首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
226Ra, 228Ra and Ba distributions as well as 228Ra/226Ra and 226Ra/Ba ratios were measured in seawater, suspended and sinking particles at the DYFAMED station in the Western Mediterranean Sea at different seasons of year 2003 in order to track the build-up and fate of barite through time. The study of the 228Raex/226Raex ratios (Raex = Ra activities corrected for the lithogenic Ra) of suspended particles suggests that Baex (Baex = Ba concentrations corrected for the lithogenic Ba, mostly barite) formation takes place not only in the upper 500 m of the water column but also deeper (i.e. throughout the mesopelagic layer). Temporal changes in the 228Raex/226Raex ratios of sinking particles collected at 1000 m depth likely reflect changes in the relative proportion of barite originating from the upper water column (with a high 228Ra/226Ra ratio) and formed in the mesopelagic layer (with a low 228Ra/226Ra ratio). 228Raex/226Raex ratios measured in sinking particles collected in the 1000 m-trap in April and May suggest that barite predominantly formed in the upper water column during that period, while barite found outside the phytoplankton bloom period (February and June) appears to form deeper in the water column. Combining ratios of both the suspended and sinking particles provides information on aggregation/disaggregation processes. High 226Raex/Baex ratios were also found in suspended particles collected in the upper 500 m of the water column. Because celestite is expected to be enriched in Ra [Bernstein R. E., Byrne R. H. and Schijf J. (1998) Acantharians: a missing link in the oceanic biogeochemistry of barium. Deep-Sea Res. II45, 491-505], acantharian skeletons may contribute to these high ratios in shallow waters. The formation of both acantharian skeletons and barite enriched in 226Ra may thus contribute to the decrease in the dissolved 226Ra activity and 226Ra/Ba ratios of surface waters observed between February and June 2003 at the DYFAMED station.  相似文献   

2.
In order to determine the geochemical evolution of a freshwater limestone cave system located in central Switzerland (Hell Grottoes at Baar/Zug,) young postglacial tufaceous limestone and travertine precipitates were investigated using the 230Th/234U ingrowth system. Additional analyses of further radionuclides within the 238U decay chain, i.e. 226Ra and 210Pb, showed that the Th/U chronometer started with insignificant inherited 230Th over the entire formation period of the travertine setting (i.e. 230Th(0)=0). A contribution from detrital impurities with 230Th/234U in secular equilibrium could be precisely subtracted by applying isochron dating of cogenetic phases and recently formed travertine. The resulting precise 230Th/234U formation ages were found to be consistent with the geological stratigraphy and were furthermore used to demonstrate the applicability of the next geologically important chronometer in the 238U-decay series, based on decay of excess 226Ra normalized to the initial, i.e.226Raex/226Ra(0). This system is suitable for dating phases younger than 7000 yr when the correction of a detritus component increasingly limits the precision of the 230Th/234U chronometer. Analytical solutions of the coupled 234U/230Th/226Ra radionuclide system predicted that the 226Raex/226Ra(0) chronometer is independent of the actual 230Th activity build up from decay of 234U, if the systems starts with zero inherited 230Th(0). The data set confirmed this hypothesis and showed furthermore that the initially incorporated 226Ra excess must have remained almost uniform in all limestone over a period of at least 7000 yr, i.e. 4–5 half-lives of 226Ra. This is concluded because (i) the 226Raex/226Ra(0) ages agreed well with those derived from 230Th/234U, (ii) all data plot within uncertainty on the 226Raex/226Ra(0) decay curve and (iii) the atomic Ba/Ca ratio was found to be constant in the travertine material independent of the sample ages. Provided that such boundary conditions hold, 226Raex/226Ra(0) should be applicable to materials which are suitable for 230Th/234U dating in sedimentology and oceanography, i.e. travertine, corals, phosphorites, etc., and should strongly support 230Th/234U for samples that have been formed a few thousand years ago.  相似文献   

3.
Factors controlling the groundwater transport of U, Th, Ra, and Rn   总被引:1,自引:0,他引:1  
A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the238U and232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the238U and232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance ϰi, characteristic of each nuclide. Where ϰi is much longer than the aquifer length, (for238U,234U, and232Th), the activities grow linearly with distance. Where gKi is short compared to the aquifer length, (for234Th,230Th,228Th,228Ra, and224Ra), the activities rapidly reach a constant or quasi-constant activity value. For226Ra and222Rn, the limiting activity is reached after 1 km. High δ234U values (proportional to the ratioɛ234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios230Th/232Th,228Ra/226Ra and224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for228Ra/226Ra and224Ra/226Ra activity ratios less than unity. From the model, the highest222Rn emanation equals 2ɛ. This is in agreement with the hypothesis that222Rn activity can be used as a first approximation for input by recoil (Krishnaswamiet al 1982). However, high222Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state.  相似文献   

4.
《Chemical Geology》2002,182(2-4):409-421
An improved method was developed to measure 226Ra, 228Ra and 224Ra in freshwaters by gamma spectrometry. Radium was selectively extracted from acidified samples using specific filters (3M EMPORE™ Radium Rad disks). The latter was subsequently analysed by gamma spectrometry. Simultaneous and direct determination of the activities of the three isotopes was performed by comparison of gamma rays of the Radium Rad disks with those of a calibrated standard disk. This efficient and reliable method allowed a reduction of sample processing to a few hours.This technique was applied to analyse the Ra isotope compositions of several CO2-rich hydrothermal springs of the western border of the Limagne graben (French Massif Central). The studied springs emerge from a succession of granitic outcrops lined up along a major fault. Their chemical compositions evolve from calcic and magnesian chloro-bicarbonated to sodic bicarbonated. All the springs display high Ra activities, probably linked to high CO2 content and/or high cation content of these waters, with various Ra isotope ratios. 226Ra activity ranges from 588 to 2287 mBq/l and 228Ra activity from 260 to 1590 mBq/l, whereas 224Ra displays an activity between 245 and 1808 mBq/l. Four of the six analysed springs have (228Ra/226Ra) activity ratios lower than 0.7, thus, significantly lower than the ratio expected from an interaction with a calc-alkaline granitoid (typically having (232Th/238U) activity ratio between 1 and 2). Low (228Ra/226Ra) ratio (0.27) of the northern water (Montpensier) suggests the existence in this area of a zone of U concentration, possibly resulting from U mobilization and accumulation induced by previous hydrothermal events. The (224Ra/228Ra) ratios display smaller variations. They suggest short transit times from the zone of Ra leaching to the surface (a few days) or a very shallow addition of 224Ra (e.g., from a localised zone where 228Th could be preferentially adsorbed on the mineral surfaces). In some cases, these ratios might be used to infer differences in transit times of waters between neighboring springs.  相似文献   

5.
We measured 228Raex/226Raex and 226Raex/Baex ratios in suspended and sinking particles collected at the Oceanic Flux Program (OFP) time-series site in the western Sargasso Sea and compared them to seawater ratios to provide information on the origin and transport of barite (BaSO4) in the water column. The 228Raex/226Raex ratios of the suspended particles down to 2000 m are nearly identical to those of seawater at the same water depth. These ratios are much lower than expected if suspended barite was produced in surface waters and indicate that barite is produced throughout the mesopelagic layer. The 228Raex/226Raex activity ratios of sinking particles collected at 1500 and 3200 m varied mostly between 0.1 and 0.2, which is intermediate between the seawater ratio at these depths (<0.03) and the seawater ratios found in the upper 250 m (0.31-0.42). This suggests that excess Ba (i.e., Baex = Batotal − Balithogenic), considered to be mainly barite, present in the sinking flux is a mixture of crystals formed recently in the upper water column, formed several years earlier in the upper water column, or formed recently in deeper waters. We observe a sizeable temporal variability in the 228Raex/226Raex ratios of sinking particles, which indicates temporal variability in the relative proportion of barite crystals originating from surface (with a high 228Raex/226Raex ratio) and mesopelagic (with a low 228Raex/226Raex ratio) sources. However, we could not discern a clear pattern that would elucidate the factors that control this variability. The 226Ra/Ba ratios measured in seawater are consistent with the value reported from the GEOSECS expeditions (2.3 dpm μmol−1) below 500 m depth, but are significantly lower in the upper 500 m. High 226Raex/Baex ratios and elevated Sr concentrations in suspended particles from the upper water column suggest preferential uptake of 226Ra over Ba during formation of SrSO4 skeletons by acantharians, which must contribute to barite formation in shallow waters. Deeper in the water column the 226Raex/Baex ratios of suspended particles are lower than those of seawater. Since 228Raex/226Raex ratios demonstrate that suspended barite at these depths has been produced recently and in situ, their low 226Raex/Baex ratios indicate preferential uptake of Ba over Ra in barite formed in mesopelagic water.  相似文献   

6.
We analyzed 238U, 234U, 232Th, 230Th, and 226Ra by thermal ionization mass spectrometry (TIMS) and Ba by inductively coupled plasma optical emission spectrometry (ICP-OES) on eight Mn/Fe crusts from the Mecklenburg Bay (SW Baltic) and on one from the Bothnian Bay (N Baltic) to test the 226Raex/Ba ratio as potential geochronometer. 226Raex/Ba ratios decrease as a function of depth within the concretions in all analyzed profiles. Calculated diffusion coefficients are relatively low (∼9 · 10−7 cm2/yr for Ra and 5 · 10−7 cm2/yr for Ba) and suggest that diffusion is negligible for the Ra and Ba record. In addition, 226Raex/Ba ages are consistent and independent from the growth rate and growth direction within a crust. Thus, the decline in 226Raex/Ba ratio is most likely due to radioactive decay of 226Raex, although the influence of varying oxic conditions has still to be evaluated. 226Raex/Ba growth rates range from 0.021 to 0.0017 mm/yr and tend to be lower than those calculated and based on stratigraphic methods (1 to 0.013 mm/yr). 226Raex/Ba ages of concretions from shallow water environment (20 m depth, Mecklenburg Bay/SW Baltic) cover a time interval from 990 ± 140 yr to 4310 ± 310 yr BP corresponding to the stabilization of the sea level close to the present position about 5500 to 4500 yr ago. One sample from greater depth (70 m, Bothnian Bay-/N Baltic) showed a higher 226Raex/Ba age of 6460 ± 520 yr BP.  相似文献   

7.
《Applied Geochemistry》2005,20(10):1965-1973
The shells of marine and fresh water mollusks can serve as effective archives in retrieving information on natural and anthropogenic environmental changes. The advantage of using bivalves is that they integrate water chemistry changes into their shells during their life span. Retrospective study of environmental changes and pollutants using bivalve shells requires precise determination of the time of incorporation into the abiotic environmental matrix (here after age) of the specimen. For the first time, a set of archived bivalve samples (for which date of the death/collection is known) has been analyzed to establish the ages of mollusk shells using the 210Pb–226Ra disequilibrium method. In addition, Sr and 90Sr were analysed. The ages obtained using the 210Pb/226Ra disequilibrium dating method agrees well with the calendar years calculated from the date of death/collection. The ages obtained can be utilized to reconstruct the 90Sr levels in the water column at sites where the mollusk shells were collected.  相似文献   

8.
Deep-sea coral has proved useful for paleoceanographic reconstructions and for documenting 14C-ages of water masses using 230Th-ages. However, for precise and accurate U-series dating, further information on coral-age structure, growth rate and diagenetic evolution is still needed. To document such processes, we used U-Th-226Ra systematics in a 40 cm diameter, Lophelia pertusa specimen collected in 1912 from the Eastern Atlantic (Sea of the Hebrides). External parts of the specimen are thought to have been alive when collected whereas more internal parts were likely dead. The “live-collected” and “dead” parts of the skeleton were sampled and analyzed for their 230Th, 232Th, 234U, 238U, 226Ra and Ba contents by thermal ionization and multicollector inductively coupled plasma mass spectrometry. 230Th/234U ratios in the most recent parts yielded ages of 86 ± 6 a and 92 ± 9 a, in agreement with the date of recovery. The older parts yielded 230Th ages ranging from 169 ± 15 to 211 ± 10 a (n = 5), but had a 31% higher U content than more recent parts of the skeleton. This raises concerns about the possibility of secondary diagenetic U uptake, although an environmentally controlled U/Ca shift between coral growth stages cannot be ruled out. 226Ra/Ba measurements were made, and model- 226Ra/Ba ages averaging 250 ± 12 yr were calculated for the older part, assuming a constant initial 226Ra/Ba ratio in bottom waters. These ages are slightly older than 230Th-ages, suggesting either that 226Ra/Ba ratios of ambient-seawater changed over time or that a diagenetic phenomenon have affected the U-series system, or both. Scanning electron microscope observations revealed bioerosion and secondary biomineralization in the older part of the coral skeleton, supporting the hypothesis that diagenetic processes may have influenced the ages obtained by the U-series toolbox. Modeled U-series ages for such an open system are discussed. However, a comparison between 14C- and 230Th-ages performed on both pristine and bioeroded parts of the coral gives coherent values (ca 450 a) for the preindustrial 14C-reservoir age of North Atlantic waters. It remains to be determined, however, whether diagenesis occurs rapidly over a short period of time, or whether it continues for longer periods. In the latter case, diagenetic processes would hamper paleoceanographic interpretations as well as the precise calculation of 14C ages of deep-water masses, based on comparative U/Th- and 14C-chronologies.  相似文献   

9.
活火山是指1万年来有过喷发历史的全新世火山。火山的高分辨年代学对火山灾害评估和火山分类具有重要意义。对于缺乏历史记载的全新世火山,直接对火山岩进行同位素定年很困难。本文利用具有高时间分辨率的镭-钍-铀非平衡确定中国东部年轻火山的年龄。根据镭-钍-铀同位素,海南岛的马鞍岭和雷虎岭是全新世火山(马鞍岭:4.3ka;雷虎岭:4.7ka);镜泊湖火山(4.9ka)也是全新世火山;龙岗火山存在晚更新世和全新世活动(7.0ka,15.0ka);大兴安岭阿尔山和诺敏河Ra/Th非平衡消失但~(230)Th/~(238)U非平衡显著,属于晚更新世喷发(阿尔山:63ka;诺敏河:71ka)。海南岛的马鞍岭火山、雷虎岭火山和东北地区的龙岗火山、镜泊湖火山,是4座活火山。至于东北地区的阿尔山和诺敏河火山是否是活火山,有待测试更多样品的Ra/Th同位素。五大连池老黑山和火烧山有历史喷发记录,这与它们都存在显著Ra/Th非平衡一致。五大连池老黑山和火烧山的岩浆滞留年龄分别小于4.2ka和3.2ka,岩浆上升速率 18~23m/y。  相似文献   

10.
Although most arc lavas have experienced significant magma differentiation, the effect of the differentiation process on U-series disequilibria is still poorly understood. Here we present a numerical model for simulating the effect of time-dependent magma differentiation processes on U-series disequilibria in lavas from convergent margins. Our model shows that, in a closed system with fractional crystallization, the ageing effect can decrease U-series disequilibria via radioactive decay while in an open system, both ageing and bulk assimilation of old crustal material serve to reduce the primary U-series disequilibria. In contrast, with recharge of refresh magma, significant 226Ra excess in erupted lavas can be maintained even if the average residence time is longer than 8000 years.The positive correlations of (226Ra/230Th) between Sr/Th or Ba/Th in young lavas from convergent margins have been widely used as evidence of fluid addition generating the observed 226Ra excess in subduction zones. We assess to what extent the positive correlations of (226Ra/230Th) with Sr/Th and Ba/Th observed in the Tonga arc could reflect AFC process. Results of our model show that these positive correlations can be produced during time-dependent magma differentiation at shallow crustal levels. Specifically, fractional crystallization of plagioclase and amphibole coupled with contemporaneous decay of 226Ra can produce positive correlations between (226Ra/230Th) and Sr/Th or Ba/Th (to a lesser extent). Therefore, the correlations of (226Ra/230Th) with Sr/Th and Ba/Th cannot be used to unambiguously support the fluid addition model, and the strength of previous conclusions regarding recent fluid addition and ultra-fast ascent rates of arc magmas is significantly lessened.  相似文献   

11.
Precise measurements of 238U-230Th-226Ra disequilibria in lavas erupted within the last 100 yr on Mt. Cameroon are presented, together with major and trace elements, and Sr-Nd-Pb isotope ratios, to unravel the source and processes of basaltic magmatism at intraplate tectonic settings. All samples possess 238U-230Th-226Ra disequilibria with 230Th (18-24%) and 226Ra (9-21%) excesses, and there exists a positive correlation in a (226Ra/230Th)-(230Th/238U) diagram. The extent of 238U-230Th-226Ra disequilibria is markedly different in lavas of individual eruption ages, although the (230Th/232Th) ratio is constant irrespective of eruption age. When U-series results are combined with Pb isotope ratios, negative correlations are observed in the (230Th/238U)-(206Pb/204Pb) and (226Ra/230Th)-(206Pb/204Pb) diagrams. Shallow magma chamber processes like magma mixing, fractional crystallization and wall rock assimilation do not account for the correlations. Crustal contamination is not the cause of the observed isotopic variations because continental crust is considered to have extremely different Pb isotope compositions and U/Th ratios. Melting of a chemically heterogeneous mantle might explain the Mt. Cameroon data, but dynamic melting under conditions of high DU and DU/DTh, long magma ascent time, or disequilibrium mineral/melt partitioning, is required. The most plausible scenario to produce the geochemical characteristics of Mt. Cameroon samples is the interaction of melt derived from the asthenospheric mantle with overlying sub-continental lithospheric mantle which has elevated U/Pb (>0.75) and Pb isotope ratios (206Pb/204Pb > 20.47) due to late Mesozoic metasomatism.  相似文献   

12.
This study was conducted to define the geochemical controls on 226Ra during raffinate (pH = 1.2) neutralization to pH 10 at the Key Lake U mill in northern Saskatchewan, Canada. High activities (120–150 Bq/L) of aqueous phase 226Ra are present in raffinate produced during milling of U ore. The solubility control of 226Ra in the SO4-rich, hydrometallurgical raffinate solutions often involves the addition of BaCl2 to form a radium-barite co-precipitate (Ba(Ra)SO4). As such, neutralization experiments were conducted with samples of mill raffinate using Ca(OH)2 or NaOH with and without the addition of BaCl2. Radium-226 activity decreased from 150 to <4 Bq/L for all combinations of neutralizing agents with Ca(OH)2 + BaCl2 being the most effective combination (final activity ∼1.0 Bq/L; ∼99.3% removal). In the absence of BaCl2, Ca(OH)2 more efficiently removed 226Ra than NaOH between pH 4 and 8, due to the co-precipitation of 226Ra with gypsum. Overall, neutralization with the addition of BaCl2 reduced 226Ra activities at lower pH values (by pH 4.5), due to co-precipitation of 226Ra with BaSO4. At varying concentrations of BaCl2, aqueous phase activities of 226Ra converged, but did not attain steady-state values during neutralization and would continue to decrease with time. Sequential extractions indicated that 226Ra in precipitates formed during neutralization of the mill raffinate is dominated by amorphous and crystalline Fe hydroxide phases, consistent with raffinate neutralization experiments that showed that adsorption onto ferrihydrite can remove most 226Ra in the raffinate. Data generated in this study are being used to define the long-term geochemical controls on 226Ra in U mill processes and tailings.  相似文献   

13.
We present data for U and its decay series nuclides 230Th, 226Ra, 231Pa, and 210Po for 14 lavas from Kick’em Jenny (KEJ) submarine volcano to constrain the time-scales and processes of magmatism in the Southern Lesser Antilles, the arc having the globally lowest plate convergence rate. Although these samples are thought to have been erupted in the last century, most have (226Ra)/(210Po) within ±15% of unity. Ten out of 14 samples have significant 226Ra excesses over 230Th, with (226Ra)/(230Th) up to 2.97, while four samples are in 226Ra-230Th equilibrium within error. All KEJ samples have high (231Pa)/(235U), ranging from 1.56 to 2.64 and high 238U excesses (up to 43%), providing a global end-member of high 238U and high 231Pa excesses. Negative correlations between Sr, sensitive to plagioclase fractionation, and Ho/Sm, sensitive to amphibole fractionation, or K/Rb, sensitive to open system behavior, indicate that differentiation at KEJ lavas was dominated by amphibole fractionation and open-system assimilation. While (231Pa)/(235U) does not correlate with differentiation indices such as Ho/Sm, (230Th)/(238U) shows a slight negative correlation, likely due to assimilation of materials with slightly higher (230Th)/(238U). Samples with 226Ra excess have higher Sr/Th and Ba/Th than those in 226Ra-230Th equilibrium, forming rough positive correlations of (226Ra)/(230Th) with Sr/Th and Ba/Th similar to those observed in many arc settings. We interpret these correlations to reflect a time-dependent magma differentiation process at shallow crustal levels and not the process of recent fluid addition at the slab-wedge interface.The high 231Pa excesses require an in-growth melting process operating at low melting rates and small residual porosity; such a model will also produce significant 238U-230Th and 226Ra-230Th disequilibrium in erupted lavas, meaning that signatures of recent fluid addition from the slab are unlikely to be preserved in KEJ lavas. We instead propose that most of the 238U-230Th, 226Ra-230Th, and 235U-231Pa disequilibria in erupted KEJ lavas reflect the in-growth melting process in the mantle wedge (reflecting variations in U/Th, daughter-parent ratios, fO2, and thermal structure), followed by modification by magma differentiation at crustal depths. Such a conclusion reconciles the different temporal implications from different U-series parent-daughter pairs and relaxes the time constraint on mass transfer from slab to eruption occurring in less than a few thousand years imposed by models whereby 226Ra excess is derived from the slab.  相似文献   

14.
The adsorption rate constants of Ra and Th were estimated from empirical data from a freshwater lake and its feeding saline springs. We utilized the unique setting of Lake Kinneret (Sea of Galilee, northern Israel) in which most of the Ra and Th nuclides are introduced into the lake by saline springs with high 226Ra activities and a high 224Ra/228Ra ratio of 1.5. The mixing of the Ra enriched saline waters and freshwater in the lake causes the 224Ra/228Ra ratio to drop down to 0.1 in the Kinneret due to preferential adsorption of 228Th. These conditions constitute a “natural experiment” for estimating adsorption rates. We developed a simple mass-balance model for the radionuclides in Lake Kinneret that accurately predicted the Ra isotope ratios and the 226Ra activity in the lake. The model is comprised of simultaneous equations; one for each radionuclide. The equations have one input term: supply of radionuclides from the saline springs; and three output terms: adsorption on particles in the lake, radioactive decay and outflow from the lake. The redundancy in the analytical solutions to the mass balance equations for the relevant nuclides constrained the values of Ra and Th adsorption rate constants to a very narrow range. Our results indicate that the adsorption rate constant for Ra is between 0.005 d−1 and 0.02 d−1. The rate constant for Th is between 0.5 d−1 and 1 d−1, about fifty to a hundred times higher. The estimated desorption rate coefficient for Ra is about 50-100 times larger than its adsorption rate constant. The mass-balance equations show that the residence times of all Ra isotopes (226Ra, 228Ra,223Ra, 224Ra) and of 228Th in the lake are about 95, 92, 14, 6 and 1 d, respectively. These residence times are much shorter than the residence time of water in the lake (about 5.5 y). The steady state activity ratios in Lake Kinneret depend mainly on the adsorption rate constants, decay constants, the outflow rate from the lake and the activity ratios in the saline springs. The activity ratios are independent of the saline springs flow rate.  相似文献   

15.
采用氢氟酸-硝酸-盐酸混合酸密闭消解含铀矿石样品,用阴离子交换树脂、阳离子交换树脂和锶特效树脂逐级分离富集铀、钍和镭。使用高分辨电感耦合等离子体质谱(HR-ICPMS)测定分离纯化液中234U/238U2、30Th/232Th和228Ra/226Ra同位素。比值的测量精密度取决于比值的大小和对应核素浓度的大小。对质量浓度为10 ng/mL天然铀测量液,234U/238U的测量精密度优于1.2%;对230Th质量浓度为0.6ng/mL且230Th和232Th质量浓度接近的测量液,230Th/232Th的测量精密度为1.2%;对228Ra质量浓度为0.48 pg/mL且228Ra和226Ra质量浓度接近的测量液,228Ra/226Ra的测量精密度为4.0%。  相似文献   

16.
《Applied Geochemistry》2001,16(1):109-122
The purpose of this study was to elucidate the processes controlling the distribution and behavior of the longer-lived Ra isotopes in continuous Paleozoic carbonate aquifers of parts of Missouri, Kansas, and Oklahoma. Activities of (228Ra) and (226Ra) were analyzed in fresh and saline ground waters, brines, and rocks. The fluids have a wide salinity range (200–250,000 mg l−1 total dissolved solids). The (226Ra) activity ranges from 0.66–7660 dpm kg−1 and correlates with salinity and other alkaline earth element (Ca, Sr, and Ba) concentrations. The range of (228Ra:226Ra) ratios in the fluids (0.06–1.48) is similar to that in the aquifer rocks (0.21–1.53). The relatively low mean fluid (228Ra:226Ra) ratio (0.30) reflects the low Th:U ratio of the predominant carbonate aquifer rock. Radium occurs mostly (≥77%) as Ra2+ species in the fluids. Salinity-dependent sorption–desorption processes (with log K values from 100–104 and negatively correlated with salinity), involving Th-enriched surface coatings on aquifer flow channels, can explain the rapid solid–fluid transfer of Ra isotopes in the system and the correlation of Ra with salinity.  相似文献   

17.
A method is described for bringing a sediment sample into solution and subsequently carrying out analysis for 210Pb, 226Ra and 137Cs. Silica is removed from the sample by cyclic HNO3HF treatments. 137Cs is separated from 210Ra in a carbonate fusion, extracted by absorption on ammonium molybdophosphate, precipitated directly with BiI3 in presence of citric acid, and β-counted. 210Pb and 226Ra are separated out by 70–75% HNO3 precipitation. Further purification and mutual separation of the two radionuclides is achieved by solvent extraction and anion-exchange techniques. 210Pb and 226Ra are determined by β- and α- counting of their chromate precipitates, respectively, after allowing suitable ingrowth periods for their daughters. The procedural steps effectively eliminate possible interference from other natural or fall-out radioactivities.  相似文献   

18.
研究了TIMS测定铀矿石样品中234U/238U、230Th/232Th、228Ra/226Ra的方法。建立了铀矿石密闭混酸一次溶样的方法和采用阴离子、阳离子和Sr特效树脂逐级离子交换分离纯化U、Th和Ra的流程,满足了TIMS测量要求。测定结果表明:100~1000 ng的天然铀中234U/238U,其测量精密度从静态多接收的2.34%提高到动态多接收的0.47%;对230Th与232Th丰度接近、质量为1μg左右的钍,采用三带点样技术和法拉第多接收技术测定230Th/232Th,其内精度平均值为0.0048%,外精度为0.028%;采用单带加钽发射剂,ETP跳峰测定50~100 fg镭-228稀释剂中的228Ra/226Ra,其内精度小于0.10%,外精度小于0.20%。比较TIMS和HR-ICP-MS、α能谱法测定234U/238U、230Th/232Th、228Ra/226Ra结果,三者结果相吻合。TIMS测量法样品用量少、快速、准确、精密度高,是U、Th、Ra同位素比值测定方法的又一补充。  相似文献   

19.
General problems in determining and interpreting shell C14 dates are discussed: calculation methods, factors influencing primary activity (apparent age), and determination of contamination. It is concluded that shell dates are reliable when handled carefully. Measurements on ten shells, collected between 1898 and 1923 on the Norwegian coast, gave apparent ages from 340±75 to 550±80 years, indicating that apparent age is not a significant problem in dating of Norwegian shells.  相似文献   

20.
《Applied Geochemistry》2002,17(6):781-792
Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of ‘bomb’ 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th /234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95±0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10±0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean=0.94±0.07). These data indicate that 234U has been removed from the rock samples in the last ∼350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock. More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号