首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study characterizes some issues of the Paleozoic and Mesozoic tectonomagmatic evolution of Precambrian structures from the southwestern margin of the Siberian craton. The relationship between the Devonian and Triassic magmatic events is demonstrated from the example of the Severnaya rift-related structure, South Yenisei Ridge. U-Pb SHRIMP dating yielded ages of 387 ± 5 Ma for leucogranites and 240 ± 3 Ma for the overlying alkaline trachytes. These ages show good agreement with Ar-Ar geochronological data (392–387 Ma) obtained for micas from paragneisses and leucogranite dykes of the Yenisei suture zone, the extension of which is superimposed by the studied rift-related structure. The previous geological evidence and the Devonian age estimate first obtained for magmatic rocks of the Yenisei Ridge allow us to interpret the studied leucogranites as products of Devonian continental rifting, similar to volcanic and intrusive rocks of the North Minusa depression and Agul graben. Like other localities within the western margin of Siberian craton, the formation of Triassic alkaline rocks may be related to the Siberian superplume activity.  相似文献   

2.
The geological, geochemical, and isotope-geochronological evidence of the events at the final stage of the Neoproterozoic history of the Yenisei Range is considered (beginning from the formation of fragments of the oceanic crust in the region and their accretion to the Siberian Craton until the postaccretionary stage of crustal tension and onset of the Caledonian orogeny). Based on an analysis of new data on the petrogeochemical composition, age, and geodynamic nature of the formation of contrasting rocks in the composition of tectonic mélange of the Near-Yenisei (Prieniseiskaya) regional shear zone, we have found the chronological sequence of events that marks the early stages of the Paleoasian Ocean evolution in the zone of its junction with the Siberian Craton. These events are documented by the continental marginal, ophiolitic, and island-arc geological complexes, each of which has different geochemical features. The most ancient structures are represented by fragments of oceanic crust and island arcs from the Isakovka terrane (700–620 Ma). The age of glaucophane-schist metamorphic units that formed in the paleosubduction zone corresponds to the time interval of 640–620 Ma. The formation of high-pressure tectonites in the suture zone, about 600 Ma in age, marks the finishing stage of accretion of the Isakovka block to the western margin of the Siberian Craton. The final events in the early history of the Asian Paleoocean were related to the formation of Late Vendian riftogenic amygdaloidal basalts (572 ± 6.5 Ma) and intrusion of postcollisional leucogranites of the Osinovka massif (550–540 Ma), which intruded earlier fragments of the oceanic crust in the Isakovka terrane. These data allow us to refine the Late Precambrian stratigraphic scheme in the northwestern Trans-Angarian part of the Yenisei Range and the evolutionary features of the Sayan–Yenisei accretionary belt. The revealed Late Neoproterozoic landmarks of the evolution of the Isakovka terrane are attributed to the terminal phase of the breakup of Rodinia, separation of the Siberian Craton, and opening of the Paleoasian Ocean.  相似文献   

3.
The formation and evolution conditions for alkaline magmatism and associated igneous rocks in the western framing of the Siberian craton are shown by the example of alkaline and subalkaline intrusive bodies of the Yenisei Ridge. Here we present petrographic, mineralogical, geochemical, and geochronological data for the rocks of the Srednetatarka and Yagodka plutons located within the Tatarka–Ishimba suture zone. Ferroan and metaluminous varieties enriched with rare elements (Nb, Ta, Zr, Hf, and REE) are making up most of the studied rocks. They formed at the stages of fractional crystallization of alkaline magma in a setting of active continental margin in the west of the Siberian craton in the Late Neoproterozoic (710–690 Ma). As differentiates of mantle magmas, these rocks associate with Nb-enriched rocks—A-type leucogranites and carbonatites. Sm/Nd and Rb/Sr isotopic data imply a predominance of the mantle component in the magmatic sources of the mafic and intermediate rocks as well as contamination processes of various volumes of continental crustal material by this magma.  相似文献   

4.
Studies of gneisses from the Yenisei regional shear zone (YRSZ) provide the first evidence for Mesoproterozoic tectonic events in the geologic history of the South Yenisei Ridge and allowed the recognition of several stages of deformation and metamorphism spanning from Late Paleoproterozoic to Vendian. The first stage (~ 1.73 Ga), corresponding to the period of granulite-amphibolite metamorphism at P = 5.9 kbar and T = 635 °C, marks the final amalgamation of the Siberian craton to the Paleo-Mesoproterozoic Nuna supercontinent. During the second stage, corresponding to a hypothesized breakup of Nuna as a result of crustal extension, these rocks underwent Mesoproterozoic dynamic metamorphism (P = 7.4 kbar and T = 660 °C) with three peaks at 1.54, 1.38, and 1.25 Ga and the formation of high-pressure blastomylonite rocks in shear zones. Late-stage deformations during the Mesoproterozoic tectonic activity in the region, related to the Grenville-age collision processes and assembly of Rodinia, took place at 1.17-1.03 Ga. The latest pulse of dynamic metamorphism (615–600 Ma) marks the final stage of the Neoproterozoic evolution of the Yenisei Ridge, which is associated with the accretion of island-arc terranes to the western margin of the Siberian craton. The overall duration of identified tectonothermal processes within the South Yenisei Ridge during the Riphean (~ 650 Ma) is correlated with the duration of geodynamic cycles in the supercontinent evolution. A similar succession and style of tectonothermal events in the history of both the southern and the northern parts of the Yenisei Ridge suggest that they evolved synchronously within a single structure over a prolonged time span (1385–600 Ma). New data on coeavl events identified on the western margin of the Siberian craton contradict the hypothesis of a mantle activity lull (from 1.75 to 0.7 Ga) on the southwestern margins of the Siberian craton during the Precambrian. The synchronous sequence and similar style of tectonic events on the periphery of the large Precambrian Laurentia, Baltica, and Siberia cratons suggest their spatial proximity over a prolonged time span (1550–600 Ma). The above conclusion is consistent with the results of modern paleomagnetic reconstructions suggesting that these cratons represented the cores of Nuna and Rodinia within the above time interval.  相似文献   

5.
In this study, we challenge the multiple collision model for the tectonic evolution of the Neoproterozoic Ribeira Belt in Southeastern Brazil. New U–Pb SHRIMP data reveal Palaeoproterozoic (2153 ± 15 Ma) and Cryogenian (783 ± 6 and 768 ± 8 Ma) granitic rocks in the Embu Domain, and detrital zircon data of metasedimentary units from the Embu and Costeiro domains suggest a coherent tectonic evolution for the whole Ribeira Belt. Rather than by multiple collisions, these data are best explained by a simpler tectonic model involving continent (craton)‐volcanic arc collisions in the Dom Feliciano and Brasilia belts that led to intracontinental crustal thickening of the adjacent thinned hinterland (Ribeira Belt) at ~640–610 Ma, followed by widespread post‐collisional magmatism and rift‐related sedimentation at ~600–540 Ma. We suggest that intracontinental orogeny is a relevant process during supercontinent assembly, as illustrated here by the evolution of significant parts of the Brasiliano orogen.  相似文献   

6.
We report data from the Khadarta, Khoboi, and Orso metamorphic complexes of the Olkhon terrane in the western Baikal region. High-grade rocks in the three complexes may have been derived from active continental margin rocks (island arc–backarc basin system). The backarc basin history possibly began at 840–800 Ma, according to SHRIMP-II U-Pb zircon ages of the Orso gneiss. Many tectonic units in the Olkhon terrane belonged to the active margin of the Barguzin microcontinent which rifted off the Aldan province of the Siberian craton in the early Neoproterozoic. The accretion of the microcontinent to the craton was accompanied by high-grade metamorphism recorded in the Khadarta and Khoboi granulites. The 507 ± 8 Ma and 498 ± 7 Ma SHRIMP-II U-Pb zircon ages of the latter complexes, respectively, may refer to the earliest evolution stage of the Olkhon metamorphic terrane. New data for the Olkhon terrane agree well with the ages of other high-grade complexes along the southern Siberian craton (Slyudyanka, Kitoikin, Derba) and correspond to the initiation of the Central Asian orogen. With these data, the Olkhon metamorphic terrane has been interpreted as an Early Paleozoic collisional collage of fragments of the microcontinent’s Neoproterozoic active margin.  相似文献   

7.
Collisional granitoid magmatism caused by the Early Neoproterozoic orogeny in the west of the Siberian craton is considered. New data on the petrogeochemical composition, U-Pb (SHRIMP II), Ar-Ar, and Sm-Nd isotopic ages of the Middle Tyrada granitoid massif in the northwestern Yenisei Ridge are presented. Plagiogranites, granodiorites, and quartz diorites of the massif are of calcareous and calc-alkalic composition. The elevated alumina contents and presence of accessory garnet permit them to be assigned to S-type granitoids. Their spidergrams show Rb, Ba, and Th enrichment, minimum Nb, P, and Ti contents, and no Sr depletion. The granitoids formed through the melting of plagioclase-enriched graywacke source, obviously Paleoproterozoic metaterrigenous rocks of the Garevka Formation and Teya Group (TNd(DM) = 2.0-2.5 Ga), judging from the isotope composition of the granitoids (TNd(DM-2st) = 2200 Ma and 8Nd(T) = − 6.0) and the presence of ancient zircon cores (1.80-1.85 Ga). Formation of granitoids took place in the final epoch of the Grenville collision events in the late Early Neoproterozoic (U-Pb zircon age is 857.0 ± 9.5 Ma). In the Late Neoproterozoic, the granitoids underwent tectonothermal reworking caused by Vendian accretion and collision events on the southwestern margin of the Siberian craton, which explain the younger K-Ar biotite age, 615.5 ± 6.3 Ma.  相似文献   

8.
The discovery of glaucophane relicts in the high-pressure tectonites of the Yenisei suture zone of the Yenisei Ridge suggests the manifestation of the “Chilean-type” convergent margin on the western Siberian Craton, which was controlled by subduction of oceanic crust beneath the continental margin. These rocks are restricted to the tectonic suture between the craton and the Isakovka ocean-island terrane and experienced two metamorphic stages. Petrogeochemical characteristics of the mafic tectonites indicate that their protoliths are N-MORB and E-MORB basalts. More primitive N-MORB basalts were formed at the initial spreading stages through melting of the upper depleted mantle. Higher Ti basalts were formed by melting of enriched mantle protolith at the later spreading stages. U–Pb zircon age of 701.6 ± 8.4 Ma of the metamorphosed analogues of normal basalts marks the initiation of oceanic crust in the region. Revealed sequence of spreading, subduction (640–620 Ma), and shear deformations (~600 Ma) records the early stages in the evolution of the Paleoasian ocean in its junction zone with the western margin of the Siberian craton: from formation of fragments of oceanic crust to the completion of accretionary–subduction events.  相似文献   

9.
The formation of the western margin of the Siberian craton in the Neoproterozoic is considered, with a focus on its transformation from a passive continental margin into an active one, accretion and collision processes, formation of island arcs and ophiolites, orogeny, and continent-marginal rifting. The evolution and correlation of sedimentary basins within fold-thrust belts of the Siberian Platform framing are considered. New structural and kinematic data on the Yenisei fault zone are discussed. On the basis of paleomagnetic data obtained for the structures in the zone of junction of the Siberian Platform and the West Siberian Plate, new models are proposed for the location of the Siberian craton relative to other paleocontinents and microcontinents in the Neoproterzoic. All these data provide a consistent evolution scheme for the western margin of the Siberian paleocontinent in the Neoproterozoic and constrain the position of the Siberian craton margin in Late Neoproterozoic (pre-Vendian) time.  相似文献   

10.
The mineralogical, petrological, geochemical and geochronological data were used to evaluate the age and petrogenesis of compositionally contrasting metamorphic rocks at the junction between Meso-Neoproterozoic Transangarian structures and Archean-Paleoproterozoic complexes of the Angara–Kan inlier of the Yenisei Ridge. The studied metabasites and metapelites provide clues for understanding the evolution of the region. The magmatic protoliths of low-Ti metabasites were derived by melting of depleted (N-MORB) upper mantle, and their high-Ti counterparts are interpreted to have originated from an enriched mantle source (E-MORB). The petrogeochemical characteristics of protoliths of the metabasite dikes resemble those of within-plate basalts and ocean island tholeiites. The Fe- and Al-rich metapelites are redeposited and metamorphosed products of Precambrian weathering crusts of kaolinite and montmorillonite-chlorite-hydromica compositions. The Р–Т conditions of metamorphism (4.9–5.5 kbar/570–650°С for metabasites; 4.1–7.1 kbar/500–630°С for metapelites) correspond to epidote–amphibolite to amphibolite facies transition. The evolution of the Angara complex occurred in two stages. The early stage (1.18–0.85 Ga) is associated with Grenville tectonics and the late stage is correlated with accretion/collision episodes of the Valhalla orogeny, with the peaks at 810–790 and 730–720 Ma, and the final stage of the Neoproterozoic evolution of the orogen on the southwestern margin of the Siberian craton. The correlation of regional crustal processes with globalscale geological events in the Precambrian evolution of the Earth supports recent paleomagnetic reconstructions that allow a direct, long-lived (1400–600 Ma) spatial and temporal connection between Siberia, Laurentia, and Baltica, which have been parts of ancient supercontinents.  相似文献   

11.
In the late Neoproterozoic a prolonged active continental margin mode dominated the southwestern margin of the Siberian craton. Based on results of geological, petrological-geochemical, U–Th–Pb and Sm–Nd, Rb–Sr isotope investigations, for the first time we established that on the final evolution stage of this margin 576–546 Ma, intrusions of adakites and gabbro-anorthosites of the Zimoveyniy massif were emplaced in the South Yenisei Ridge. These new data indicate genetic relationships of the studied adakites and host NEB-metabasites. The formation of adakites could have been due to a crustal or a mantle-crustal source in a setting of transform sliding of lithospheric plates after the subduction stopped.  相似文献   

12.
Late Vendian (540–550 Ma) U–Pb age was established for zircon from postcollisional granites of the Osinovsky Massif located among island-arc complexes of the Isakovka terrane in the northwestern Sayan–Yenisei accretionary belt. The granites were formed 150 Ma after the formation of the host island-arc complexes and 50–60 Ma after the beginning of their accretion to the Siberian Craton. These events mark the final stage of the Neoproterozoic history of the Yenisei Ridge related to the end of accretion of oceanic fragments and the beginning of the Caledonian Orogeny. The granites are subalkaline leucoractic Na–K rocks enriched in Rb, U, and Th. The petrogeochemical and Sm–Nd isotope data (TNd(DM)-2st = 1490–1650 Ma and εNd(T) from–2.5 to–4.4) indicate that their source was highly differentiated continental crust of the SW margin of the Siberian Craton. Therefore, the host Late Riphean island-arc complexes were thrust over the craton margin for distance significantly exceeding the size of the Osinovsky Massif.  相似文献   

13.
This paper presents the results of geochemical, isotopic (Sm-Nd), and geochronological (U-Pb and Ar-Ar) investigations of leucogranites from the Garevka massif in the Transangara segment of the Yenisey Ridge. The most distinctive geochemical characteristics of these A-type granitoids are the enrichment in silica, potassium, iron, and fluorine and a considerable depletion in europium. Using U-Pb zircon geochronology, the age of the Garevka leucogranites was estimated as 752 ± 3 Ma, which allowed us to attribute them to a previously established Neoproterozoic tectonic event related to the collision of the Central Angara terrane and the Siberian craton. The parental melts of the granitoids were probably derived by melting of a mixed source composed of continental crustal rocks of Paleoproterozoic and Mesoproterozoic and (or) Neoproterozoic ages. Based on the obtained petrological, geochemical, and geochronological data, the leucogranites of the Garevka massif were assigned to the Neoproterozoic postcollisional Glushikha complex.  相似文献   

14.
We studied geology and main rock assemblages of the Precambrian Kan, Arzybei, and Derba terranes of the Central Asian Fold Belt which border the Siberian craton in the southwest. The Precambrian terranes include three isotopic provinces (Paleoproterozoic, Mesoproterozoic, and Neoproterozoic) distinguished from the Sm-Nd isotope compositions of granitoids, felsic metavolcanics, and metasediments. The terranes formed in three stages of crustal evolution: 2.3–2.5, 0.9–1.1, and 0.8–0.9 Ga. Proterozoic juvenile crust was produced by subduction-related magmatism; it was originally of transitional composition and transformed into continental crust by potassic plutonism as late as the Late Vendian-Cambrian. Terrigenous sediments in the Arzybei and Derba terranes vary in T(DM) Nd model ages from 1.0 to 2.0 Ga. The Nd ages of the underlying metavolcanics and lowest T(DM) of metasediments indicate that terrigenous sedimentation started in the Neoproterozoic. It was maintained by erosion of Mesoproterozoic-Neoproterozoic crust and, to a lesser extent, of Early Precambrian rocks on the craton margin or in Paleoproterozoic terranes. Ar-Ar dating of amphiboles and biotites from metamorphic rocks and U-Pb dating of zircons from granitoids yielded 600–555 and 500–440 Ma, respectively, corresponding to the Vendian and Early Paleozoic stages of nearly synchronous metamorphism and plutonism. Accretion and collision events caused amalgamation of the Paleoproterozoic, Mesoproterozoic, and Neoproterozoic terranes in the Vendian and their collision with the Siberian craton. The lateral growth of the paleocontinent completed in the Late Ordovician.  相似文献   

15.
邱啸飞 《地质学报》2022,96(11):3784-3798
扬子克拉通前泥盆纪地壳演化过程一直是地学界研究的热点。本文报道了扬子克拉通北部武汉地区玉笋山剖面的志留系坟头组和泥盆系云台观组碎屑沉积岩中锆石U- Pb年龄和Hf同位素组成。结果表明,武汉地区坟头组和云台观组样品中最年轻的碎屑锆石年龄分别为430±5 Ma和415±5 Ma,将该地区坟头组和云台观组的沉积时代各限定在中志留世和晚泥盆世。碎屑锆石Hf同位素特点表明,沉积物源区在中太古代、新太古代以及新元古代形成了少量初生地壳,而古老地壳的再造主要发生在新太古代、新元古代和古生代,区域上最显著的初生地壳生长时期则是古元古代。综合对比扬子克拉通北部东、西两侧具有明显不同的锆石U- Pb年龄、微量元素和Hf同位素组成,暗示扬子克拉通可能由多个相对独立地壳演化过程的部分构成,而不具有统一的早前寒武纪基底。  相似文献   

16.
A study of gneisses and schists from the Yenisey regional shear zone (Garevka complex) at the western margin of the Siberian Craton has provided important constraints on the tectonothermal events and geodynamic processes in the Yenisey Ridge during the Riphean. In situ U-Th-Pb geochronology of monazite and xenotime from different garnet growth zones and the calculation of P-T path derived from chemical zoning pattern in garnet were used to distinguish three metamorphic events with different ages, thermodynamic regimes and metamorphic field gradients. The first stage occurred as a result of the Grenville orogeny during late Meso-early Neoproterozoic (1050–850 Ma) and was marked by low-pressure zoned metamorphism at ~4.8–5.0 kbar and 565–580°C and a metamorphic field gradient with dT/dH = 20–30°C/km typical of orogenic belts. At the second stage, the rocks experienced Late Riphean (801–793 Ma) collision-related medium-pressure metamorphism at ~7.7–7.9 kbar and 630°C with dT/dH ≤ 10°C/km. The final stage evolved as a syn-exhumation retrograde metamorphism (785–776 Ma) at ~4.8–5.4 kbar and 500°C with dT/dH ≤ 12°C/km and recorded a relatively fast uplift of the rocks to upper crustal levels in shear zones. The range of exhumation rates at the post-collisional stage (500–700 m/Ma) correlates with the duration of exhumation and the results of thermophysical numerical modeling of metamorphic rocks within orogenic belts. The final stages of collisional orogeny are marked by the development of rift-related bimodal dyke swarms associated with Neoproterozoic extension (797 ± 11 and 7.91 ± 6 Ma; U-Pb SHRIMP II zircon data) along the western margin of the Siberian craton and the beginning of the breakup of Rodinia. Post-Grenville metamorphic episodes of regional evolution are correlated with the synchronous succession and similar style of the later tectono-metamorphic events within the Valhalla orogen along the Arctic margin of Rodinia and support the spatial proximity of Siberia and North Atlantic cratons at about 800 Ma, as indicated by the latest paleomagnetic reconstructions.  相似文献   

17.
《International Geology Review》2012,54(11):1370-1390
ABSTRACT

To better understand the Neoproterozoic tectonic evolution along the northern margin of Yangtze Block, we have determined the geochronological and geochemical compositions of newly recognized bimodal volcanic suite and coeval granites from the western Dabie terrain. LA-ICP-MS zircon U-Pb dating reveals that the felsic and mafic volcanics from the Hong’an unit have crystallization ages of 730 ± 4Ma and 735 ± 5Ma, respectively, indicating that the bimodal suite was erupted during the Neoproterozoic. The Xuantan, Xiaoluoshan, and Wuchenhe granites yield U-Pb ages of 742 ± 4 Ma, 738 ± 4 Ma, and 736 ± 4 Ma, respectively. The felsic volcanic rocks show peraluminous characteristics, and have a close affinity to S-type granite. The mafic volcanic rocks are basalt in compositions, and are likely generated from a depleted mantle source. The granites belong to high-K calc-alkaline and calc-alkaline series, display metaluminous to peraluminous, and are mainly highly fractionated I-type and A-type granite. The granites and felsic volcanics have zircon εHf(t) values of ?16.4 to + 5.6 and two-stage Hf model ages (TDM2) of 1.28 to 2.40 Ga, suggesting that they were partial melting of varying Mesoproterozoic–early-Neoproterozoic crust. The granites have εNd(t) of -14.7 to -1.5, and the two-stage Nd model ages (TDM2) values of 1.54 to 2.61 Ga, also implying the Yangtze crustal contribution. These Neoproterozoic bimodal suite and coeval granites were most likely generated in a rifting extensional setting, triggered by the mantle upwelling, associated with crust–mantle interaction. Intensive magmatic rocks are widespread throughout the South Qingling, Suizhao, western Dabie and eastern Dabie areas during 810–720 Ma, and show peak ages at ~ 740 Ma. Combining regional geology, we support a continental rifting extensional setting for the north margin of the Yangtze Block during the break-up of the supercontinent Rodinia.  相似文献   

18.
Neoproterozoic carbonatites and related igneous rocks, including A-type granites in the Tatarka-Ishimba suture zone of the Yenisey Ridge are confined to a horst-anticlinal structure that was formed in a transpression setting during the oblique collision between the Central Angara terrane and the Siberian craton. The carbonatites, associating mafic (including alkaline) dikes as well as the Srednetatarka nepheline syenites are the oldest igneous formations of the Tatarka active continental margin complex. Geochronological data indicate that magmatic evolution continued in the studied anticline for nearly 100 m.y. On the earliest stage carbonatites were formed and on the last stage — the emplacement of mantle-crustal A-type Tatarka granites took place. According to new U/Pb zircon studies, the earliest rocks in the Tatarka pluton are A-type leucogranites aged 646 ± 8 Ma. The younger 40Ar/39Ar ages of carbonatites obtained for phlogopites (647 ± 7 and 629 ± 6 Ma) are related to the last tectonic events in the studied region of the Tatarka-Ishimba suture zone, which are coeval with the formation of the A-type granitoids (646–629 Ma).  相似文献   

19.
The variable P-T metamorphic conditions studied in the Fe-Al metapelites of the Karpinskii Range Formation are regarded as typical of collision-related metamorphism in the trans-Angara part of the Yenisei Range. Recently obtained geochronologic (SHRIMP-II U-Pb zircon dating) and geochemical data on the distribution of major and trace elements are used to reproduce the composition of the protolith, the facies conditions under which it was formed, the tectonic setting, and the age of the eroded rocks. The metapelites are determined to be redeposited and metamorphosed material of Precambrian kaolinite-type weathering crusts of predominantly kaolinite-illite-montmorillonite-quartz composition. The protolith of the rocks was formed via the erosion of Lower Proterozoic granite-gneiss complexes of the Siberian craton (dated mainly within the range of 1962–2043 Ma) and the subsequent accumulation of this material in a continent-marginal shallow-water basin in a humid climate and tectonically calm environment. These results are consistent with data of lithologic-facies analysis and geodynamic reconstructions of the Precambrian evolution of geological complexes in the Yenisei Range. Mass-transfer analysis with the use of the evaluated rock compositions and calculated chemical reactions indicates that the differences in the REE patterns of metapelites from distinct zones can be explained mostly by the chemical heterogeneity of the protolithic material and, to a lesser extent, by metamorphic reactions at a pressure increase.  相似文献   

20.
The Yusishan deposit is a newly found leptynite-type niobium and tantalum (Nb-Ta) deposit, which is located in the Eastern Altun of Gansu Province. The leptynite of the Neoproterozoic Aoyougou Formation occurs more than 10 km long and 3 km wide. In this paper, we carried out a detailed study of the leptynite and related mineralization. The U-Pb dating of zircon reveals ages of 831 ± 5 Ma and 790 ± 5 Ma for the unmineralized leptynite and 491 ± 4 Ma and 455 ± 4 Ma for the mineralized leptynite. The petrographic and geochemical evidence identified the protolith of the leptynite as alkaline volcanic rocks that erupted during Neoproterozoic at ca. 830 Ma. At ca. 490 Ma, the tectono-magmatic and metamorphic event triggered remobilization and enrichment of Nb-Ta as well as other critical metals (REE, Zr, Hf etc) with the formation of industry orebodies in the leptynite strata. The Yushishan deposit presents many similarities with the alkaline volcanic rocks related rare metal deposits in the south Qinling of China and the Brochman, Toogni and Southern Peak Range deposits in Australian. We therefore propose that the Yushishan deposit is a new type (sub-type) of Nb-Ta deposit and termed as leptynite type that represents the metamorphic counterpart of the alkaline volcanic rocks related rare metal deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号