that in SC 23 and the speed of CMEs in SC 24 is smaller than that of SC 23 during the maximum phase.We individually survey all the CMEs(1647 CMEs) from 2010 June to 2011 June.A total of 161 CMEs associated with solar surface activity events can be identified.About 45%of CMEs are associated with quiescent prominence eruptions,27%of CMEs only with solar flares,19%of CMEs with both active-region prominence eruptions and solar flares,and 9%of CMEs only with active-region prominence eruptions.Comparing the association of the CMEs and their source regions in SC 24 with that in SC 23,we notice that the characteristics of source regions for CMEs during SC 24 may be different from those of SC 23.  相似文献   

19.
The record of flare incidence from January 1969 to October 1988 indicates that the north-south (N-S) distribution of large flares is periodic and approximately in phase with the 11-year sunspot cycle. These data are based on observations of the whole-disk Sun in continuum soft X-rays which commenced in early 1969 and have proceeded without interruption to the present time. The pattern of occurrence, observed for slightly less than two sunspot cycles, is that large flares concentrate in north heliographic latitudes soon after solar minimum and then migrate gradually southward as the cycle progresses. By the end of the cycle, most large flares occur in the south. The degree of N-S asymmetry apparently is a function of the intensity of the flare; the most intense flares show the largest amount of N-S asymmetry. The data suggest that sunspots and flares may be driven by distinctly different excitation mechanisms arising at different levels in the convection zone. This conjecture is supported by recent work of Bai (1987, 1988), who has discovered that the superactive regions producing the majority of flares rotate at a speed substantially different from the Carrington rate, which is based primarily on the observed motion of sunspots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号