首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
New volatile data (CO2, H2O, He, Ne, and Ar) are presented for 24 submarine basaltic glasses from the Kolbeinsey Ridge, Tjörnes Fracture Zone and Mohns Ridge, North Atlantic. Low CO2 and He contents indicate that magmas were strongly outgassed with the extent of degassing increasing toward the south, as expected from shallower ridge depths. Ne and Ar are significantly more abundant in the southernmost glasses than predicted for degassed melt. The strong atmospheric isotopic signal associated with this excess Ne and Ar suggests syn- or posteruptive contamination by air. Degassing, by itself, cannot generate the large variations in δ13C values of dissolved CO2 or coupled CO2-Ar variations. This suggests that δ13C values were also affected by some other processes, most probably melt-crust interaction. Modelling indicates that degassing had a negligible influence on water owing to its higher solubility in basaltic melt than the other volatiles. Low H2O contents in the glasses reflect melting of a mantle source that is not water-rich relative to the source of N-MORB.Before eruption, Kolbeinsey Ridge melts contained ∼400 ppm CO2 with δ13C of −6‰, 0.1 to 0.35 wt.% H2O, 3He/4He ∼11 RA, and CO2/3He of ∼2 × 109. We model restored volatile characteristics and find homogeneous compositions in the source of Kolbeinsey Ridge magmas. Relative to the MORB-source, He and Ne are mildly fractionated while the 40Ar/36Ar may be low. The 3He/4He ratios in Tjörnes Fracture Zone glasses are slightly higher (13.6 RA) than on Kolbeinsey Ridge, suggesting a greater contribution of Icelandic mantle from the south, but the lack of 3He/4He variation along the Kolbeinsey Ridge is inconsistent with active dispersal of Icelandic mantle beyond the Tjörnes Fracture Zone.  相似文献   

2.
Pedogenic goethites in each of two Early Permian paleosols appear to record mixing of two isotopically distinct CO2 components—atmospheric CO2 and CO2 from in situ oxidation of organic matter. The δ13C values measured for the Fe(CO3)OH component in solid solution in these Permian goethites are −13.5‰ for the Lower Leonardian (∼283 Ma BP) paleosol (MCGoeth) and −13.9‰ for the Upper Leonardian (∼270 Ma BP) paleosol (SAP). These goethites contain the most 13C-rich Fe(CO3)OH measured to date for pedogenic goethites crystallized in soils exhibiting mixing of the two aforementioned CO2 components. δ13C measured for 43 organic matter samples in the Lower Leonardian (Waggoner Ranch Fm.) has an average value of −20.3 ± 1.1‰ (1s). The average value yields a calculated Early Permian atmospheric Pco2 value of about 1 × PAL, but the scatter in the measured δ13C values of organic matter permits a calculated maximum Pco2 of 11 × PAL (PAL = present atmospheric level). Measured values of the mole fraction of Fe(CO3)OH in MCGoeth and SAP correspond to soil CO2 concentrations in the Early Permian paleosol profiles of 54,000 and 50,000 ppmV, respectively. Such high soil CO2 concentrations are similar to modern soils in warm, wet environments.The average δ13C values of pedogenic calcite from 9 paleosol profiles stratigraphically associated with MCGoeth (Waggoner Ranch Fm.) range from −6.5‰ to −4.4‰, with a mean δ13C value for all profiles of −5.4‰. Thus, the value of Δ13C between the pedogenic calcite data set and MCGoeth is 8.1 (±0.9)‰, which is in reasonable accord with the value of 7.7‰ expected if atmospheric Pco2 and organic matter δ13C values were the same for both paleosol types. Furthermore, the atmospheric Pco2 calculated for the Early Permian from the average measured carbon isotopic compositions of the paleosol calcite and organic matter is also analytically indistinguishable from 1 × PAL, with a maximum calculated atmospheric Pco2 (permitted by one standard deviation of the organic matter δ13C value) of ∼5 × PAL.If, however, measured average δ13C values of the plant organic matter are more positive than the original soil organic matter as a result of diagenetic loss of 13C-depleted, labile organic compounds, calculated Permian atmospheric Pco2 using these 13C-enriched organic values would underestimate the actual atmospheric Pco2 using either goethite or calcite. This is the first stratigraphically constrained, intrabasinal study to compare ancient atmospheric CO2 concentrations calculated from pedogenic goethite and calcite. These results demonstrate that the two different proxies record the same information about atmospheric CO2.The Fe(CO3)OH component in pedogenic goethite from a Triassic paleosol in Utah is significantly enriched in 13C relative to Fe(CO3)OH in goethites from soils in which there are mixtures of two isotopic CO2 components. Field-relationships and the δ13C value (−1.9‰) of the Triassic goethite indicate that this ancient paleosol profile experienced mixing of three isotopically distinct CO2 components at the time of goethite crystallization. The three components were probably atmospheric CO2, CO2 from in situ oxidation of organic matter and CO2 from in situ dissolution of preexisting calcite. Although mixing of three isotopically distinct CO2 components, as recorded by Fe(CO3)OH in goethite, has been described in modern soil, this is the first example from a documented paleosol. Its preservation affirms the need for careful, case-by-case assessment of ancient paleosols to establish that goethite in any particular soil is likely to be a valid proxy of atmospheric Pco2.  相似文献   

3.
Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with δD values from −64‰ to −25‰. All samples are enriched in water relative to fresh basalts. The δD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with δ13C values from −14.9‰ to −26.6‰. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with δ13C = −4.5‰ and (2) an organic compound with δ13C = −26.6‰. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when “fresh” oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ∼ −4.7‰, similar to the δ13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 × 1012 molC/yr.  相似文献   

4.
In the Czech-German border region of the Vogtland and NW Bohemia (western Eger rift, Central Europe), chemical and isotopic compositions (C, N, He, Ar) of free gas from a thermal water escape (fluorite mine, Schönbrunn), two mineral springs (“Eisenquelle,” Bad Brambach; “Sprudel III,” Bad Elster) and a mofette (Bublak) located along an ∼40-km long traverse are reported. The gases of Bublak and Bad Brambach are CO2-rich (>99 vol.%) and have δ13C values of −1.95 and −4.29‰, respectively. With distance from the center of CO2 degassing (Bublak) the δ13C values decrease, most likely due to physico-chemical fractionation of CO2 between gaseous and aqueous phases rather than to admixture of organic/biogenic CO2. The δ15N values range between −3.2 and −0.6‰, compared to an upper mantle value of −4.0 ± 1.0‰. The four locations are characterized by 3He/4He ratios decreasing from 5.9 Ra in the center (Bublak) to 0.8 Ra in the periphery (Schönbrunn) and give evidence for mixing of He from a deep-seated magmatic source with a crustal source. The location with the highest 3He/4He ratio (5.9 Ra) is accompanied by the highest 40Ar/36Ar (550). We argue that the nitrogen of the Bublak mofette gas is a mixture of predominantly atmospheric and mantle-derived components, whereas at the other three locations crustal nitrogen may also be present. The Bublak δ15N value of ≈−4.5 ± 1.0‰ represents the first free gas δ15N reference from the European subcontinental mantle (ESCM) and indicates that, in contrast to the 3He/4He ratios, the δ15N values are equal for ESCM and MORB, respectively.  相似文献   

5.
Incremental vacuum dehydration-decarbonation experiments were performed at 190°C on chemically “cleaned” aliquots of a gibbsite-dominated, Eocene-age bauxite sample with evolution of CO2 and H2O. “Plateau” F (CO2/H2O ratios) and δ13C values of the CO2 derived from gibbsite were attained over the dehydration interval, Xv(H2) = 0.16 to 0.67 (i.e., 16 to 67% breakdown of gibbsite). The plateau value of F for gibbsite was 0.0043 ± 0.0003, while the corresponding δ13C value of evolved CO2 was −16.0‰±0.4‰. Additional experiments on chemically cleaned aliquots included (1) treatment with a solution of 0.3M Na-Citrate + 0.1M Na-Dithionite and (2) an exchange experiment with 0.1 bar of 13C-depleted CO2 (−46‰) at 105°C for 64.5 h. Neither of these additional treatments resulted in a measurable perturbation of plateau values of F or δ13C for CO2 evolved from gibbsite during dehydroxylation. These results support published work on Holocene samples which suggested that CO2 occluded in gibbsite may preserve information on δ13C values of CO2 in ancient terrestrial systems. The plateau values of F observed in the Eocene gibbsite indicate that it may be possible to experimentally calibrate a relationship between the concentration of CO2 occluded in gibbsite and CO2 in the environment at the time of crystallization. Such a calibration would significantly enhance the value of gibbsite as a source of information on ancient oxidized carbon systems.  相似文献   

6.
Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 °C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 °C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 °C) fluid. All PACMANUS fluids are characterized by negative δDH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 °C) values (∼2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative δ34SH2S values (down to −2.7‰) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (−4.1‰ to −2.3‰) than Vienna Woods (−5.2‰ to −5.7‰), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater ingress into the upflow zone. Consistently high measured Mg concentrations as well as trends of increasingly non-conservative SO4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (?80 °C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones.  相似文献   

7.
Graphite in deep crustal enderbitic (orthopyroxene + garnet + plagioclase + quartz) granulites (740°C, 8.9 kb) of Nilgiri hills, southern India were investigated for their spectroscopic and isotopic characteristics. Four types of graphite crystals were identified. The first type (GrI), which is interstitial to other mineral grains, can be grouped into two subtypes, GrIA and GrIB. GrIA is either irregular in shape or deformed, and rough textured with average δ13C values of −12.7 ± 0.4‰ (n = 3). A later generation of interstitial graphite (GrIB) shows polygonal crystal shapes and highly reflecting smooth surface features. These graphite grains are more common and have δ13C values of −11.9 ± 0.3‰ (n = 14). Both subtypes show well-defined Raman shifts suggesting a highly crystalline nature. Cores of interstitial graphite grains have, on average, lower δ13C values by ∼0.5‰ compared to that of the rim. The second type of graphite (GrII) occurs as solid inclusions in silicate minerals, commonly forming regular hexagonal crystals with a slightly disordered structure. The third type of graphite (GrIII) is associated with solid inclusions (up to 100 μm) that have decrepitation halos of numerous small (<15 μm) satellite fluid inclusions of pure CO2 with varying density (1.105 to 0.75 g/cm3). The fourth type of graphite (GrIV) is found as daughter crystals within primary type CO2-fluid inclusions in garnet and quartz. These fluid inclusions have a range of densities (1.05 to 0.90 g/cm3), but in general are significantly less dense than graphite-free primary, pure CO2 fluid inclusions (1.12 g/cm3). Raman spectral characteristics of graphite inside fluid inclusions suggest graphite crystallization at low temperature (∼ 500°C). The precipitation of graphite probably occurred during the isobaric cooling of CO2-rich peak metamorphic fluid as a result of oxyexsolution of oxide phases. The oxyexsolution process is evidenced by the magnetite-ilmenite granular exsolution textures and the systematic presence of numerous micron-sized rutile and other oxide inclusions in association with fluid inclusions within garnet, plagioclase, and quartz.The carbon isotope compositions of coexisting CO2 (in fluid inclusions) and graphite show a fractionation (α2CO−gr) of ∼6‰ in garnet, consistent with the existing theoretical estimates of α2CO−gr at 800°C. A subsequent generation of CO2 inclusions trapped in matrix quartz and quartz segregation have higher δ13C values, −4‰ and −2.9‰ respectively. Graphite in quartz segregations also has higher δ13C values (−9.8‰) than those in enderbite (−12.7‰). Micro-graphite crystals included in garnet, quartz (enderbite), and quartz (segregation) have average δ13C values of −11.1, −10.4, and −8.7‰ respectively, indicating progressive enrichment in 13C with a decrease in temperature of recrystallization of respective minerals. This progressive enrichment is also observed in carbon isotope compositions of fluid inclusion CO2, suggesting isotopic equilibrium during graphite precipitation from CO2 fluids. Thus, the carbon isotope record preserved in these rocks by the interstitial graphite, CO2 fluid in enderbite, graphite microcrystals, graphite in quartz segregation, and CO2 fluid in quartz segregation, suggests a temperature-controlled isotopic evolution. This evolution is in accordance with a closed system Rayleigh-type graphite precipitation process which progressively enriched residual CO2 in 13C.  相似文献   

8.
Diverse interpretations have been made of carbon isotope time series in speleothems, reflecting multiple potential controls. Here we study the dynamics of 13C and 12C cycling in a particularly well-constrained site to improve our understanding of processes affecting speleothem δ13C values. The small, tubular Grotta di Ernesto cave (NE Italy) hosts annually-laminated speleothem archives of climatic and environmental changes. Temperature, air pressure, pCO2, dissolved inorganic carbon (DIC) and their C isotopic compositions were monitored for up to five years in soil water and gas, cave dripwater and cave air. Mass-balance models were constructed for CO2 concentrations and tested against the carbon isotope data. Air advection forces winter pCO2 to drop in the cave air to ca. 500 ppm from a summer peak of ca. 1500 ppm, with a rate of air exchange between cave and free atmosphere of approximately 0.4 days. The process of cave ventilation forces degassing of CO2 from the dripwater, prior to any calcite precipitation onto the stalagmites. This phase of degassing causes kinetic isotope fractionation, i.e. 13C-enrichment of dripwater whose δ13CDIC values are already higher (by about 1‰) than those of soil water due to dissolution of the carbonate rock. A subsequent systematic shift to even higher δ13C values, from −11.5‰ in the cave drips to about −8‰ calculated for the solution film on top of stalagmites, is related to degassing on the stalagmite top and equilibration with the cave air. Mass-balance modelling of C fluxes reveals that a very small percentage of isotopically depleted cave air CO2 evolves from the first phase of dripwater degassing, and shifts the winter cave air composition toward slightly more depleted values than those calculated for equilibrium. The systematic 13C-enrichment from the soil to the stalagmites at Grotta di Ernesto is independent of drip rate, and forced by the difference in pCO2 between cave water and cave air. This implies that speleothem δ13C values may not be simply interpreted either in terms of hydrology or soil processes.  相似文献   

9.
“Plateau” δ18O values of CO2 that evolved from the Fe(CO3)OH component during isothermal vacuum dehydrations (200-230 °C) of 18 natural goethites range from 8.2 to 28.1‰. In contrast, the measured δ18O values of the goethite structural oxygen range from −11.3 to 1.7‰. The results of this study indicate that the apparent oxygen isotope fractionation factor (18αapp) between plateau CO2 and initial goethite is systematically related to the rate of isothermal vacuum dehydration. The nonlinear correlation and the magnitudes of the 18αapp values are predicted by a relatively simple mass balance model with the following assumptions: (1) the rate of isothermal vacuum dehydration of goethite (for the interval from 0 to ∼60 to 80% loss of structural hydroxyl hydrogen) can be reasonably well represented by first-order kinetics and (2) isotopic exchange between evolving H2O vapor and solid occurs only in successive, local transition states. The generally good correspondence between the model predictions and the experimental data seems to validate these assumptions. Thus, the 18O/16O ratios of the evolved CO2 can act as probes into the transient processes operating at the molecular level during the solid-state goethite-to-hematite phase transition. For example, the activation energy for the rate constant associated with the transition state, oxygen isotopic exchange between solid and H2O vapor, is tentatively estimated as 28 ± 11 KJ/mol. Such knowledge may be of consequence in understanding the significance of 18O/16O ratios in hematites from some natural environments (e.g., Mars?).Kinetic data and δ18O values of CO2 are routinely obtained in the course of measurements of the abundance and δ13C values of the Fe(CO3)OH in goethite. The observed correlation between 18αapp and dehydration rates suggests that plateau δ18O values of evolved CO2 may provide complementary estimates of the δ18O values of total goethite structural oxygen (O, OH, CO2) with an overall precision of about ±1‰. However, because of isotopic exchange during the dehydration process, δ18O values of the evolved CO2 do not reflect the original δ18O values of the CO2 that was occluded as Fe(CO3)OH in goethite.  相似文献   

10.
We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits.The δ13CCO2 of the magmatic gases varies around −3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (−1 to −‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect.The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and −2 to −6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.  相似文献   

11.
Sulfur isotope compositions of pumice and adsorbed volatiles on ash from the first historical eruption of Anatahan volcano (Mariana arc) are presented in order to constrain the sources of sulfur erupted during the period 10-21 May, 2003. The isotopic composition of S extracted from erupted pumice has a narrow range, from δ34SV-CDT +2.6‰ to +3.2‰, while the composition of sulfur adsorbed onto ash has a larger range (+2.8‰ to +5.3‰). Fractionation modeling for closed and open system scenarios suggests that degassing of SO2 raised the δ34SV-CDT value of S dissolved in the melt from an initial composition of between +1.6‰ and +2.6‰ for closed-system degassing, or between −0.5‰ and +1.5‰ for open-system degassing, however closed-system degassing is the preferred model. The calculated values for the initial composition of the magma represent a MORB-like (δ34SV-CDT ∼ 0‰) mantle source with limited contamination by subducted seawater sulfate (δ34SV-CDT +21‰). Modeling also suggests that the δ34SV-CDT value of SO2 gas in closed-system equilibrium with the degassed magma was between +0.9‰ and +2.5‰. The δ34SV-CDT value of sulfate adsorbed onto ash in the eruption plume (+2.8‰ to +5.1‰) is consistent with sulfate formation by oxidation of magmatic SO2 in the eruption column. The sulfur isotope composition of sulfate adsorbed to ash changes from lower δ34S values for ash erupted early in the eruption to higher δ34S values for ash erupted later in the eruption. We interpret the temporal/stratigraphic change in sulfate isotopic composition to primarily reflect a change in the isotopic composition of magmatic SO2 released from the progressively degassing magma and is attributed to the expulsion of an accumulated gas phase at the beginning of the eruption. More efficient oxidation of magmatic SO2 gas to sulfate in the early water-rich eruption plume probably contributed to the change in S isotope compositions observed in the ash leachates.  相似文献   

12.
Applications of speleothem calcite geochemistry in climate change studies require the evaluation of the accuracy and sensitivity of speleothem proxies to correctly infer paleoclimatic information. The present study of Harrison’s Cave, Barbados, uses the analysis of the modern climatology and groundwater system to evaluate controls on the C and O isotopic composition of modern speleothems. This new approach directly compares the δ18O and δ13C values of modern speleothems with the values for their corresponding drip waters in order to assess the degree to which isotopic equilibrium is achieved during calcite precipitation. If modern speleothems can be demonstrated to precipitate in isotopic equilibrium, then ancient speleothems, suitable for paleoclimatic studies, from the same cave environment may also have been precipitated in isotopic equilibrium. If modern speleothems are precipitated out of isotopic equilibrium, then the magnitude and direction of the C and O isotopic offsets may allow specific kinetic and/or equilibrium isotopic fractionation mechanisms to be identified.Carbon isotope values for the majority of modern speleothem samples from Harrison’s Cave fall within the range of equilibrium values predicted from the combined use of (1) calcite-water fractionation factors from the literature, (2) measured temperatures, and (3) measured δ13C values of the dissolved inorganic carbon of drip waters. Calcite samples range from ∼0.8‰ higher to ∼1.1‰ lower than predicted values. The 13C depletions are likely caused by kinetically driven departures in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions, caused by rapid calcite growth. 13C enrichments can be accounted for by Rayleigh distillation of the HCO3 (aq) reservoir during degassing of 13C-depleted CO2.Modern speleothems from Harrison’s Cave are not in O isotopic equilibrium with their corresponding drip waters and are 0.2‰ to 2.3‰ enriched in 18O relative to equilibrium values. δ18O variations in modern calcite are likely controlled by kinetically driven changes in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions to nonequilibrium conditions, consistent with rapid calcite growth. In contrast to δ13C, δ18O values of modern calcite may not be affected by Rayleigh distillation during degassing because CO2 hydration and hydroxylation reactions will buffer the O isotopic composition of the HCO3 (aq) reservoir. If the effects of Rayleigh distillation manifest themselves in the O isotopic system, they will result in 18O enrichment in the HCO3 (aq) reservoir and ultimately in the precipitated CaCO3.  相似文献   

13.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

14.
Pollen grains from grasses using the C3 and C4 photosynthetic pathways have distinct ranges of δ13C values that may be used to estimate their relative abundance in paleorecords. We evaluated a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer (SWiM-IRMS) for δ13C analysis of individual grass-pollen grains. Pollen from four C3 and four C4 grass species was isolated through micromanipulation and analyzed as single grains suspended in water. A carbon yield greater than the 2σ range of the carbon content of blanks containing only water was used to distinguish samples containing pollen (“pollen present”) from those not containing pollen. This criterion resulted in the exclusion of ∼45% of the 946 samples applied to the wire. The average δ13C values (±1σ) of the remaining samples were −26.9‰ (±6.3‰) and −11.5‰ (±9.6‰) for C3 grasses and C4 grasses, respectively, after blank-correcting the δ13C data. These results suggest that the SWiM-IRMS system can be used to distinguish C3 from C4 grass pollen. The high variability in measured δ13C values is likely caused by a combination of factors. These include natural isotopic variability among individual pollen grains; the relatively poor precision that can be obtained when determining δ13C values of such small samples; and the uncertainty in the magnitude, isotopic composition, and stability of the analytical blank. Nonetheless, high percentages of individual pollen grains were correctly classified as being of either C3 or C4 origin. On average, 90% (range = 78-100%) of pollen grains from C3 grasses had δ13C values more negative than the cutoff threshold of −19.2‰; while 84% (range = 77-90%) of pollen grains from C4 grasses had δ13C values more positive than −19.2‰. Compared with analysis using an elemental analyzer interfaced with an IRMS (EA-IRMS), the number of pollen grains required for δ13C-based evaluation of C3/C4 grass composition is many times lower with the SWiM-IRMS. Additionally, δ13C data from the SWiM-IRMS does not need to be incorporated into a mixing model to derive estimates of the abundance of C3 and C4 grass pollen. Carbon-isotopic analysis of individual grass-pollen grains using the SWiM-IRMS system may help improve our understanding of the evolutionary and ecological significance of grass taxa in the paleorecord.  相似文献   

15.
New He and C relative abundance, isotope and concentration results from nine geothermal locations situated along an 800-km transect of the North Anatolian Fault Zone (NAFZ), Turkey, that were monitored during the period November 2001–November 2004, are reported. The geothermal waters were collected every 3–6 months to study possible links between temporal geochemical variations and seismic activity along the NAFZ. At the nine sample locations, the He isotope ratios range from 0.24 to 2.3RA, δ13C values range from −4.5 to +5.8‰, and CO2/3He ratios range from 5 × 109 to 5 × 1014. The following geochemical observations are noted: (1) the highest 3He/4He ratios are found near the Galatean volcanic region, in the central section of the NAFZ, (2) at each of the nine sample locations, the 3He/4He ratios are generally constant; however, CO2/3He ratios and He contents both show one order of magnitude variability, and δ13C values show up to ∼4‰ variability, and (3) at all locations (except Re?adiye), δ13C values show positive correlations with CO2 contents. The results indicate that at least three processes are necessary to account for the geochemical variations: (1) binary mixing between crustal and mantle-derived volatiles can explain the general characteristics of 3He/4He ratios, δ13C values, and CO2/3He ratios at the nine sample locations; (2) preferential degassing of He from the geothermal waters is responsible for variations in CO2/3He values and He contents at each sample location; and (3) CO2 dissolution followed by calcite precipitation is responsible for variations in CO2 contents and δ13C values at most locations. For each of the geochemical parameters, anomalies are defined in the temporal record by values that fall outside two standard deviations of average values at each specific location. Geochemical anomalies that may be related to seismic activity are recorded on June 28, 2004 at Yalova, where a M = 4.2 earthquake occurred 43 days earlier at 15 km distance from the sample location, and on April 7, 2003 at Efteni, where a M = 4.0 earthquake occurred 44 days later at a distance of 12 km. At both locations, the sampling periods containing geochemical anomalies were preceded by an increase in M ? 3 earthquakes occurring within 60 days and less than 40 km distance.  相似文献   

16.
From July to November 2009, concentrations of CO2 in 78 samples of ambient air collected in 18 different interior spaces on a university campus in Dallas, Texas (USA) ranged from 386 to 1980 ppm. Corresponding δ13C values varied from −8.9‰ to −19.4‰. The CO2 from 22 samples of outdoor air (also collected on campus) had a more limited range of concentrations from 385 to 447 ppm (avg. = 408 ppm), while δ13C values varied from −10.1‰ to −8.4‰ (avg.=-9.0‰). In contrast to ambient indoor and outdoor air, the concentrations of CO2 exhaled by 38 different individuals ranged from 38,300 to 76,200 ppm (avg. = 55,100 ppm), while δ13C values ranged from −24.8‰ to −17.7‰ (avg. = −21.8‰). The residence times of the total air in the interior spaces of this study appear to have been on the order of 10 min with relatively rapid approaches (∼30 min) to steady-state concentrations of ambient CO2 gas. Collectively, the δ13C values of the indoor CO2 samples were linearly correlated with the reciprocal of CO2 concentration, exhibiting an intercept of −21.8‰, with r2 = 0.99 and p < 0.001 (n = 78). This high degree of linearity for CO2 data representing 18 interior spaces (with varying numbers of occupants), and the coincidence of the intercept (−21.8‰) with the average δ13C value for human-exhaled CO2 demonstrates simple mixing between two inputs: (1) outdoor CO2 introduced to the interior spaces by ventilation systems, and (2) CO2 exhaled by human occupants of those spaces. If such simple binary mixing is a common feature of interior spaces, it suggests that the intercept of a mixing line defined by two data points (CO2 input from the local ventilation system and CO2 in the ambient air of the room) could be a reasonable estimate of the average δ13C value of the CO2 exhaled by the human occupants. Thus, such indoor spaces appear to constitute effective “sample vessels” for collection of CO2 that can be used to determine the average proportions of C3 and C4-derived C in the diets of the occupants. For the various groups occupying the rooms sampled in this study, C4-derived C appears to have constituted ∼40% of the average diet.  相似文献   

17.
A suite of natural gases from the northern Songliao Basin in NE China were characterized for their molecular and carbon isotopic composition. Gases from shallow reservoirs display clear geochemical evidence of alteration by biodegradation, with very high dryness (C1/C2+ > 100), high C2/C3 and i-C4/n-C4 ratios, high nitrogen content and variable carbon dioxide content. Isotopic values show wide range variations (δ13CCH4 from −79.5‰ to −45.0‰, δ13CC2H6 from −53.7‰ to −32.2‰, δ13CC3H8 from −36.5‰ to −20.1‰, δ13CnC4H10 from −32.7‰ to −24.5‰, and δ13CCO2 from −21.6‰ to +10.5‰). A variety of genetic types can be recognized on the basis of chemical and isotopic composition together with their geological occurrence. Secondary microbial gas generation was masked by primary microbial gas and the mixing of newly generated methane with thermogenic methane already in place in the reservoir can cause very complicated isotopic signatures. System openness also was considered for shallow biodegraded gas accumulations. Gases from the Daqing Anticline are relatively wet with 13C enriched methane and 13C depleted CO2, representing typically thermogenic origin. Gases within the Longhupao-Da’an Terrace have variable dryness, 13C enriched methane and variable δ13C of CO2, suggesting dominant thermogenic origin and minor secondary microbial methane augment. The Puqian-Ao’nan Uplift contains relatively dry gas with 13C depleted methane and 13C enriched CO2, typical for secondary microbial gas with a minor part of thermogenic methane. Gas accumulations in the Western Slope are very dry with low carbon dioxide concentrations. Some gases contain 13C depleted methane, ethane and propane, indicating low maturity/primary microbial origin. Recognition of varying genetic gas types in the Songliao Basin helps explain the observed dominance of gas in the shallow reservoir and could serve as an analogue for other similar shallow gas systems.  相似文献   

18.
We present one millennium-long (1171-year), and three 100 year long annually resolved δ13C tree-ring chronologies from ecologically varying Juniperus stands in the Karakorum Mountains (northern Pakistan), and evaluate their response to climatic and atmospheric CO2 changes. All δ13C records show a gradual decrease since the beginning of the 19th century, which is commonly associated with a depletion of atmospheric δ13C due to fossil fuel burning. Climate calibration of high-frequency δ13C variations indicates a pronounced summer temperature signal for all sites. The low-frequency component of the same records, however, deviates from long-term temperature trends, even after correction for changes in anthropogenic CO2. We hypothesize that these high-elevation trees show a response to both climate and elevated atmospheric CO2 concentration and the latter might explain the offset with target temperature data. We applied several corrections to tree-ring δ13C records, considering a range of potential CO2 discrimination changes over the past 150 years and calculated the goodness of fit with the target via calibration/verification tests (R2, residual trend, and Durbin-Watson statistics). These tests revealed that at our sites, carbon isotope fixation on longer timescales is affected by increasing atmospheric CO2 concentrations at a discrimination rate of about 0.012‰/ppmv. Although this statistically derived value may be site related, our findings have implications for the interpretation of any long-term trends in climate reconstructions using tree-ring δ13C, as we demonstrate with our millennium-long δ13C Karakorum record. While we find indications for warmth during the Medieval Warm Period (higher than today’s mean summer temperature), we also show that the low-frequency temperature pattern critically depends on the correction applied. Patterns of long-term climate variation, including the Medieval Warm Period, the Little Ice Age, and 20th century warmth are most similar to existing evidence when a strong influence of increased atmospheric CO2 on plant physiology is assumed.  相似文献   

19.
Previous studies of both ore and non-ore-bearing intrusives in the Permo-Triassic flood basalts of the Siberian platform in the Noril’sk area have shown that high-grade Ni-Cu-platinum group elements (PGE) mineralization is associated with anomalously high δ34S values of ∼8 to 12‰. In addition, several researchers have proposed that observed depletions in the Cu, Ni, and PGE content of basaltic lavas of the Nadezhdinsky (Nd) Formation are related to diffusional exchange with, and upgrading in metal tenor of, sulfides in the volcanic conduit system. Sulfur isotopic studies of the lavas at Noril’sk were initiated to determine if interaction with crustally derived sulfur in the conduit system was evident, and if the Nd lavas in particular were characterized by an anomalous isotopic signature. δ34S values of the lavas range from −4.5 to 8.7‰ Vienna Cañon Diablo Troilite (VCDT), with S concentrations from <40 to 1373 ppm. The majority of δ34S values range from 0 to 4‰, and are similar to those from S-poor intrusions in the Noril’sk area. Although textural data are not supportive of early sulfide saturation and the presence of immiscible sulfide droplets in the lavas, recrystallization may have erased expected mineralogical and textural evidence. Mineralogical data indicate that hydrothermal alteration of the lavas has occurred, but S redistribution has been restricted to localized areas and δ34S values have not been affected. The relatively low S concentrations of the lavas are thought to be due in large part to degassing of the lavas in the shallow conduit system and during eruption. Our calculations are consistent with the premise that degassing of basaltic magmas at temperatures in excess of ∼900°C at QFM leads to only minor 34S-depletion of sulfur remaining in the melt, and decreases in δ34S values of less than 2‰ at 90% degassing. For this reason all lavas with δ34S values in excess of ∼ 2‰ require a contribution of 34S-enriched country rock sulfur. Because of the high S content and δ34S value (∼ 16-20‰) of evaporites in the country rocks at Noril’sk, contamination of less than 0.5% is required to explain the most 34S-enriched lavas. The Nd lavas have an average δ34S of 2.9‰, but show no difference in S isotopic composition relative to the other lavas, suggesting that metal depletion involved only limited S transfer, or that exchange between mantle-derived S and S of crustal origin buffered δ34S values to less than ∼5‰. Anomalously positive δ34S values, similar to those of the ore-bearing intrusives in the Noril’sk region, are not consistently found in low-S rocks, either lavas or intrusives. Although the mechanism for the derivation of sulfide in the ore-bearing intrusions remain speculative, it is clear that the formation of sulfide ores characterized by high metal tenors proceeded only in the presence of sulfur of crustal origin.  相似文献   

20.
Laboratory experiments on reagent-grade calcium carbonate and carbonate rich glacial sediments demonstrate previously unreported kinetic fractionation of carbon isotopes during the initial hydrolysis and early stages of carbonate dissolution driven by atmospheric CO2. There is preferential dissolution of Ca12CO3 during hydrolysis, resulting in δ13C-DIC values that are significantly lighter isotopically than the bulk carbonate. The fractionation factor for this kinetic isotopic effect is defined as εcarb. εcarb is greater on average for glacial sediments (−17.4‰) than for calcium carbonate (−7.8‰) for the < 63 μm size fraction, a sediment concentration of 5 g L−1 and closed system conditions at 5°C. This difference is most likely due to the preferential dissolution of highly reactive ultra-fine particles with damaged surfaces that are common in subglacial sediments. The kinetic isotopic fractionation has a greater impact on δ13C-DIC at higher CaCO3:water ratios and is significant during at least the first 6 h of carbonate dissolution driven by atmospheric CO2 at sediment concentrations of 5 g L−1. Atmospheric CO2 dissolving into solution following carbonate hydrolysis does not exhibit any significant equilibrium isotopic fractionation for at least ∼ 6 h after the start of the experiment at 5°C. This is considerably longer than previously reported in the literature. Thus, kinetic fractionation processes will likely dominate the δ13C-DIC signal in natural environments where rock:water contact times are short <6-24 h (e.g., glacial systems, headwaters in fluvial catchments) and there is an excess of carbonate in the sediments. It will be difficult apply conventional isotope mass balance techniques in these types of environment to identify microbial CO2 signatures in DIC from δ13C-DIC data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号