首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pedogenic goethites in each of two Early Permian paleosols appear to record mixing of two isotopically distinct CO2 components—atmospheric CO2 and CO2 from in situ oxidation of organic matter. The δ13C values measured for the Fe(CO3)OH component in solid solution in these Permian goethites are −13.5‰ for the Lower Leonardian (∼283 Ma BP) paleosol (MCGoeth) and −13.9‰ for the Upper Leonardian (∼270 Ma BP) paleosol (SAP). These goethites contain the most 13C-rich Fe(CO3)OH measured to date for pedogenic goethites crystallized in soils exhibiting mixing of the two aforementioned CO2 components. δ13C measured for 43 organic matter samples in the Lower Leonardian (Waggoner Ranch Fm.) has an average value of −20.3 ± 1.1‰ (1s). The average value yields a calculated Early Permian atmospheric Pco2 value of about 1 × PAL, but the scatter in the measured δ13C values of organic matter permits a calculated maximum Pco2 of 11 × PAL (PAL = present atmospheric level). Measured values of the mole fraction of Fe(CO3)OH in MCGoeth and SAP correspond to soil CO2 concentrations in the Early Permian paleosol profiles of 54,000 and 50,000 ppmV, respectively. Such high soil CO2 concentrations are similar to modern soils in warm, wet environments.The average δ13C values of pedogenic calcite from 9 paleosol profiles stratigraphically associated with MCGoeth (Waggoner Ranch Fm.) range from −6.5‰ to −4.4‰, with a mean δ13C value for all profiles of −5.4‰. Thus, the value of Δ13C between the pedogenic calcite data set and MCGoeth is 8.1 (±0.9)‰, which is in reasonable accord with the value of 7.7‰ expected if atmospheric Pco2 and organic matter δ13C values were the same for both paleosol types. Furthermore, the atmospheric Pco2 calculated for the Early Permian from the average measured carbon isotopic compositions of the paleosol calcite and organic matter is also analytically indistinguishable from 1 × PAL, with a maximum calculated atmospheric Pco2 (permitted by one standard deviation of the organic matter δ13C value) of ∼5 × PAL.If, however, measured average δ13C values of the plant organic matter are more positive than the original soil organic matter as a result of diagenetic loss of 13C-depleted, labile organic compounds, calculated Permian atmospheric Pco2 using these 13C-enriched organic values would underestimate the actual atmospheric Pco2 using either goethite or calcite. This is the first stratigraphically constrained, intrabasinal study to compare ancient atmospheric CO2 concentrations calculated from pedogenic goethite and calcite. These results demonstrate that the two different proxies record the same information about atmospheric CO2.The Fe(CO3)OH component in pedogenic goethite from a Triassic paleosol in Utah is significantly enriched in 13C relative to Fe(CO3)OH in goethites from soils in which there are mixtures of two isotopic CO2 components. Field-relationships and the δ13C value (−1.9‰) of the Triassic goethite indicate that this ancient paleosol profile experienced mixing of three isotopically distinct CO2 components at the time of goethite crystallization. The three components were probably atmospheric CO2, CO2 from in situ oxidation of organic matter and CO2 from in situ dissolution of preexisting calcite. Although mixing of three isotopically distinct CO2 components, as recorded by Fe(CO3)OH in goethite, has been described in modern soil, this is the first example from a documented paleosol. Its preservation affirms the need for careful, case-by-case assessment of ancient paleosols to establish that goethite in any particular soil is likely to be a valid proxy of atmospheric Pco2.  相似文献   

2.
A mid-Cretaceous (∼95 Ma) laterite in southwestern Minnesota contains pisolites that consist primarily of gibbsite, quartz, and kaolinite with smaller amounts of goethite (α-FeOOH) and hematite. The presence of minor berthierine (an Fe(II) sheet silicate) suggests that this Cenomanian laterite experienced some degree of low temperature reductive diagenesis during its burial history. The prospects for extracting useful paleoenvironmental information from the pisolitic goethite were explored by studying measured mole fraction (Xm) and δ13Cm values of the Fe(CO3)OH component in solid solution in the goethite using the method of incremental vacuum dehydration-decarbonation.Data arrays that occupy distinctly different domains in plots of δ13Cm vs. 1/Xm suggest the existence of two generations of goethite in the pisolites. The apparently younger generation of goethite (“generation 2”) evolves CO2 at 170 °C, while the older generation (“generation 1”) evolves CO2 at 220 °C. The distribution of the data suggests that generation 2 goethite is a proxy for mixing of CO2 from three distinct CO2 sources in an oxidative environment which post-dated the reductive diagenesis. The small amount of generation 1 goethite seems to have persisted through the reductive diagenesis, and nine of the generation 1 goethite data appear to define a proxy, two-endmember, soil CO2 mixing line. Such two-component mixing is consistent with expectations for a highly evolved, carbonate-free laterite (i.e., the pre-diagenetic Cenomanian weathering system). The δ13Cm values of these nine data points range from −23.1‰ to −13.7‰, whereas Xm values range from 0.0007 to 0.0222. Linear regression of these nine data yields a slope of 0.0064, which corresponds to an ancient tropospheric CO2 concentration of about 1900 ppmV.Isotopic data from pisolitic kaolinite indicate a paleotemperature of about 24 °C at a paleolatitude of ∼40°N. This is substantially warmer than modern continental temperatures at such latitudes and is consistent with published indications of a generally warmer mid-Cretaceous climate. Moreover, the correspondence of a warmer mid-Cretaceous climate with the inferred, relatively high concentration of Cenomanian tropospheric CO2 (∼1900 ppmV) is consistent with the idea that variations of atmospheric CO2 have a relation to climate change. The results of this study emphasize the importance of careful evaluation of incremental dehydration-decarbonation data from natural goethites to assess the possibility that more than one generation of goethite is present in a sample. However, the results also indicate that the carbon isotope information recorded in admixed goethite generations may be sorted out and used in paleoenvironmental interpretations.  相似文献   

3.
From July to November 2009, concentrations of CO2 in 78 samples of ambient air collected in 18 different interior spaces on a university campus in Dallas, Texas (USA) ranged from 386 to 1980 ppm. Corresponding δ13C values varied from −8.9‰ to −19.4‰. The CO2 from 22 samples of outdoor air (also collected on campus) had a more limited range of concentrations from 385 to 447 ppm (avg. = 408 ppm), while δ13C values varied from −10.1‰ to −8.4‰ (avg.=-9.0‰). In contrast to ambient indoor and outdoor air, the concentrations of CO2 exhaled by 38 different individuals ranged from 38,300 to 76,200 ppm (avg. = 55,100 ppm), while δ13C values ranged from −24.8‰ to −17.7‰ (avg. = −21.8‰). The residence times of the total air in the interior spaces of this study appear to have been on the order of 10 min with relatively rapid approaches (∼30 min) to steady-state concentrations of ambient CO2 gas. Collectively, the δ13C values of the indoor CO2 samples were linearly correlated with the reciprocal of CO2 concentration, exhibiting an intercept of −21.8‰, with r2 = 0.99 and p < 0.001 (n = 78). This high degree of linearity for CO2 data representing 18 interior spaces (with varying numbers of occupants), and the coincidence of the intercept (−21.8‰) with the average δ13C value for human-exhaled CO2 demonstrates simple mixing between two inputs: (1) outdoor CO2 introduced to the interior spaces by ventilation systems, and (2) CO2 exhaled by human occupants of those spaces. If such simple binary mixing is a common feature of interior spaces, it suggests that the intercept of a mixing line defined by two data points (CO2 input from the local ventilation system and CO2 in the ambient air of the room) could be a reasonable estimate of the average δ13C value of the CO2 exhaled by the human occupants. Thus, such indoor spaces appear to constitute effective “sample vessels” for collection of CO2 that can be used to determine the average proportions of C3 and C4-derived C in the diets of the occupants. For the various groups occupying the rooms sampled in this study, C4-derived C appears to have constituted ∼40% of the average diet.  相似文献   

4.
The terrestrial carbon cycle and the role of atmospheric CO2 concentrations in controlling global temperatures can be inferred from the study of ancient soils (paleosols). Soil-formed goethite and calcite have been the primary minerals used as a geochemical proxy for reconstructing atmospheric pCO2 from ancient terrestrial records. In the case of goethite, optimum sampling strategies for reconstructing pCO2 focus on the portion of the soil profile that displays steep gradients in both soil CO2 concentration and δ13C values of soil CO2 such that a keeling plot can be developed for a given soil and atmospheric pCO2 can be calculated from it. We report data from a Carboniferous paleosol that depart from the expected linear trends. The results indicate that pedogenic goethite is sensitive to variations in the isotopic composition of soil CO2, over a range of timescales, and can record these variations in the carbon isotope composition and mole fraction of Fe(CO3)OH in solid solution with goethite. We explore possible environmental conditions that can drive these changes as a function of either moisture controlled variations in soil respired CO2 or in the residence time of carbon in soils. The implications of this result are overestimation of paleoatmospheric pCO2 from pedogenic goethite.  相似文献   

5.
Incremental vacuum dehydration-decarbonation experiments were performed at 190°C on chemically “cleaned” aliquots of a gibbsite-dominated, Eocene-age bauxite sample with evolution of CO2 and H2O. “Plateau” F (CO2/H2O ratios) and δ13C values of the CO2 derived from gibbsite were attained over the dehydration interval, Xv(H2) = 0.16 to 0.67 (i.e., 16 to 67% breakdown of gibbsite). The plateau value of F for gibbsite was 0.0043 ± 0.0003, while the corresponding δ13C value of evolved CO2 was −16.0‰±0.4‰. Additional experiments on chemically cleaned aliquots included (1) treatment with a solution of 0.3M Na-Citrate + 0.1M Na-Dithionite and (2) an exchange experiment with 0.1 bar of 13C-depleted CO2 (−46‰) at 105°C for 64.5 h. Neither of these additional treatments resulted in a measurable perturbation of plateau values of F or δ13C for CO2 evolved from gibbsite during dehydroxylation. These results support published work on Holocene samples which suggested that CO2 occluded in gibbsite may preserve information on δ13C values of CO2 in ancient terrestrial systems. The plateau values of F observed in the Eocene gibbsite indicate that it may be possible to experimentally calibrate a relationship between the concentration of CO2 occluded in gibbsite and CO2 in the environment at the time of crystallization. Such a calibration would significantly enhance the value of gibbsite as a source of information on ancient oxidized carbon systems.  相似文献   

6.
The experiments were conducted in the open CO2 system to find out the equilibrium fractionation between the carbonate ion and CO2(g). The existence of isotopic equilibrium was checked using the two-direction approach by passing the CO2−N2 gases with different δ13C compositions (− 1.5‰ and − 23‰) through the carbonate solution with δ13C = − 4.2‰. The ΔCO3T2−−CO2(g) equilibrium fractionation is given as 6.03 ± 0.17‰ at 25 °C. Discussion is provided about the significance of carbonate complexing in determination of ΔCO3T2−−CO2(g) and ΔHCO3T−CO2(g) fractionations. Finally, an isotope numerical model of flow and kinetics of hydration and dehydroxylation is built to predict the isotopic behaviour of the system with time.  相似文献   

7.
“Plateau” δ18O values of CO2 that evolved from the Fe(CO3)OH component during isothermal vacuum dehydrations (200-230 °C) of 18 natural goethites range from 8.2 to 28.1‰. In contrast, the measured δ18O values of the goethite structural oxygen range from −11.3 to 1.7‰. The results of this study indicate that the apparent oxygen isotope fractionation factor (18αapp) between plateau CO2 and initial goethite is systematically related to the rate of isothermal vacuum dehydration. The nonlinear correlation and the magnitudes of the 18αapp values are predicted by a relatively simple mass balance model with the following assumptions: (1) the rate of isothermal vacuum dehydration of goethite (for the interval from 0 to ∼60 to 80% loss of structural hydroxyl hydrogen) can be reasonably well represented by first-order kinetics and (2) isotopic exchange between evolving H2O vapor and solid occurs only in successive, local transition states. The generally good correspondence between the model predictions and the experimental data seems to validate these assumptions. Thus, the 18O/16O ratios of the evolved CO2 can act as probes into the transient processes operating at the molecular level during the solid-state goethite-to-hematite phase transition. For example, the activation energy for the rate constant associated with the transition state, oxygen isotopic exchange between solid and H2O vapor, is tentatively estimated as 28 ± 11 KJ/mol. Such knowledge may be of consequence in understanding the significance of 18O/16O ratios in hematites from some natural environments (e.g., Mars?).Kinetic data and δ18O values of CO2 are routinely obtained in the course of measurements of the abundance and δ13C values of the Fe(CO3)OH in goethite. The observed correlation between 18αapp and dehydration rates suggests that plateau δ18O values of evolved CO2 may provide complementary estimates of the δ18O values of total goethite structural oxygen (O, OH, CO2) with an overall precision of about ±1‰. However, because of isotopic exchange during the dehydration process, δ18O values of the evolved CO2 do not reflect the original δ18O values of the CO2 that was occluded as Fe(CO3)OH in goethite.  相似文献   

8.
We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits.The δ13CCO2 of the magmatic gases varies around −3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (−1 to −‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect.The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and −2 to −6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.  相似文献   

9.
A Late Paleocene (∼60 Ma BP) lateritic soil from Northern Ireland (the Antrim paleosol, herein referred to as Nire) contains coexisting goethite, gibbsite, phyllosilicate, and hematite. The Fe(III) oxides exhibit pisolitic and Liesegang-type morphologies that are mutually exclusive in hand specimens. X-ray diffraction (XRD) measurements of Al substituted for Fe in goethite indicate two populations: (1) low-Al, Liesegang-type goethites (∼0 mol% Al) and (2) high-Al, pisolitic goethites (∼9 to ∼24 mol% Al). Selective dissolution and incremental vacuum dehydration-decarbonation were used to determine the concentration and δ13C values of CO2 occluded in the respective structures of the goethites and gibbsites in this complex mixture of Nire lateritic minerals. The Fe(CO3)OH component in the high-Al goethites appears to retain a proxy carbon isotopic record of vadose zone CO2 in the ancient soil. The δ13C values of CO2 occluded in coexisting goethites and gibbsites indicate that these minerals did not form in equilibrium with the same environmental CO2.The measured mole fractions (X) of Fe(CO3)OH in the high-Al goethites range from 0.0059 (±0.0005) to 0.0077 (±0.0006) and correspond to soil CO2 concentrations of ∼28,000 to ∼37,000 ppmV. The average values of X and δ13C for the four high-Al goethites are 0.0067 ± 0.0007 and −20.1 ± 0.5‰, respectively. The δ13C value of the organic matter undergoing oxidation in this midlatitude (∼55°N) Late Paleocene soil appears to have been ∼ −28.2‰. Taken together, these data indicate an atmospheric CO2 concentration of ∼2400 ppmV (± ∼1200 ppmV) at ∼60 Ma BP. The inferred high concentration of atmospheric CO2 would have been coincident with the warm global climate of the Late Paleocene and is consistent with the idea that CO2 plays an important role in climate variation.  相似文献   

10.
Atmospheric carbon dioxide is widely studied using records of CO2 mixing ratio, δ13C and δ18O. However, the number and variability of sources and sinks prevents these alone from uniquely defining the budget. Carbon dioxide having a mass of 47 u (principally 13C18O16O) provides an additional constraint. In particular, the mass 47 anomaly (Δ47) can distinguish between CO2 produced by high temperature combustion processes vs. low temperature respiratory processes. Δ47 is defined as the abundance of mass 47 isotopologues in excess of that expected for a random distribution of isotopes, where random distribution means that the abundance of an isotopologue is the product of abundances of the isotopes it is composed of and is calculated based on the measured 13C and 18O values. In this study, we estimate the δ13C (vs. VPDB), δ18O (vs. VSMOW), δ47, and Δ47 values of CO2 from car exhaust and from human breath, by constructing ‘Keeling plots’ using samples that are mixtures of ambient air and CO2 from these sources. δ47 is defined as , where is the R47 value for a hypothetical CO2 whose δ13CVPDB = 0, δ18OVSMOW = 0, and Δ47 = 0. Ambient air in Pasadena, CA, where this study was conducted, varied in [CO2] from 383 to 404 μmol mol−1, in δ13C and δ18O from −9.2 to −10.2‰ and from 40.6 to 41.9‰, respectively, in δ47 from 32.5 to 33.9‰, and in Δ47 from 0.73 to 0.96‰. Air sampled at varying distances from a car exhaust pipe was enriched in a combustion source having a composition, as determined by a ‘Keeling plot’ intercept, of −24.4 ± 0.2‰ for δ13C (similar to the δ13C of local gasoline), δ18O of 29.9 ± 0.4‰, δ47 of 6.6 ± 0.6‰, and Δ47 of 0.41 ± 0.03‰. Both δ18O and Δ47 values of the car exhaust end-member are consistent with that expected for thermodynamic equilibrium at∼200 °C between CO2 and water generated by combustion of gasoline-air mixtures. Samples of CO2 from human breath were found to have δ13C and δ18O values broadly similar to those of car exhaust-air mixtures, −22.3 ± 0.2 and 34.3 ± 0.3‰, respectively, and δ47 of 13.4 ± 0.4‰. Δ47 in human breath was 0.76  ± 0.03‰, similar to that of ambient Pasadena air and higher than that of the car exhaust signature.  相似文献   

11.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

12.
An Early Eocene Oxisol in the Ione Formation of California formed in a coastal continental weathering environment at a paleolatitude of ∼38°N. The dominant minerals in the Oxisol are goethite, quartz, and kaolinite. Material balance calculations were applied to new measurements of chemical composition, D/H, and 18O/16O ratios of Oxisol samples to determine the δD (−150 ± 3‰) and δ18O (−2.4 ± 0.3‰) values of the goethite (α-FeOOH). These data, in combination with the global meteoric water line (MWL), yielded an isotopic temperature of 21(±4) °C. The nominal value of 21 °C contrasts with the modern mean annual temperature (MAT) of 16 °C in that area. The warmer temperature is consistent with formation of the goethite during the Early Eocene climatic optimum. The isotopic composition of the goethite and a temperature of 21 °C imply ancient water with a δD value of −61(±4)‰ and a δ18O value of −8.9(±0.5)‰. This Early Eocene δ18O (or δD) value is more negative than values in the range of isotopic scatter observed for modern global precipitation at sites with a MAT of 21 °C.At times of warm global climates, the location of a near-surface atmospheric isotherm would generally shift relative to its location under modern climatic conditions. A simple Rayleigh-type condensation model indicates that, if one “follows the isotherm”, the associated scatter in δD and δ18O of precipitation in very warm global climates should shift (for a given isotherm) to more negative values that may be detectable in proxy records. The isotopic results from the goethite of the Early Eocene Oxisol appear to add to evidence in support of this idea.  相似文献   

13.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

14.
Graphite in deep crustal enderbitic (orthopyroxene + garnet + plagioclase + quartz) granulites (740°C, 8.9 kb) of Nilgiri hills, southern India were investigated for their spectroscopic and isotopic characteristics. Four types of graphite crystals were identified. The first type (GrI), which is interstitial to other mineral grains, can be grouped into two subtypes, GrIA and GrIB. GrIA is either irregular in shape or deformed, and rough textured with average δ13C values of −12.7 ± 0.4‰ (n = 3). A later generation of interstitial graphite (GrIB) shows polygonal crystal shapes and highly reflecting smooth surface features. These graphite grains are more common and have δ13C values of −11.9 ± 0.3‰ (n = 14). Both subtypes show well-defined Raman shifts suggesting a highly crystalline nature. Cores of interstitial graphite grains have, on average, lower δ13C values by ∼0.5‰ compared to that of the rim. The second type of graphite (GrII) occurs as solid inclusions in silicate minerals, commonly forming regular hexagonal crystals with a slightly disordered structure. The third type of graphite (GrIII) is associated with solid inclusions (up to 100 μm) that have decrepitation halos of numerous small (<15 μm) satellite fluid inclusions of pure CO2 with varying density (1.105 to 0.75 g/cm3). The fourth type of graphite (GrIV) is found as daughter crystals within primary type CO2-fluid inclusions in garnet and quartz. These fluid inclusions have a range of densities (1.05 to 0.90 g/cm3), but in general are significantly less dense than graphite-free primary, pure CO2 fluid inclusions (1.12 g/cm3). Raman spectral characteristics of graphite inside fluid inclusions suggest graphite crystallization at low temperature (∼ 500°C). The precipitation of graphite probably occurred during the isobaric cooling of CO2-rich peak metamorphic fluid as a result of oxyexsolution of oxide phases. The oxyexsolution process is evidenced by the magnetite-ilmenite granular exsolution textures and the systematic presence of numerous micron-sized rutile and other oxide inclusions in association with fluid inclusions within garnet, plagioclase, and quartz.The carbon isotope compositions of coexisting CO2 (in fluid inclusions) and graphite show a fractionation (α2CO−gr) of ∼6‰ in garnet, consistent with the existing theoretical estimates of α2CO−gr at 800°C. A subsequent generation of CO2 inclusions trapped in matrix quartz and quartz segregation have higher δ13C values, −4‰ and −2.9‰ respectively. Graphite in quartz segregations also has higher δ13C values (−9.8‰) than those in enderbite (−12.7‰). Micro-graphite crystals included in garnet, quartz (enderbite), and quartz (segregation) have average δ13C values of −11.1, −10.4, and −8.7‰ respectively, indicating progressive enrichment in 13C with a decrease in temperature of recrystallization of respective minerals. This progressive enrichment is also observed in carbon isotope compositions of fluid inclusion CO2, suggesting isotopic equilibrium during graphite precipitation from CO2 fluids. Thus, the carbon isotope record preserved in these rocks by the interstitial graphite, CO2 fluid in enderbite, graphite microcrystals, graphite in quartz segregation, and CO2 fluid in quartz segregation, suggests a temperature-controlled isotopic evolution. This evolution is in accordance with a closed system Rayleigh-type graphite precipitation process which progressively enriched residual CO2 in 13C.  相似文献   

15.
Goethite (Ax-2) from Axel Heiberg Island (∼80°N) on the margin of the Arctic Ocean is the dominant mineral in a sample of “petrified” Eocene wood, but U, Th, and He measurements suggest that the goethite (α-FeOOH) crystallized in the latest Miocene/Pliocene (ca. 5.5 to 2.8 Ma). Measured δD and δ18O values of Ax-2 are −221 (±6)‰ and −9.6 (±0.5)‰, respectively. The inferred δD and δ18O values of the ancient water were about −139‰ and −18.6‰, respectively, with a calculated temperature of crystallization of 3 (±5)°C, which compares with the modern summer (J-J-A) temperature of 3 °C and contrasts with a modern MAT of −19 °C. Published results from various biological proxies on nearby Ellesmere Island indicate a Pliocene (∼4 Ma) MAT of either −6 or −0.4 °C and corresponding seasonal amplitudes of about 18 or 13 °C. A conductive heat flow model suggests that a temperature of 3 °C could represent goethite crystallization at depths of ∼100-200 cm (for MAT = −6 °C) or ∼250-450 cm (for MAT = −0.4 °C) over seasonally restricted intervals of time.The δ18O value of the Ax-2 water (−18.6‰) is more positive than the modern J-J-A precipitation (−22‰). In combination, the paleotemperatures and δ18O values of ancient waters (from Ax-2 and published results from three Eocene or Pliocene proxy sites on Axel Heiberg and Ellesmere Islands) are consistent with a warm season bias in those isotopic proxies. The results are also consistent with higher proportions of J-J-A precipitation in the annual total. If so, this emphasizes the importance of seasonality at high latitudes even in times of warmer global climates, and suggests that the Arctic hydrologic cycle, as expressed in the seasonal distribution and isotopic composition of precipitation (perhaps modified by a warmer Arctic Ocean), differed from modern.The δ13C value of the Fe(CO3)OH component in the Ax-2 goethite is +6.6‰, which is much more positive than expected if crystallizing goethite incorporated CO2 derived primarily from oxidation of relict Eocene wood with δ13C values of about −24‰. This apparent paradox may be resolved if the goethite is a product of oxidation of 13C-rich siderite, which had previously replaced wood in an Eocene methanogenic burial environment. Thus, the goethite retains a carbon isotope “memory” of a diagenetic Eocene event, but a δD and δ18O record of the latest Miocene/Pliocene Arctic climate.  相似文献   

16.
To understand possible volcanogenic fluxes of CO2 to the Martian atmosphere, we investigated experimentally carbonate solubility in a synthetic melt based on the Adirondack-class Humphrey basalt at 1-2.5 GPa and 1400-1625 °C. Starting materials included both oxidized and reduced compositions, allowing a test of the effect of iron oxidation state on CO2 solubility. CO2 contents in experimental glasses were determined using Fourier transform infrared spectroscopy (FTIR) and Fe3+/FeT was measured by Mössbauer spectroscopy. The CO2 contents of glasses show no dependence on Fe3+/FeT and range from 0.34 to 2.12 wt.%. For Humphrey basalt, analysis of glasses with gravimetrically-determined CO2 contents allowed calibration of an integrated molar absorptivity of 81,500 ± 1500 L mol−1 cm−2 for the integrated area under the carbonate doublet at 1430 and 1520 cm−1. The experimentally determined CO2 solubilities allow calibration of the thermodynamic parameters governing dissolution of CO2 vapor as carbonate in silicate melt, KII, (Stolper and Holloway, 1988) as follows: , ΔV0 = 20.85 ± 0.91 cm3 mol−1, and ΔH0 = −17.96 ± 10.2 kJ mol−1. This relation, combined with the known thermodynamics of graphite oxidation, facilitates calculation of the CO2 dissolved in magmas derived from graphite-saturated Martian basalt source regions as a function of P, T, and fO2. For the source region for Humphrey, constrained by phase equilibria to be near 1350 °C and 1.2 GPa, the resulting CO2 contents are 51 ppm at the iron-wüstite buffer (IW), and 510 ppm at one order of magnitude above IW (IW + 1). However, solubilities are expected to be greater for depolymerized partial melts similar to primitive shergottite Yamato 980459 (Y 980459). This, combined with hotter source temperatures (1540 °C and 1.2 GPa) could allow hot plume-like magmas similar to Y 980459 to dissolve 240 ppm CO2 at IW and 0.24 wt.% of CO2 at IW + 1. For expected magmatic fluxes over the last 4.5 Ga of Martian history, magmas similar to Humphrey would only produce 0.03 and 0.26 bars from sources at IW and IW + 1, respectively. On the other hand, more primitive magmas like Y 980459 could plausibly produce 0.12 and 1.2 bars at IW and IW + 1, respectively. Thus, if typical Martian volcanic activity was reduced and the melting conditions cool, then degassing of CO2 to the atmosphere may not be sufficient to create greenhouse conditions required by observations of liquid surface water. However, if a significant fraction of Martian magmas derive from hot and primitive sources, as may have been true during the formation of Tharsis in the late Noachian, that are also slightly oxidized (IW + 1.2), then significant contribution of volcanogenic CO2 to an early Martian greenhouse is plausible.  相似文献   

17.
Laboratory experiments on reagent-grade calcium carbonate and carbonate rich glacial sediments demonstrate previously unreported kinetic fractionation of carbon isotopes during the initial hydrolysis and early stages of carbonate dissolution driven by atmospheric CO2. There is preferential dissolution of Ca12CO3 during hydrolysis, resulting in δ13C-DIC values that are significantly lighter isotopically than the bulk carbonate. The fractionation factor for this kinetic isotopic effect is defined as εcarb. εcarb is greater on average for glacial sediments (−17.4‰) than for calcium carbonate (−7.8‰) for the < 63 μm size fraction, a sediment concentration of 5 g L−1 and closed system conditions at 5°C. This difference is most likely due to the preferential dissolution of highly reactive ultra-fine particles with damaged surfaces that are common in subglacial sediments. The kinetic isotopic fractionation has a greater impact on δ13C-DIC at higher CaCO3:water ratios and is significant during at least the first 6 h of carbonate dissolution driven by atmospheric CO2 at sediment concentrations of 5 g L−1. Atmospheric CO2 dissolving into solution following carbonate hydrolysis does not exhibit any significant equilibrium isotopic fractionation for at least ∼ 6 h after the start of the experiment at 5°C. This is considerably longer than previously reported in the literature. Thus, kinetic fractionation processes will likely dominate the δ13C-DIC signal in natural environments where rock:water contact times are short <6-24 h (e.g., glacial systems, headwaters in fluvial catchments) and there is an excess of carbonate in the sediments. It will be difficult apply conventional isotope mass balance techniques in these types of environment to identify microbial CO2 signatures in DIC from δ13C-DIC data.  相似文献   

18.
Theoretical models predict a marked increase in atmospheric O2 to ∼35% during the Permo-Carboniferous (∼300 Ma) occurring against a low (∼0.03%) CO2 level. An upper O2 value of 35%, however, remains disputed because ignition data indicate that excessive global forest fires would have ensued. This uncertainty limits interpretation of the role played by atmospheric oxygen in Late Paleozoic biotic evolution. Here, we describe new results from laboratory experiments with vascular land plants that establish that a rise in O2 to 35% increases isotopic fractionation (Δ13C) during growth relative to control plants grown at 21% O2. Despite some effect of the background atmospheric CO2 level on the magnitude of the increase, we hypothesize that a substantial Permo-Carboniferous rise in O2 could have imprinted a detectable geochemical signature in the plant fossil record. Over 50 carbon isotope measurements on intact carbon from four fossil plant clades with differing physiological ecologies and ranging in age from Devonian to Cretaceous reveal a substantial Δ13C anomaly (5‰) occurring between 300 and 250 Ma. The timing and direction of the Δ13C excursion is consistent with the effects of a high O2 atmosphere on plants, as predicted from photosynthetic theory and observed in our experiments. Preliminary calibration of the fossil Δ13C record against experimental data yields a predicted O2/CO2 mixing ratio of the ancient atmosphere consistent with that calculated from long-term models of the global carbon and oxygen cycles. We conclude that further work on the effects of O2 in the combustion of plant materials and the spread of wildfire is necessary before existing data can be used to reliably set the upper limit for paleo-O2 levels.  相似文献   

19.
Various iron-bearing primary phases and rocks have been weathered experimentally to simulate possible present and past weathering processes occurring on Mars. We used magnetite, monoclinic and hexagonal pyrrhotites, and metallic iron as it is suggested that meteoritic input to the martian surface may account for an important source of reduced iron. The phases were weathered in two different atmospheres: one composed of CO2 + H2O, to model the present and primary martian atmosphere, and a CO2 + H2O + H2O2 atmosphere to simulate the effect of strong oxidizing agents. Experiments were conducted at room temperature and a pressure of 0.75 atm. Magnetite is the only stable phase in the experiments and is thus likely to be released on the surface of Mars from primary rocks during weathering processes. Siderite, elemental sulfur, ferrous sulfates and ferric (oxy)hydroxides (goethite and lepidocrocite) are the main products in a water-bearing atmosphere, depending on the substrate. In the peroxide atmosphere, weathering products are dominated by ferric sulfates and goethite. A kinetic model was then developed for iron weathering in a water atmosphere, using the shrinking core model (SCM). This model includes competition between chemical reaction and diffusion of reactants through porous layers of secondary products. The results indicate that for short time scales, the mechanism is dominated by a chemical reaction with second order kinetics (k = 7.75 × 10−5 g−1/h), whereas for longer time scales, the mechanism is diffusion-controlled (DeA = 2.71 × 10−10 m2/h). The results indicate that a primary CO2- and H2O-rich atmosphere should favour sulfur, ferrous phases such as siderite or Fe2+-sulfates, associated with ferric (oxy)hydroxides (goethite and lepidocrocite). Further evolution to more oxidizing conditions may have forced these precursors to evolve into ferric sulfates and goethite/hematite.  相似文献   

20.
Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MWe). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m−2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they contributed little (<1%) to pre-production CO2 emissions due to the loss of >99% of the original CO2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO2 flux and heat flow surveys indicate that despite 20 a of production the variability in location, spatial extent and magnitude of CO2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60 g m−2 d−1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO2 diffuses through porous media of the soil zone. For high-flux sites (>300 g m−2 d−1), the δ13CO2 signature (−7.4 ± 0.3‰ OHW and −6.5 ± 0.6‰ OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO2 source for each respective upflow. Flux thresholds of <30 g m−2 d−1 for purely diffusive gas transport, between 30 and 300 g m−2 d−1 for combined diffusive–advective transport, and ?300 g m−2 d−1 for purely advective gas transport at Ohaaki were assigned. δ13CO2 values and cumulative probability plots of CO2 flux data both identified a threshold of ∼15 g m−2 d−1 by which background (atmospheric and soil respired) CO2 may be differentiated from hydrothermal CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号