首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the chemical composition of rock-forming minerals in gabbroids from the Chirii outcrop and the evolutionary features of parental basic melt during the crystallization of these rocks. Results were compared with data for basanites from pipes of the North Minusa depression. The mineralogical composition and thermobarogeochemical data of the gabbroids were examined in detail, and chemical analyses of rock-forming minerals (clinopyroxene, plagioclase, amphibole, biotite, titanomagnetite, and apatite) were carried out. Based on the homogenization temperatures of primary melt inclusions, we established the minimum temperatures and sequence of mineral crystallization in the gabbroids: clinopyroxene (>1160 °C), plagioclase, magnetite → amphibole (>950 °C) → biotite. The rock crystallization proceeded at shallow depths. Thermometric data are confirmed by results of modeling of equilibrium gabbroid crystallization. The crystallization of parental basic melt was accompanied by the accumulation of SiO2, Al2O3, alkalies, and Cl and depletion in femic components. The melt evolved to granodiorite and alkali-syenite compositions. Compared with basanites from pipes, the parental melt had a longer evolution. The geochemical features of the gabbroids indicate that they, like basanites, crystallized from intraplate alkali-basaltoid magmas. But in petrochemistry and mineralogy the Chirii gabbroids differ considerably from the pipe basanites.  相似文献   

2.
The paper presents data on the major-component, trace-element, and mineralogical composition of plutonic rocks, and the composition of their minerals, from the Sierra Leone region in the crest zone of the Mid-Atlantic Ridge between the Strakhov and Bogdanov fracture zones. According to their relations with seafloor structures, the rock associations are subdivided into those of rift valleys and nontransform offset zones. The troctolites and olivine gabbro composing the rift association were produced early in the fractionation course of oceanic tholeiite melt in unstationary and relatively small magmatic chambers. Most rocks beneath the nontransform offset zones crystallized during the long-lasting fractionation of the melt in large chambers hosted in serpentinized peridotites. This part consists of various cumulates, ranging from troctolites to gabbroids. Where deep tectonic detachments entered partly consolidated portions of the chambers, the melt interacted with the wall rocks. Fluid that was generated via the dehydration of serpentine and concentrated hydrophile elements, locally modified the composition of the melt and resulted in amphibole-bearing rocks. Under stress, the intercumulus melts were squeezed into tectonically weakened zones, mixed there, and also interacted with the wall rocks. These mix melts produced (with the participation of fractional crystallization) mineralized Fe-Ti gabbroids. Residual portions of the melts generated most of the diorites and plagiogranites. The high-Na diorites likely crystallized from acid melts that were derived via the partial melting of older gabbroids where aqueous fluids circulated; these fluids were generated by the deserpenitization of the host rocks in tectonized zones cutting through the chambers.  相似文献   

3.
Forms of occurrence of platinum (sperrilite, moncheite) and palladium (Sb-michenerite, Pd–Bi phase) minerals in intrusive rocks of the Khudolaz differentiated complex have been studied. Platinum minerals were identified in disseminated Cu–Ni sulfide ores from ultramafic olivine–hornblende rocks of the Khudolaz complex, whereas palladium minerals were found in ores from olivine–hornblende gabbroids. The structural arrangement of grains as inclusions in sulfides of the primary magmatic association testifies that they were formed as a result of segregation of platinum group elements, which partitioned into the composition of sulfides during low-temperature mineral formation process at the late-magmatic stage.  相似文献   

4.
The olivine shonkinites localized among dunites and alkali gabbroids in the northern part of the alkaline ultrabasic Inagli massif (northwestern part of Central Aldan) have been studied. The obtained data on the chemical and trace-element compositions of the rocks and minerals and the results of melt inclusion study showed that the olivine shonkinites crystallized from alkaline basanite melt enriched in Cl, S, CO2, and trace elements. Clinopyroxene crystallized at 1180-1200 °C from a homogeneous silicate-salt melt, which was probably separated into immiscible silicate and carbonate-salt fractions with temperature decreasing. The composition of the silicate fraction evolved from alkaline basanite to alkaline trachyte. The carbonate-salt fraction had an alkaline carbonate composition and was enriched in S and Cl. The same trend of evolution of clinopyroxene-hosted melts and the igneous rocks of the Inagli massif suggests that the alkali gabbroids, melanocratic alkali syenites, and pulaskites formed from the same magma, which had a near-alkaline basanite composition during its crystallization differentiation. The geochemical studies showed that the olivine shonkinites and glasses of homogenized melt inclusions in clinopyroxene grains have similar contents of trace elements, one or two orders of magnitude higher than those in the primitive mantle. The high contents of LILE (K, Rb, and Sr) and LREE in the olivine shoshonites and homogenized inclusions suggest the enriched mantle source, and the negative anomalies of HFSE and Ti are a specific feature of igneous rocks formed with the participation of crustal material. The slight depletion in HREE relative to LREE and the high (La/Yb)n ratios in the rocks and inclusion glasses (10.0-11.4 and 4.7-6.2, respectively) suggest the presence of garnet in the mantle source.  相似文献   

5.
The U–Pb (SHRIMP) dating of zircon from the layered complex of ophiolitic gabbro in the Klyuchevsk massif yielded an age of 456 ± 6 Ma corresponding within the limits of error to zircon dates obtained for other petrographic varieties from this massif. The investigation of the composition of silicate inclusions in dated zircon grains revealed that they are represented by typical metamorphic minerals: albite, zoisite, and secondary amphiboles. The data indicate that zircon was crystallized during metamorphic transformations of gabbroids and its U–Pb age (Late Ordovician–Silurian) is characteristic of all rocks in the ophiolite association of the Klyuchevsk massif indicating the age of metamorphism, not their formation time.  相似文献   

6.
The paper presents characteristics of the Nd and Sr isotopic systems of ultrabasic rocks, gabbroids, plagiogranites, and their minerals and data on He and hydrocarbons in fluid inclusions in the same samples. The materials presented in this publication were obtained by studying samples dredged from the MAR crest zone at 5°–6° N (U/Pb zircon dating, geochemical and petrological-mineralogical studies). It was demonstrated that the variations in the isotopic composition of He entrapped in the rocks and minerals were controlled by variable degrees of mixing of juvenile He, which is typical of basaltic glass of MAR (DM source) and atmospheric He. An increase in the fraction of atmospheric He in the plutonic rocks and, to a lesser degree, in their minerals reflects the involvement of seawater or the hydrated material of the oceanic crust in the magmatic and postmagmatic processes. This conclusion finds further support in a positive correlation between the fraction of mantle He (R) and the 87Sr/86Sr ratio. The high-temperature hydration of ultrabasic rocks (amphibolization) was associated with an increase in the fraction of mantle He, while their low-temperature hydration (serpentinization) was accompanied by a drastic decrease in this fraction and a significant increase in the 87Sr/86Sr ratio. The insignificant variations in the 143Nd/144Nd (close to 0.5130) and 87Sr/86Sr (0.7035) in most of the gabbroids and plagiogranites, as well as the fraction of mantle He in these rocks, amphibolites, and their ore minerals, indicate that the melts were derived from the depleted mantle. Similar?Nd values of the gabbroids, plagiogranites, and fresh harzburgites (6.77–8.39) suggest that these rocks were genetically related to a single mantle source. The value of ?Nd = 2.62 of the serpentinized lherzolites likely reflects relations of these relatively weakly depleted mantle residues to another source. The aforementioned characteristics of the rocks generally reflect the various degrees of mixing of components of the depleted mantle with crustal components (seawater) during the metamorphic and hydrothermal processes that accompanied the formation of the oceanic crust.  相似文献   

7.
8.
Abstract. Isotope composition of whole rock sulfur has been measured on 14 schists, 10 gneisses, 7 gabbroids, 7 granitoids and 2 sedimentary rocks, with of 9 sulfide (pyrite) sulfurs in gabbros and granitoids, from the southwestern part of the Ryeongnam Massif, Korea. The δ34S values of schists range from -4.6 to +6.1 % (average +0.9 %), those of gneisses from -4.0 to +0.8 % (-1.9%), those of gabbroids from -2.3 to +3.7 % (+1.0 %), and those of granitoids from -5.9 to +3.2 % (-1.9 %). The δ34S values of pyrite separated from gabbros and granitoids show rather heavier values ranging from +3.1 to +9.4 % with an average of+5.8%.
Though the δ34S values of whole rock sulfur give wide range of -5.9 to +6.1 %, the average of about -0.5 % is close to the mantle value. The granitoids sampled at the central parts of intrusive bodies or at the contacts with other plutonic rocks tend to show positive values, while those sampled near the boundary with basement rocks such as granitic gneiss and por-phyroblastic gneiss show negative values. Though the reason of this tendency is not clear at present, the δ34S values of some granitoids in this area seem to represent possible influence by the assimilation of country rocks, particularly of gneisses.
Average isotopic compositions of ore sulfur from individual metal deposits in the studied area are summarized to have a range of+1.0 to +7.8 % with an average value of+3.2 %. The values are consistent with the previous finding that the ore sulfur isotopic values of the Ryeongnam Massif are the lowest among the four tectonic belts in Korea; Gyeonggi Massif, Ogcheon Belt, Ryeongnam Massif, and Gyeongsang Basin. This feature may reflect the isotopic compositions of plutonic rocks and basements in this area, which are characterized by relatively low values around zero permil.  相似文献   

9.
Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz‐adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein‐centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10?3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27–0.06 × 10?3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10?3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks.  相似文献   

10.
This paper reports the results of Rb-Sr, 40Ar-39Ar, and U-Pb geochronological investigations for igneous and metamorphic rocks from the regions of the Oshurkovo basic massif. It was shown that the gabbro-syenite-granite complex that was formed there is similar to the bimodal basalt-rhyolite series of volcanic associations. Three major stages of magmatic activity were recognized: syenite-granite (132–127 Ma), basic (126–117 Ma), and granite (121–112 Ma). The silicic igneous rocks were formed owing to anatexis under the influence of heat released from the parent chamber of alkaline gabbroids.  相似文献   

11.
Seven spinel-group minerals in various geological settings have been revealed in the rocks of the Khibiny pluton. Hercynite, gahnite, and vuorelainenite occur only in xenoliths of hornfels after volcanic and sedimentary rocks, whereas spinel and magnesiochromite occur in alkaline ultramafic rocks of dike series. Franklinite has been discovered in a low-temperature hydrothermal vein. Ubiquitous magnetite is abundant in foyaite, foidolites, alkaline ultrabasic rocks, and pegmatite and hydrothermal veins and may even be the main mineral in some foidolite varieties. The spinel-group minerals are characterized by various chemical compositions due to the fractionation of nepheline syenites resulting in formation of the Main ring of foidolites and apatite-nepheline ore. Like most other minerals found throughout the pluton, magnetite is characterized by variation in the chemical composition along the radial line from the contact with country Proterozoic volcanic rocks to the geometric center of the pluton. Toward the center, the total Ti and Mn contents in magnetite increase from 5–15 up to 40 at %.  相似文献   

12.
Seven pyroxene varieties were identified in nepheline syenites and foidolites of the Khibiny pluton: enstatite, ferrosilite, diopside, hedenbergite, augite, aegirine-augite, and aegirine. Enstatite and augite are typical of alkaline and ultramafic rocks of dike series. Ferrosilite was found in country quartzitic hornfels. Diopside is a rock-forming mineral in alkaline and ultramafic rocks, alkali gabbroids, hornfels in xenoliths of volcanic and sedimentary rocks and foyaite, melteigite-urtite that assimilate them, and certain hydrothermal pegmatite veins. Hedenbergite was noted in hornfels from xenoliths of volcanic and sedimentary rocks and in a hydrothermal pegmatite vein at Mount Eveslogchorr. Aegirine-augite is the predominant pyroxene in all types of nepheline syenites, phonolites and tinguaites, foidolites, alkaline and ultramafic rocks of dike series, fenitized wall rocks surrounding the pluton, and xenoliths of Devonian volcanic and sedimentary rocks. Aegirine is an abundant primary or, more often, secondary mineral in nepheline syenites, foidolites, and hydrothermal pegmatite veins. It occurs as separate crystals, outer zones of diopside and aegirine-augite crystals, and homoaxial pseudomorphs after Na-Ca amphiboles. Microprobe analyses of 265 pyroxenes samples allowed us to distinguish ten principal trends of isomorphic replacement and corresponding typomorphic features of pyroxenes. Compositional variations in clinopyroxenes along the sampled 35-km profile from the margin of the Khibiny pluton to its center confirm the symmetric zoning of the foyaite pluton relative to semicircular faults of the Minor Arc and the Main (Central) Ring marked by Devonian volcanic and sedimentary rocks, foidolites, and related metasomatic rocks (rischorrite, albitite, and aegirinite). Changes in the composition of pyroxenes are explained mainly by the redistribution of elements between coexisting minerals of foyaites in the process of their intense differentiation under the effect of foidolite melts that have intruded into the circular fault zones.  相似文献   

13.
The problem of heterogeneity of the mantle lithosphere of the southwestern portion of the Siberian Platform has been considered, and the diamond content in potential mother lodes within this area has been estimated based on original geochemical data on the rare-element composition of pyropes from diamondiferous lamproites of the Ingashin field within the Prisayan region and ancient dispersion haloes of minerals accompanying diamonds in the area between the Angara and Uda rivers. Pyropes from lamproites are characterized by low concentrations of Zr (0.18–9.05 ppm), Hf (0.03–0.37 ppm), and rare earth elements (Sm 0.04–0.49, Eu 0.02–0.16, and Dy 0.05–0.96 ppm). Pyropes from the Lower Carboniferous Baeron Formation within the Tangui-Chuksha area are significantly different from pyropes of the Ingashin lamproites in high contents of Zr (30.36–139.23 ppm) and Hf (0.4–2.22 ppm). These pyropes are characterized by elevated concentrations of rare earth elements (Sm 1.34–3.68, Eu 0.53–1.17, and Dy 1.0–2.05 ppm). The distribution patterns of rare incompatible elements in pyropes of the Lower Carboniferous Mura massif within the Mura area manifest even stronger differences with pyropes of the Ingashin lamproites and in many respects with pyropes from Lower Carboniferous sediments of the Baeron Formation within the Tangui-Chuksha area. The results obtained indicate that there is no large-scale regional spreading of pyropes from Mid-Riphean lamproite bodies in the course of washout of these bodies and that the mantle lithosphere in the southwestern portion of the Siberian Platform is laterally heterogeneous in mineralogical-geochemical terms. The chemical composition and the peculiar distribution pattern of rare elements in pyropes from lamproites of the Prisayan region indicate a depleted, primarily lherzolite composition of the upper mantle that was transformed through low-temperature potassium metasomatosis. In terms of the chemical and rare-element compositions, pyropes from Lower Carboniferous sediments of the Tangui-Chuksha and Mura areas belong to a wider range of mantle rocks: depleted peridotites, metasomatic peridotites under low (900–1000°C) and high (>1000°C) temperature conditions, and megacrysts. This suggests that the composition of the lithospheric mantle in this area of the southern portion of the Siberian Platform is characterized by a considerably differentiated stratification of mantle rocks, some of which were credibly formed in the diamond stability field.  相似文献   

14.
Complex mineralogical, geochemical, and geochronological studies of the gabbroids from the Dzhigdinskii Massif located in the western part of the Dzhugdzhur–Stanovoy Superterrane are performed. It is established that the age of the rocks from the Dzhigdinskii Massif is Middle Triassic (244 ± 5 Ma), rather than Early Archean, as was previously assumed. The age of the Dzhigdinskii Massif is close to the age of the formation of the other Triassic gabbroid massifs, such as the Amnunaktinskii (~240 Ma), Lukindinskii (~250 Ma), and Luchinskii (~248 Ma) in the southeastern environ of the North Asian Craton. One of the stages in the formation of the Selenga–Vitim volcanoplutonic belt falls in this period as well. This indicates that the Selenga–Vitim volcanoplutonic belt, along with the granitoids and volcanic rocks, is composed of ultrabasic–basic and basic massifs and that this belt is superposed on the structures of the Selenga–Stanovoy Superterrane, as well as on the western part of the Dzhugdzhur–Stanovoy Superterrane. The gabbro, gabbro–diorite, and series of gabbro and gabbro–diorite with high sodic alkalinity from the Dzhigdinskii Massif show obvious geochemical features of duality, including combination of intraplate and super-subduction origin. In this relation, we can assume that the origin of the gabbroids of the Dzhigdinskii Massif is related to the detachment of the oceanic lithosphere and its subduction into the mantle with the formation of an “asthenospheric window.”  相似文献   

15.
Despite the exposures of Precambrian and Paleozoic rocks and the accretionary tectonic history of the northern Pacific (northeastern Asia, Alaska, and Kamchatka), it is likely that a considerable portion of the lower crust of the continental margins is much younger and was generated by Cretaceous postaccretion magmatic events. Data on xenoliths suggest that Late Cretaceous and Paleocene mafic intrusions and cumulates of calc-alkaline magmas may become more important with increasing depth. This conclusion is based on the petrological and geochronological investigation of lower-middle crustal xenoliths borne by mantlederived alkali basalt lavas and U-Pb dating of zircon cores from the igneous rocks of the region. We studied deep mafic xenoliths of granulites and gabbroids (accounting for <2% of the general xenolith population) from the Late Neogene alkali basalt lavas of the Enmelen and Viliga volcanic fields (Russia) and the Imuruk volcanic field in the Seward Peninsula, St. Lawrence Island, and Nunivak Island (Alaska). Depleted MORB-like varieties and relatively enriched in radiogenic isotopes and LREE rocks were distinguished among plagioclase-bearing xenoliths. The most representative collection of Enmelen xenoliths was subdivided into three groups: LREE enriched charnockitoids and mafic melts, pyroxene-plagioclase cumulates with a positive Eu anomaly, and LREE depleted garnet gabbroids. Mineral thermobarometry and calculated seismic velocities (P = 5–12 kbar, T = 740–1100°C, and V p = 7.1 ± 0.3 km/s) suggest that the xenoliths were transported from the lower and middle crust, and the rocks show evidence for their formation through the magmatic fractionation of calc-alkaline magmas and subsequent granulite-facies metamorphism. The U-Pb age of zircon from the xenoliths ranges from the Cretaceous to Paleocene, clustering mainly within 107–56 Ma (147 crystals from 17 samples were dated). The zircon dates were interpreted as reflecting the magmatic and metamorphic stages of the growth and modification of the regional crust. The distribution of the obtained age estimates corresponds to the main magmatic pulses in two largest magmatic belts of the region, Okhotsk-Chukchi and Anadyr-Bristol. The absence of older inherited domains in zircons from both the xenoliths and igneous rocks of the regions is a strong argument in favor of the idea on the injection of juvenile material and underplating of calc-alkaline magmas in the lower crust during that time interval. This conclusion is supported by isotope geochemical data: the Sr, Nd, and Pb isotope ratios of the rocks and xenolith minerals show mantle signatures (87Sr/86Sr = 0.7040–0.70463, 143Nd/144Nd = 0.51252–0.51289, 206Pb/204Pb = 18.32–18.69) corresponding to an OIB source and are in general similar to those of the Cretaceous calc-alkaline basalts and andesites from continental-margin suprasubduction volcanoplutonic belts. Xenoliths from Nunivak Island and Cape Navarin show more depleted (MORB-like) geochemical and isotopic characteristics, which indicates variations in the composition of the lower crust near the southern boundary of the Bering Sea shelf.  相似文献   

16.
The Chineiskii anorthosite-gabbronorite massif is the most typical layered intrusion in Russia, which is accompanied by large V and Cu deposits. This massif is first considered to be a component of the Proterozoic volcanic-plutonic system of the Kodar-Udokan district, whose largest massifs are Chineiskii and Lukturskii. This system also comprises numerous dikes (including the Main gabbronorite dike at the Udokan deposit, whose thickness reaches 200 m), which are likely the magmatic feeders of ancient volcanism. An intermediate position in the vertical section of the magmatic system is occupied by gabbroids, whose exposures occur in the peripheral part of the Lurbunskii granite massif. The intrusive rocks were proved to be genetically interrelated and show certain similar geochemical features: they bear elevated TiO2 concentrations and have similar trace element patterns and (La/Sm)N and (Gd/Yb)N ratios (1.5–2.3 and 1.87–2.06, respectively). The Chineiskii Massif is thought to have been formed by the successive emplacement of genetically similar basic magmas, which produced four rock groups with fine and coarse layering and cyclicity of variable rank (microrhythms, rhythms, units, and series). The results of cluster analysis indicate that the rocks can be classified into 13 petrochemical types. The phase and chemical characteristics of the parental melts of these compositions were simulated with the use of the COMAGMAT-3.5 computer model, which was also applied to evaluate the composition of the most primitive initial magma of the whole Chineiskii Massif. Our results indicate that the primitive magma was heterogeneous (olivine + plagioclase ± titanomagnetite + melt) at a temperature of approximately 1130°C. The initial melt had a ferrobasaltic composition and was close to saturation with magnetite at ~NNO ± 0.5  相似文献   

17.
Comprehensive data on the chemical composition of reservoir rocks and geothermal brines from the geothermal well doublet Groβ Schönebeck (North German Basin) drilled into a Rotliegend sedimentary and Permo-Carboniferous volcanic rock reservoir were sampled over the past years. They were characterized with respect to their major and minor elemental composition including various isotope ratios. The study considered the impact of drilling and reservoir operations on fluid composition and aimed at determining fluid–rock interactions to gain information on fluid origin and hydraulic pathways.The highly saline fluids (up to 265 g/L TDS) show δ 18O and δD of water (2.7–5.6 and −3.1–15, respectively) as well as δ 34S of sulfate (3.6–5), and 87Sr/86Sr ratios (0.715–0.716) that resemble Rotliegend brines from an area located around 200 km in the west (the Altmark). Halogen ratios indicated that brines developed predominantly by evaporation of meteoric water (primary brine) together with halite dissolution brine (secondary brine). Indication for mixing with Zechstein brine or with younger meteoric water was not found.No geochemical distinction was possible between fluids deriving from different rock formations (dacites or sedimentary rocks, respectively). This is due to the evolution of the sediments from the effusive rocks resulting in a similar mineralogical and chemical composition and due to a hydraulic connectivity between the two types of rock. This connection existed probably already before reservoir stimulation as indicated by a set of faults identified in the area that could connect the Rotliegend formation with both, the volcanic rocks and the lower units of the Zechstein. Additional geochemical indication for a hydraulic connectivity is given by (1) the very high heavy metal contents (mainly Cu and Pb) in fluids and scaling that derive from the volcanic rocks and were that were also found in increased amounts up at the Zechstein border (Kupferschiefer formation). (2) The 87Sr/86Sr isotope ratios of fluid samples correspond to the ratios determined for the sedimentary rocks indicating that initially the fluids developed in the sedimentary rocks and circulated later, when faults structures were created by tectonic events into the volcanic rocks.  相似文献   

18.
The interior structure and geochemistry of ultrabasic rocks and gabbroids of the Talovskii massif have been considered. Types of gabbroids that are impoverished and enriched in light REE are recognized. Accessory chrome-spinelides of ultrabasic rocks are enriched in trivalent iron and impoverished in aluminum, making this complex more similar to platinum-bearing massifs. The occurrence of a unite-harzburgite association and numerous injections of wehrlite-clinopyroxenite-gabbro in a single section of restites are due to their formation above a subduction zone.  相似文献   

19.
This paper reports the results of detailed petrological-geochemical study of zircons and host rocks that were dredged from the Markov Deep area in the slow-spreading Mid-Atlantic ridge. The rocks are represented by variably cataclased gabbronorite with veinlets of oceanic plagiogranite (OPG) as well as leucocratic gabbro (primitive gabbro) and hornblende Fe-Ti oxide gabbronorite (ferrogabbro) without OPG. The studied zircons differ in morphology, inner structure, set of mineral inclusions (ingrowths), and content of trace elements. Compositional heterogeneity is also observed within individual grains. The REE distribution patterns in zircons are characterized by gentle growth from LREE to HREE, with prominent positive Ce anomaly and negative Eu anomaly, and in general fall in the range of zircons from magmatic rocks. Oceanic zircons clearly differ from continental populations in the U/Yb-Y and U/Yb-Hf discrimination diagrams, primarily, due to their lower U/Yb ratio at wide variations of Y and Hf contents. Zircons that contain inclusions of acid glass and hence, crystallized from OPG melt are relatively depleted in REE, especially HREE. This indicates that OPG was formed by partial melting of gabbro in the presence of concentrated water-salt fluid, which extracted REE from the plagiogranite melt. Zircons from gabbroids devoid of OPG inclusions have higher total REE contents than zircons from OPG. Late hydrothermal alterations of zircon are distinctly established by the formation of neogenic collomorphic (porous) texture and/or by composition of mineral inclusions and accompanied by significant enrichment in La. Heterogeneous distribution of Ti in zircon may be caused not only by a change in its crystallization temperature, but also variations in silica to titanium oxide activity ratios in the rocks during interaction with hydrothermal solution of variable acidity. A complex study of structural-morphological and geochemical features of oceanic zircons and phase composition of host rocks and inclusions provides insight into processes leading to the crystallization and subsequent evolution of this mineral in the rocks of oceanic lithosphere.  相似文献   

20.
We present new data on the age and geochemistry of the Veselyi and Petropavlovsk ultramafic-mafic massifs of the Selenga-Stanovoy (West Stanovoy) superterrane on the southeastern framing of the North Asian craton. The massifs are composed of rocks of peridotitewebsterite-gabbro and peridotite-gabbro-monzodiorite associations, respectively. The latter combine normal, subalkalic, and alkaline rocks and thus are of diverse composition: from ultrabasites and pyroxenites through gabbroids to monzodiorites. The U-Pb zircon age of these massifs is 154 ± 1 and 159 ± 1 Ma, respectively, which permits them to be referred to as the youngest rocks of ultramafic-mafic complexes on the southern framing of the North Asian craton. The rocks of the studied massifs are enriched in LILE (K, Rb, Sr, Ba, LREE) and are depleted in HFSE (Zr, Nb, Hf, Ta). These rocks formed, most likely, in the rear of subduction zone or in the setting of the subducting-slab detachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号