首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Gulf Stream frontal disturbances cause nutrient-rich waters to frequently upwell and intrude onto the southeastern United States continental shelf between Cape Canaveral, Florida and Cape Hatteras, North Carolina. Phytoplankton response in upwelled waters was determined with three interdisciplinary studies conducted during April 1979 and 1980, and in summer 1978. The results show that when shelf waters are not stratified, upwelling causes productive phytoplankton (diatom) blooms on the outer shelf. Phytoplankton production averages about 2 g C m−2 d−1 during upwelling events, and ‘new’ production is 50% or more of the total. When shelf waters are stratified, upwelled waters penetrate well onto the shelf as a subsurface intrusion in which phytoplankton production averages about fives times higher than the nutrient-depleted overlying mixed layer. Phytoplankton within the intrusion deplete upwelled NO3 in about 7 to 10 days, at which point no further net increase in phytoplankton biomass occurs.Current meter records show that upwelling occurs roughly 50% of the time on the outer shelf during November to April (shelf not stratified), and we estimate that seasonal primary production in upwelled waters is 175 g C m−2 6 months−1 of which at least 50% is ‘new’ production. More than 90% of outer shelf primary and ‘new’ production occurs during upwelling and thus upwelling is the dominant process affecting primary productivity of the outer shelf. Our seasonal estimates of outer shelf primary and ‘new’ production are, respectively, three and ten times higher than previous estimates that did not account for upwelling.  相似文献   

2.
During July and August 1981 subsurface intrusion of upwelled nutrient-rich Gulf Stream water was the dominant process affecting temporal and spatial changes in phytoplankton biomass and productivity of the southeastern United States continental shelf between 29 and 32°N latitude. Intruded waters in the study area covered as much as 101 km including virtually all of the middle and outer shelf and approximately 50% of the inner shelf area.Within 2 weeks following a large intrusion event in late July, middle shelf primary production and Chl a reached 3 to 4 gC m d−1 and 75 mg m, respectively. At the peak of the bloom 80% of the water column primary production occurred below the surface mixed-layer, and new primary production (i.e., NO3-supported) exceeded 90% of the total. Chl a-normalized photosynthetic rates were very high as evidenced by high mean assimilation number (15.5 mg C mg Chl a−1 h−1), high mean α (14 mg C mg Chl a−1 Ein−1 m), and no photoinhibition. As a result of the high photosynthetic rates, mean light-utilization index (Ψ) was 2 to 3 times higher than reported for temperature sub-arctic and arctic waters.The results imply a seasonal (June to August) middle shelf production of 150 g C m−1, about 15% higher than previous estimates of annual production on the middle shelf. Intrusions of the scale we observed in 1981 may not occur every summer. However, when such events do occur, they are by far the most important processes controlling summer phytoplankton dynamics of the middle and outer shelf and of the inner shelf in the southern half of the study area.  相似文献   

3.
Several studies have provided evidence for the enrichment of trace elements in coastal waters, particularly for copper. These enrichments have been attributed to diffusion from continental shelf sediments and to an influx of river water. We attempted to resolve between these sources by undertaking an extensive suite of measurements of trace metals (Cu, Ni, Cd), 226Ra and 228Ra in the surface waters of the Gulf of Mexico, along with trace metal profiles at 6 stations (April 1981 and December 1982). These data establish that enrichments of copper, nickel and cadmium occur in the shallow waters of the Gulf of Mexico. On the Mississippi continental shelf, high trace element concentrations (Cu, Ni: ~ 9 nmol/kg; Cd: ~ 200 pmol/kg) in lower-salinity waters (26‰) are similar to those observed in the Mississippi plume at the same salinity. This evidence suggests a river water source. On the other hand, trace element enrichments are also observed in the northern Gulf (Cu: +0.4 nmol/kg; Ni: +0.5 nmol/kg; Cd: +20 pmol/kg) which coincide with an increase in 228Ra but are not accompanied by decreased salinity. The excess of evaporation over precipitation in this region makes it possible that this water could be evaporated estuarine water; therefore, hydrographic observations cannot distinguish readily between river and shelf sources. A regional flux balance shows that most of the excess copper in the surface waters of the Florida Current can be supplied by the river-borne dissolved copper flux. Within the uncertainties of such calculations, the continental shelf copper flux must be less than or equal to the river flux.  相似文献   

4.
Results of microstructure measurements conducted in October–November of 2015 as a part of the Coupled Air Sea Processes and Electromagnetic Ducting Research (CASPER) project are discussed. The measurements were taken on the North Carolina shelf and across the Gulf Stream front. On the shelf, the oceanic stratification was influenced by highly variable surface salinity and along-bottom advection. Vertical mixing was mostly governed by variable winds. The vertical eddy diffusivity was estimated using the VMP-based dissipation measurements, and the diffusivity values obtained during calm periods and stormy winds were compared. Parameterization of the diffusivity for various mesoscale dynamical conditions is discussed in terms of shear instabilities and internal wave-generated turbulence based on data obtained in deep waters of the Gulf Stream and on the continental slope.  相似文献   

5.
Carbon and nitrogen stable isotope ratios of particulate organic matter (POM) in surface water and 63–200 μm-sized microphytoplankton collected at the fluorescence maximum were studied in four sites in the Gulf of Lions (NW Mediterranean), a marine area influenced by the Rhone River inputs, in May and November 2004. Some environmental (temperature, salinity) and biological (POM, Chlorophyll a and phaeopigments contents, phytoplankton biomass and composition) parameters were also analysed. Significantly different C and N isotopic signatures between surface water POM and microphytoplankton were recorded in all sites and seasons. Surface water POM presented systematically lower δ13C (∼4.2‰) and higher δ15N (∼2.8‰) values than those of microphytoplankton, due to a higher content of continental and detrital material. Seasonal variations were observed for all environmental and biological parameters, except salinity. Water temperature was lower in May than in November, the fluorescence maximum was located deeper and the Chlorophyll a content and the phytoplankton biomass were higher, along with low PON/Chl a ratio, corresponding to spring bloom conditions. At all sites and seasons, diatoms dominated the phytoplankton community in abundance, whereas dinoflagellate importance increased in autumn particularly in coastal sites. C and N isotopic signatures of phytoplankton did not vary with season. However, the δ15N of surface water POM was significantly higher in November than in May in all sites likely in relation to an increase in 15N/14N ratio of the Rhone River POM which influenced surface water in the Gulf of Lions. As it is important to determine true baseline values of primary producers for analysing marine food webs, this study demonstrated that C and N isotopic values of surface water POM cannot be used as phytoplankton proxy in coastal areas submitted to high river inputs.  相似文献   

6.
Increases in nitrate loading to the Mississippi River watershed during the last 50 years are considered responsible for the increase in hypoxic zone size in Louisiana-Texas shelf bottom waters. There is currently a national mandate to decrease the size of the hypoxic zone to 5000 km2 by 2015, mostly by a 30% reduction in annual nitrogen discharge into the Gulf of Mexico. We developed an ecosystem model for the Mississippi River plume to investigate the response of organic matter production and sedimentation to variable nitrate loading. The nitrogen-based model consisted of nine compartments (nitrate, ammonium, labile dissolved organic nitrogen, bacteria, small phytoplankton, diatoms, micro- and mesozooplankton, and detritus), and was developed for the spring season, when sedimentation of organic matter from plume surface waters is considered important in the development of shelf hypoxia. The model was forced by physical parameters specified along the river-ocean salinity gradient, including residence time, light attenuation by dissolved and particulate matter, mixed layer depth, and dilution. The model was developed using measurements of biological biomasses and nutrient concentrations across the salinity gradient, and model validation was performed with an independent dataset of primary production measurements for different riverine NO3 loads. Based on simulations over the range of observed springtime NO3 loads, small phytoplankton contributed on average 80% to primary production for intermediate to high salinities (>15), and the main contributors to modeled sedimentation at these salinities were diatom sinking, microzooplankton egestion, and small phytoplankton mortality. We investigated the impact of limiting factors on the relationship between NO3 loading and ecosystem rates. Model results showed that primary production was primarily limited by physical dilution of NO3, followed by abiotic light attenuation, light attenuation due to mixing, and diatom sinking. Sedimentation was mainly limited by the first three of these factors. Neither zooplankton grazing or plume residence times acted as limiting factors of ecosystem rates. Regarding nutrient reductions to the watershed, simulations showed that about half of the percent decrease in NO3 load was reflected in decreased plume sedimentation. For example, a 30% decrease in NO3 load resulted in a 19% decrease in average plume primary production and a 14% decrease in sedimentation. Finally, our model results indicated that the fraction of primary production exported from surface waters is highly variable with salinity (7–87%), a finding which has important implications for predictive models of hypoxic zone size that assume a constant value for this ratio.  相似文献   

7.
During some, but not all winters, waters on the Mackenzie shelf of the Beaufort Sea become sufficiently saline to ventilate the halocline of the adjacent Canada Basin. This occurred in March 1988, at which time a survey of the temperature, salinity, dissolved nutrient and 18O properties of the ventilating waters was completed. The regional hydrography of 1988 was very similar to that of 1981, when ventilation also occurred in this area. The δ18O-salinity properties of the cold, saline shelf waters revealed that in the winter of 1987–1988, ice was grown from water initially more saline by about 1.5 [psu] than is typical for the area. The higher initial salinity appears to have been a consequence of a two-stage conditioning of shelf waters by storms in the autumn of 1987. Since the amount of ice growth, and consequent salt rejection, over the winter of 1987–1988 was abnormally low, this conditioning played a crucial role in the formation of the ventilating water mass. Nutrient concentrations in ventilating waters were the same as those of waters unaffected by freezing. Thus significant regeneration of nutrients within the cold saline shelf waters did not occur during their 6-month period of formation. In consequence, the nutrient signatures carried into the arctic halocline by winter shelf waters from this area tended to erode, rather than to reinforce the nutrient maxima. For this reason they are not the dominant source of supply to the arctic halocline. Waters in the Chukchi and northern Bering Seas during the same period had δ18O values intermediate between those on the Mackenzie shelf and those in the arctic halocline. Thus winter shelf waters are supplied to the arctic halocline with a range of nutrient, temperature, salinity and δ18O properties. On average, the southern Canada Basin is an impressive net producer of sea ice. The net rate of production from waters in the upper 350 m in this area is about 2 m y−1, approximately twice the net rate of production in the central Arctic Ocean.  相似文献   

8.
Bacterioplankton productivity, numbers, and cell specific activity were studied in nearshore waters of the southeastern U.S. continental shelf during seasons of maximum freshwater discharge. In April 1984, coastal waters were stratified from normal spring discharge and typical northeastward wind stress. In April 1985, shelf waters were vertically homogeneous due to below normal runoff and southwestward wind stress. In 1984, nearshore bacterial productivity ranged from 7.0 to 14.7 × 106 cells l−1 h−1 and midshelf rates were 40–50% less. In 1985, nearshore productivity ranged from 0.9 to 2.4 × 106 cells 1−1 h−1, and productivity was extremely patchy over the entire shelf. The cell-specific activity (thymidine incorporation per cell) suggests that although productivity was high in 1984, only a fraction of the bacterioplankton was actively growing or incorporating thymidine (0.9–2.9 × 10−21 mol cell−1 h−1). In 1985, a higher percentage of cells appeared to be active and incorporating thymidine (5–13 × 10−21mol cell−1h−1) even though productivity was low. Hydrographic conditions along the southeastern coastline may have had a significant impact on the overall community structure and carbon flow through the microbial food web. When coastal waters were stratified in 1984, bacterial biomass was a significant percentage (35–320%) of the phytoplankton biomass. During vertically homogeneous conditions of 1985, bacterial production and biomass were a small percentage (2–13%) of the phytoplankton production and biomass across the shelf. The interannual variation in the microbial food web was attributed to the interannual variability of the southeastern U.S. hydrology due to changes in freshwater discharge and wind direction and intensity. The ecological implications of these results extend to the potential impact of seasonal microbial food webs on nearshore allochothonous and autochothonous organics before removal from the southeastern U.S. coastline.  相似文献   

9.
Marginal ice edge zones (MIZ) are unique frontal systems with air-ice-sea interfaces. Phytoplankton blooms, which occur along the edge of the melting ice pack in spring, are strongly related to the air-ice-sea interactive processes. In spring 1982, during a cruise to the Bering Sea ice pack, hydrographic sections, including standard biological oceanographic parameters, were collected across the MIZ showing such enhanced phytoplankton bloom populations in the ice edge. During this period the ice edge retreated at speeds of 6 to 38 cm s?1. Associated with the retreating ice edge were a faster moving upper layer oceanic front that kept pace with the retreating ice edge, and a nearly stationary deeper front. In the presence of light, the phytoplankton blooms are shown to be associated with, and primarily controlled by enhanced density stratification and frontal structure due to ice melt during the spring ice retreat. The ice melt water forms stratification that helps to maintain the phytoplankton within the photic zone. The ice edge blooms can be differentiated from open water blooms by the stratification mechanism; in MIZ blooms stratification is due to low salinity melt water as opposed to temperature derived stratification in most open water blooms. In addition, in the series of cross sections collected, a unique biophysical interaction was observed when the MIZ front moving north with the spring retreat, came in contact with a fixed shelf front forming a ‘dish’ shaped hydrographic structure within which a major phytoplankton bloom was observed. We suggest that upwelling from the tidally driven shelf front supplied nutrients to the surface waters extending the life of the bloom. Wind-driven ice edge upwelling was also observed but was difficult to distinguish from the shelf front circulation.In this same set of ice edge cross sections, a cold water mass was observed at the surface in the MIZ. This water mass was subsequently overridden by warmer water forming a cold tongue structure above the pycnocline and seaward of the shelf front. We suggest that this cold tongue was transient in nature, and illustrative of one mechanism by which the T-S characteristics of high latitude shelf waters are formed and altered.  相似文献   

10.
Elemental (carbon and nitrogen) ratios and stable carbon and nitrogen isotope ratios (δ13C and δ15N) are examined in sediments and suspended particulate matter from Hudson Bay to study the influence of river inputs and autochthonous production on organic matter distribution. River-derived particulate organic matter (POM) is heterogeneous, nitrogen-poor and isotopically depleted, consistent with expectations for OM derived from terrestrial C3 vascular plant sources, and distinct from marine OM sources. Both δ13C and C/N source signatures seem to be transmitted to sediments with little or no modification, therefore making good tracers for terrigenous OM in Hudson Bay. They suggest progressively larger contributions from marine sources with distance from shore and secondarily from south to north, which broadly corresponds to the distribution of river inputs to Hudson Bay. Processes other than mixing of marine and terrigenous OM influence sedimentary δ15N values, including variability in the δ15N of phytoplankton in the Bay's surface waters due to differences in relative nitrate utilization, and post-production processes, which bring about an apparently constant 15N-enrichment between surface waters and underlying sediments. Variability in the δ15N of phytoplankton in the Bay's surface waters, in contrast, seems to be organized spatially with a pattern that suggests an inshore–offshore difference in surface water nitrogen conditions (open- vs. closed-system) and hence the δ15N value of phytoplankton. The δ15N patterns, supported by a simple nitrate box-model budget, suggest that in inshore regions of Hudson Bay, upwelling of deep, nutrient-rich waters replenishes surface nitrate, resulting in ‘open system’ conditions which tend to maintain nitrate δ15N at low and constant values, and these values are reflected in the sinking detritus. River inflow, which is constrained to inshore regions of Hudson Bay, appears to be a relatively minor source of nitrate compared to upwelling of deep waters. However, river inflow may contribute indirectly to enhanced inshore nutrient supply by supporting large-scale estuarine circulation and consequently entrainment and upwelling of deep water in this area. In contrast to previous proposals that Hudson Bay is oligotrophic because it receives too much fresh water (Dunbar, 1993), our results support most of the primary production being organized around the margin of the Bay, where river flow is constrained.  相似文献   

11.
We examined the effects of freshwater flow and light availability on phytoplankton biomass and production along the Louisiana continental shelf in the region characterized by persistent spring–summer stratification and widespread summer hypoxia. Data were collected on 7 cruises from 2005 to 2007, and spatially-averaged estimates of phytoplankton and light variables were calculated for the study area using Voronoi polygon normalization. Shelf-wide phytoplankton production ranged from 0.47 to 1.75 mg C m−2 d−1 across the 7 cruises. Shelf-wide average light attenuation (kd) ranged from 0.19–1.01 m−1 and strongly covaried with freshwater discharge from the Mississippi and Atchafalaya Rivers (R2=0.67). Interestingly, we observed that the euphotic zone (as defined by the 1% light depth) extended well below the pycnocline and to the bottom across much of the shelf. Shelf-wide average chlorophyll a (chl a) concentrations ranged from 1.4 to 5.9 mg m−3 and, similar to kd, covaried with river discharge (R2=0.83). Also, chl a concentrations were significantly higher in plume versus non-plume regions of the shelf. When integrated through the water-column, shelf-wide average chl a ranged from 26.3 to 47.6 mg m−2, but did not covary with river discharge, nor were plume versus non-plume averages statistically different. The high integrated chl a in the non-plume waters resulted from frequent sub-pycnocline chl a maxima. Phytoplankton production rates were highest in the vicinity of the Mississippi River bird's foot delta, but as with integrated chl a were not statistically different in plume versus non-plume waters across the rest of the shelf. Based on the vertical distribution of light and chl a, a substantial fraction of phytoplankton production occurred below the pycnocline, averaging from 25% to 50% among cruises. These results suggest that freshwater and nutrient inputs regulate shelf-wide kd and, consequently, the vertical distribution of primary production. The substantial below-pycnocline primary production we observed has not been previously quantified for this region, but has important implications about the formation and persistence of hypoxia on the Louisiana continental shelf.  相似文献   

12.
In situ primary production data collected during 1978–1981 period and 1997–2000 period were combined to improve understanding of seasonal and spatial distribution of primary production in the southeastern Bering Sea. Mean daily primary production rates showed an apparent seasonal cycle with high rates in May and low rates in summer over the entire shelf of the southeastern Bering Sea except for oceanic region due to lack of data. There was also an increasing trend of primary production rates in the fall over the inner shelf and the middle shelf. There was a decreasing trend of primary production rates between late April and mid-May over the inner shelf while there was an abrupt increase between late April and mid-May over the middle shelf and the outer shelf. In the shelf break region, there was an increasing pattern in late May. These suggest that there was a gradual progression of the development of the spring phytoplankton bloom from the inner shelf toward the shelf break region. There was also a latitudinal variability of primary production rate over the middle shelf, probably due to either spatial variations of the seasonal advance and retreat of sea ice or horizontal advection of saline water in the bottom layer. Annual rates of primary production across the southeastern Bering Sea shelf were 121, 150, 145, 110, and 84 g C m−2 yr−1 in the inner shelf, the middle shelf, the outer shelf, the shelf break, and oceanic region, respectively. High annual rates of primary production over the inner shelf can be attributed to continuous summer production based on regenerated nitrogen and/or a continuous supply of nitrogen at the inner front region, and to fall production. There were some possibilities of underestimation of annual primary production over the entire shelf due to lack of measurement in early spring and fall, which may be more apparent over the shelf break and oceanic region than the inner shelf, the middle, and the outer shelf. This study suggests that the response of primary production by climate change in the southeastern Bering Sea shelf can be misunderstood without proper temporal and seasonal measurement.  相似文献   

13.
AVHRR satellite imagery of the southern Mid-Atlantic Bight during May 1993 revealed a large area of cold water over the shelf break and slope that appeared to spin up into a series of southward propagating anticyclonic eddies. The eddies had diameters of 35–45 km at the surface and moved southward at about 20 cm/sec. A radial TOYO CTD (to 50m) and ADCP velocity (to 400m) transect was conducted across the southern-most of these eddies. The upper 50 meters had minimum temperatures of less than 7°C and salinities of about 33 pss, characteristics similar to cold pool waters usually found over the continental shelf. ADCP velocity data from one of the eddies revealed anticyclonic flow extending to a depth of about 250m. The transport of cold pool water by the eddies was estimated to be 0.1 to 0.2 Sv which is of the same order as the annual mean alongshore transport of shelf water in this region. The origin of the deeper water within the eddy is unlikely to be the continental shelf because the shelf break is less than 100 m. The depth and velocity profiles along the TOYO transect were consistent with the constant potential vorticity eddy model of Flierl (1979) although the source of the eddy kinetic energy is uncertain. The cause for the exodus of cold pool water from the shelf, which extended northward to at least 38°N, is unclear but must involve the establishment of an alongshore baroclinic pressure gradient against the usual southwestward shelf flow. It is possible that the intrusion of Gulf Stream waters onto the shelf near Cape Hatteras was a precursor of this off shelf transport. The southern-most eddy was marked by high biological productivity and very high oxygen supersaturation. The phytoplankton bloom detected within the exported cold pool water, located over the continental slope, suggests a mechanism whereby production fueled by nutrients derived from the shelf can be locally exported into deep water.  相似文献   

14.
15.
Summary Bathythermograms just off the northern edge of the Gulf Stream often show temperature inversions, while those in the Gulf Stream and the Sargasso Sea do not show such features. A similar situation was found in the Kuroshio area. TheT-S curve obtained off Cape Hatteras with a bathysalinograph and a bathythermograph indicates that the temperature inversions correspond to high salinity and less stable density stratification. Sequential surface temperature charts suggest that the inversions may be caused by sinking of the warm and saline Gulf Stream water. When such water is driven into the slope water region, it is cooled by mixing or heat transfer to the atmosphere, but retains its high salinity and sinks. A simple mathematical model is developed based on an assumption that an isolated water mass is enclosed in a parcel with a flexible and permeable membrane. The initial density inside the parcel is different from the one outside and the water mixes with the surrounding water. When it is assumed that mixing of temperature occurs faster than that of salinity, the isolated Gulf Stream water sinks to an equilibrium depth, causing temperature peaks and inversions in the subsurface layer.LGO Contribution No. 1052.  相似文献   

16.
The coastal waters of Hong Kong constitute a transition from estuarine conditions in the west to more oceanic conditions in the east, with a major discharge of untreated sewage located at the mid-point. Chlorophyll a was determined and net phytoplankton was sampled at 45 stations throughout this transition. Over a period of 20 months, chlorophyll a values rarely exceeded 2 μg l.?1 in unpolluted coastal waters. Estuarine waters generally contained 2–6 μg l.?1 and, in waters influenced by sewage discharge, values sometimes exceeded 20 μg l.?1. There was no evidence of a reduction in taxonomic diversity in polluted areas except in summer, when the net phytoplankton was dominated by Chaetoceros spp. In the autumn and early winter, Skeletonema costatum was abundant in the central polluted areas.  相似文献   

17.
The spatial and temporal distribution of physical, chemical and biological variables of the NE continental shelf of the Gulf of Cadiz were analyzed monthly during almost three annual cycles. This analysis was performed with the aim of deriving the main forcing factors controlling variability at inter-annual, seasonal and short-time scales. Meteorological forcing related to heavy episodes of rainfall that affected river discharges and the wind regime, controlled both the currents along the shelf together and the nutrient concentrations of the surface waters. Meteorological forcing in turn determined the subsequent development and maintenance of phytoplankton blooms. Superimposed on the seasonal cycle typical of temperate latitudes, the inputs of continental nutrients mainly from the Guadalquivir River, along with episodes of upwelling favored by the predominance of westerly winds triggered phytoplankton growth on the shelf, highlighting the markedly relevant role of this large estuary in the control of the biological activity on the shelf.  相似文献   

18.
We examined the occurrence of seasonal hypoxia (O2<2 mg l−1) in the bottom waters of four river-dominated ocean margins (off the Changjiang, Mississippi, Pearl and Rhône Rivers) and compared the processes leading to the depletion of oxygen. Consumption of oxygen in bottom waters is linked to biological oxygen demand fueled by organic matter from primary production in the nutrient-rich river plume and perhaps terrigenous inputs. Hypoxia occurs when this consumption exceeds replenishment by diffusion, turbulent mixing or lateral advection of oxygenated water. The margins off the Mississippi and Changjiang are affected the most by summer hypoxia, while the margins off the Rhône and the Pearl rivers systems are less affected, although nutrient concentrations in the river water are very similar in the four systems. Spring and summer primary production is high overall for the shelves adjacent to the Mississippi, Changjiang and Pearl (1–10 g C m−2 d−1), and lower off the Rhône River (<1 g C m−2 d−1), which could be one of the reasons of the absence of hypoxia on the Rhône shelf. The residence time of the bottom water is also related to the occurrence of hypoxia, with the Mississippi margin showing a long residence time and frequent occurrences of hypoxia during summer over very large spatial scales, whereas the East China Sea (ECS)/Changjiang displays hypoxia less regularly due to a shorter residence time of the bottom water. Physical stratification plays an important role with both the Changjiang and Mississippi shelf showing strong thermohaline stratification during summer over extended periods of time, whereas summer stratification is less prominent for the Pearl and Rhône partly due to the wind effect on mixing. The shape of the shelf is the last important factor since hypoxia occurs at intermediate depths (between 5 and 50 m) on broad shelves (Gulf of Mexico and ECS). Shallow estuaries with low residence time such as the Pearl River estuary during the summer wet season when mixing and flushing are dominant features, or deeper shelves, such as the Gulf of Lion off the Rhône show little or no hypoxia.  相似文献   

19.
During the 2005 Layered Organization in the Coastal Ocean (LOCO) field program in Monterey Bay, California, we integrated intensive water column surveys by an autonomous underwater vehicle (AUV) with satellite and mooring data to examine the spatiotemporal scales and processes of phytoplankton thin-layer development. Surveying inner to outer shelf waters repeatedly between August 18 and September 6, the AUV acquired 6841 profiles. By the criteria: [(1) thickness ≤3 m at the full-width half-maximum, (2) peak chlorophyll at least twice the local background concentrations, and (3) a corresponding peak in optical backscattering], thin layers were detected in 3978 (58%) of the profiles. Average layer thickness was 1.4 m, and average intensity was 13.5 μg l?1 above (3.2x) background. Thin layers were observed at depths between 2.6 and 17.6 m, and their depths showed diurnal vertical migration of the layer phytoplankton populations. Horizontal scales of thin-layer patches ranged from <100 m to>10,000 m. A thin-layer index (TLI), computed from layer frequency, intensity and thinness, was highest in mid-shelf waters, coincident with a frontal zone between bay waters and an intrusion of low-salinity offshore waters. Satellite observations showed locally enhanced chlorophyll concentrations along the front, and in situ observations indicated that phytoplankton may have been affected by locally enhanced nutrient supply in the front and concentration of motile populations in a convergence zone. Minimum TLI was furthest offshore, in the area most affected by the intrusion of offshore, low-chlorophyll waters. Average thin-layer intensity doubled during August 25–29, in parallel with warming at the surface and cooling within and below the thermocline. During this apparent bloom of thin-layer populations, density oscillations in the diurnal frequency band increased by an order of magnitude at the shelfbreak and in near-bottom waters of the inner shelf, indicating the role of internal tidal pumping from Monterey Canyon onto the shelf. This nutrient transport process was mapped by the AUV. Peak TLI was observed on August 29 during a nighttime survey, when phytoplankton were concentrated in the nutricline. Empirical orthogonal function decomposition of the thin-layer particle size distribution data from this survey showed that throughout the inner to outer shelf survey domain, the layers were dominated by phytoplankton having a cross-section of ~50 μm. This is consistent with the size of abundant Akashiwo sanguinea cells observed microscopically in water samples. During a subsequent and stronger intrusion of low-salinity offshore waters, spatially-averaged vertical density stratification decreased by > 50%, and phytoplankton thin layers disappeared almost completely from the AUV survey domain.  相似文献   

20.
Phytoplankton biomass, community and size structure, primary production and bacterial production were measured at shelf and continental slope sites near North West Cape, Western Australia (20.5°S–22.5°S) over two summers (October–February 1997–1998 and 1998–1999), and in April 2002. The North West Cape region is characterized by upwelling-favorable, southwesterly winds throughout the summer. Surface outcropping of upwelled water is suppressed by the geostrophic pressure gradients and warm low-density surface waters of the southward flowing Leeuwin Current. Strong El Niño (ENSO) conditions (SOI <0) prevailed through the summer of 1997–1998 which resulted in lower sea levels along the northwestern Australian coast and a weaker Leeuwin Current. La Niña conditions prevailed during the 1998–1999 summer and in April 2002. During the summer of 1997–1998, the North West Cape region was characterized by a shallower thermocline (nutricline), resulting in larger euphotic zone stocks of inorganic nitrogen and silicate over the continental slope. There was evidence for episodic intrusions of upper thermocline waters and the sub-surface chlorophyll maximum onto the outer continental shelf in 1997–1998, but not in 1998–1999. Pronounced differences in phytoplankton biomass, community size structure and productivity were observed between the summers of 1997–1998 and 1998–1999 despite general similarities in irradiance, temperature and wind stress. Phytoplankton primary production and bacterial production were 2- to 4-fold higher during the summer of 1997–1998 than in 1998–1999, while total phytoplankton standing crop increased by<2-fold. Larger phytoplankton (chiefly diatoms in the >10 μm size fraction) made significant contributions to phytoplankton standing crop and primary production during the summer of 1997–1998, but not 1998–1999. Although there were no surface signs of upwelling, primary production rates near North West Cape episodically reached levels (3–8 g C m−2 day−1) characteristic of eastern boundary Ekman upwelling zones elsewhere in the world. Bacterial production (0.006–1.2 g C m−2 day−1) ranged between 0.6 and 145 percent (median=19 percent) of concurrent primary production. The observed differences between years and within individual summers suggest that variations in the Leeuwin Current driven by seasonal or ENSO-related changes in the Indonesian throughflow region may have episodic, but significant influences on pelagic productivity along the western margin of Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号