首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The stable carbon isotopic composition (expressed as δ13C) of herbivore remains is commonly used to reconstruct past changes in the relative abundance of C4 versus C3 grass biomass (C4 relative abundance). However, the strength of the relationship between herbivore δ13C and C4 relative abundance in extant ecosystems has not been thoroughly examined. We determined sources of variation in δ13C of bone collagen and tooth enamel of kangaroos (Macropus spp.) collected throughout Australia by measuring δ13C of bone collagen (779 individuals) and tooth enamel (694 individuals). An index of seasonal water availability, i.e. the distribution of rainfall in the C4 versus C3 growing seasons, was used as a proxy for C4 relative abundance, and this variable explained a large proportion of the variation in both collagen δ13C (68%) and enamel δ13C (68%). These figures increased to 78% and 77%, respectively, when differences between kangaroo species were accounted for. Vegetation characteristics, such as woodiness and the presence of an open forest canopy, had no effect on collagen or enamel δ13C. While there was no relationship between collagen δ13C and kangaroo age at death, tooth enamel produced later in life, following weaning, was enriched in 13C by 3.5‰ relative to enamel produced prior to weaning. From the observed relationships between seasonal water availability and collagen and enamel δ13C, enrichment factors (ε) for collagen-diet and enamel-diet (post-weaning) were estimated to be 5.2‰ ± 0.5 (95% CI) and 11.7‰ ± 0.6 (95% CI), respectively. The findings of this study confirm that at a continental scale, collagen and enamel δ13C of a group of large herbivores closely reflect C4 relative abundance. This validates a fundamental assumption underpinning the use of isotopic analysis of herbivore remains to reconstruct changes in C4 relative abundance.  相似文献   

2.
This research presents the individual amino acid δ13C values in bone collagen of humans (n = 9) and animals (n = 27) from two prehistoric shell midden sites in Korea. We obtained complete baseline separation of 16 of the 18 amino acids found in bone collagen by using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). The isotopic results reveal that the humans and animals in the two sites had similar patterns in essential amino acids (EAAs) and non-essential amino acids (NEAAs). The EAA and NEAA δ13C values in humans are intermediate between those in marine and terrestrial animals. However, the threonine δ13C values in humans and animals measured in this study are more highly enriched than those of other amino acids. At both sites, all amino acids in marine animals are 13C-enriched relative to those of the terrestrial animals. The isotopic evidence suggests that the Tongsamdong human had EAAs and NEAAs from marine food resources, while the Nukdo humans mainly had EAAs from terrestrial food resources but obtained NEAAs from both terrestrial and marine resources. The δ13C isotopic differences in amino acids between marine and terrestrial animals were the largest for glycine (NEAA) and histidine (EAA) and the smallest for tyrosine (NEAA) and phenylalanine (EAA). In addition, threonine among the EAAs also had a large difference (∼8‰) in δ13C values between marine and terrestrial animals, and has the potential to be used as an isotopic marker in palaeodietary studies. Threonine δ13C values were used in conjunction with the established Δ13CGlycine-phenylalanine values and produced three distinct dietary groups (terrestrial, omnivorous, and marine). In addition, threonine δ13C values and Δ13CSerine-phenylalanine values were discovered to separate between two dietary groups (terrestrial vs. marine), and these δ13C values may provide a potential new indicator for investigating the distinction between marine and terrestrial protein sources in human diets.  相似文献   

3.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

4.
We present detailed petrographic surveys of apatite grains in association with carbonaceous material (CM) in two banded iron formations (BIFs) from the Paleoproterozoic of Uruguay and Michigan for comparison with similar mineral associations in the highly debated Akilia Quartz-pyroxene (Qp) rock. Petrographic and Raman spectroscopic surveys of these Paleoproterozoic BIFs show that apatite grains typically occur in bands parallel to bedding and are more often associated with CM when concentrations of organic matter are high. Carbonaceous material in the Vichadero BIF from Uruguay is generally well-crystallized graphite and occurs in concentrations around 0.01 wt% with an average δ13Cgra value of −28.6 ± 4.4‰ (1σ). In this BIF, only about 5% of apatite grains are associated with graphite. In comparison, CM in the Bijiki BIF from Michigan is also graphitic, but occurs in concentrations around 2.4 wt% with δ13Cgra values around −24.0 ± 0.3‰ (1σ). In the Bijiki BIF, more than 78% of apatite grains are associated with CM. Given the geologic context and high levels of CM in the Bijiki BIF, the significantly higher proportion of apatite grains associated with CM in this rock is interpreted to represent diagenetically altered biomass and shows that such diagenetic mineral associations can survive metamorphism up to the amphibolite facies.Isotope compositions of CM in muffled acidified whole-rock powders from the Akilia Qp rock have average δ13Cgra values of −17.5 ± 2.5‰ (1σ), while δ13Ccarb values in whole-rock powders average −4.0 ± 1.0‰ (1σ). Carbon isotope compositions of graphite associated with apatite and other minerals in the Akilia Qp rock were also measured with the NanoSIMS to have similar ranges of δ13Cgra values averaging −13.8 ± 5.6‰ (1σ). The NanoSIMS was also used to semi-quantitatively map the distributions of H, N, O, P, and S in graphite from the Akilia Qp rock, and relative abundances were found to be similar for graphite associated with apatite or with hornblende, calcite, and sulfides. These analyses revealed generally lower abundances of trace elements in the Akilia graphite compared to graphite associated with apatite from Paleoproterozoic BIFs.Graphite associated with hornblende, calcite, and sulfides in the Akilia Qp rock was fluid-deposited at high-temperature from carbon-bearing fluids, and since this graphite has similar ranges of δ13Cgra values and of trace elements compared to graphite associated with apatite, we conclude that the Akilia graphite in different mineral associations formed from the same source(s) of CM. Collectively our results do not exclude a biogenic origin of the carbon in the Akilia graphite, but because some observations can not exclude graphitization of abiogenic carbon from CO2- and CH4-bearing mantle fluids, there remain ambiguities with respect to the exact origin of carbon in this ancient metasedimentary rock. Accordingly, there may have been several generations of graphite formation along with possibly varying mixtures of CO2- and CH4-bearing fluids that may have resulted in large ranges of δ13Cgra values. The possibility of fluid-deposited graphite associated with apatite should be a focus of future investigations as this may prove to be an alternative pathway of graphitization from phosphate-bearing fluids. Correlated micro-analytical approaches tested on terrestrial rocks in this work provide insights into the origin of carbon in ancient graphite and will pave the way for the search for life on other ancient planetary surfaces.  相似文献   

5.
Silica phytoliths, which are deposits of opal-A that precipitate in the intra- and intercellular spaces of plant tissues during transpiration, commonly contain small amounts of occluded organic matter. In this paper, we investigate whether the δ13C values of phytoliths from a C4 grass, Calamovilfa longifolia, vary in response to climatic variables that can affect the carbon-isotope composition of plant tissues. There is no significant correlation (r2 < 0.3) between climate variables and the δ13C values of C. longifolia tissues (average δ13Ctissue = −13.1 ± 0.6 ‰; n = 70) across the North American prairies. However, plant tissue δ13C values are lower for grasses collected in populated areas where the δ13C value of atmospheric CO2 is expected to be lower because of fossil fuel burning. Phytolith δ13C values are more variable (δ13C = −27.3 to −23.0‰; average = −25.1 ± 1.3‰; n = 34) and more sensitive to changes in aridity than whole tissue δ13C values. The strongest correlations are obtained between the δ13C values of stem or sheath phytoliths and humidity (r2 = 0.3), latitude (r2 = 0.4) and amount of precipitation (r2 = 0.5). However, use of these relationships is limited by the wide spread in δ13C values of phytoliths from different plant tissues at the same location. We have been unable to infer any relationship between δ13C values of phytoliths and expected variations in the δ13C values of atmospheric CO2. The C. longifolia phytoliths are depleted of 13C relative to tissue carbon by 10-14‰. This means that the phytoliths examined in this study have carbon isotopic compositions within the range reported previously for phytoliths from C3 plants. This observation may further limit the usefulness of soil-phytolith assemblage δ13C values for identifying shifts in grassland C3:C4 ratios.  相似文献   

6.
A suite of natural gases from the northern Songliao Basin in NE China were characterized for their molecular and carbon isotopic composition. Gases from shallow reservoirs display clear geochemical evidence of alteration by biodegradation, with very high dryness (C1/C2+ > 100), high C2/C3 and i-C4/n-C4 ratios, high nitrogen content and variable carbon dioxide content. Isotopic values show wide range variations (δ13CCH4 from −79.5‰ to −45.0‰, δ13CC2H6 from −53.7‰ to −32.2‰, δ13CC3H8 from −36.5‰ to −20.1‰, δ13CnC4H10 from −32.7‰ to −24.5‰, and δ13CCO2 from −21.6‰ to +10.5‰). A variety of genetic types can be recognized on the basis of chemical and isotopic composition together with their geological occurrence. Secondary microbial gas generation was masked by primary microbial gas and the mixing of newly generated methane with thermogenic methane already in place in the reservoir can cause very complicated isotopic signatures. System openness also was considered for shallow biodegraded gas accumulations. Gases from the Daqing Anticline are relatively wet with 13C enriched methane and 13C depleted CO2, representing typically thermogenic origin. Gases within the Longhupao-Da’an Terrace have variable dryness, 13C enriched methane and variable δ13C of CO2, suggesting dominant thermogenic origin and minor secondary microbial methane augment. The Puqian-Ao’nan Uplift contains relatively dry gas with 13C depleted methane and 13C enriched CO2, typical for secondary microbial gas with a minor part of thermogenic methane. Gas accumulations in the Western Slope are very dry with low carbon dioxide concentrations. Some gases contain 13C depleted methane, ethane and propane, indicating low maturity/primary microbial origin. Recognition of varying genetic gas types in the Songliao Basin helps explain the observed dominance of gas in the shallow reservoir and could serve as an analogue for other similar shallow gas systems.  相似文献   

7.
Pollen grains from grasses using the C3 and C4 photosynthetic pathways have distinct ranges of δ13C values that may be used to estimate their relative abundance in paleorecords. We evaluated a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer (SWiM-IRMS) for δ13C analysis of individual grass-pollen grains. Pollen from four C3 and four C4 grass species was isolated through micromanipulation and analyzed as single grains suspended in water. A carbon yield greater than the 2σ range of the carbon content of blanks containing only water was used to distinguish samples containing pollen (“pollen present”) from those not containing pollen. This criterion resulted in the exclusion of ∼45% of the 946 samples applied to the wire. The average δ13C values (±1σ) of the remaining samples were −26.9‰ (±6.3‰) and −11.5‰ (±9.6‰) for C3 grasses and C4 grasses, respectively, after blank-correcting the δ13C data. These results suggest that the SWiM-IRMS system can be used to distinguish C3 from C4 grass pollen. The high variability in measured δ13C values is likely caused by a combination of factors. These include natural isotopic variability among individual pollen grains; the relatively poor precision that can be obtained when determining δ13C values of such small samples; and the uncertainty in the magnitude, isotopic composition, and stability of the analytical blank. Nonetheless, high percentages of individual pollen grains were correctly classified as being of either C3 or C4 origin. On average, 90% (range = 78-100%) of pollen grains from C3 grasses had δ13C values more negative than the cutoff threshold of −19.2‰; while 84% (range = 77-90%) of pollen grains from C4 grasses had δ13C values more positive than −19.2‰. Compared with analysis using an elemental analyzer interfaced with an IRMS (EA-IRMS), the number of pollen grains required for δ13C-based evaluation of C3/C4 grass composition is many times lower with the SWiM-IRMS. Additionally, δ13C data from the SWiM-IRMS does not need to be incorporated into a mixing model to derive estimates of the abundance of C3 and C4 grass pollen. Carbon-isotopic analysis of individual grass-pollen grains using the SWiM-IRMS system may help improve our understanding of the evolutionary and ecological significance of grass taxa in the paleorecord.  相似文献   

8.
The effect of standard processing techniques on the δ13C value of plant tissue was tested using species representing the three photosynthetic pathways, including angiosperms and gymnosperms within the C3 taxonomic division. The species include Cowania mexicana (C3 angiosperm), Juniperus osteosperma (C3 gymnosperm), Opuntia spp. (crassulacean acid metabolism [CAM] angiosperm), and Atriplex canescens (C4 angiosperm). Each species is represented by 5 plants collected at two different sites, for a total of 10 samples. The samples were processed to whole plant tissue, holocellulose, α-cellulose, and nitrocellulose. An additional process was added with the discovery of residual Ca-oxalate crystals in holocellulose samples. Both C3 species show δ13C values becoming 13C enriched with increased processing. The CAM representative shows the opposite trend, with 13C depletion during the progression of treatments. The greatest range of values and most inconsistent trends occur in the C4 representative. Removal of the Ca-oxalate fraction resulted in different mean weight percentages and δ13C values among the species. Calculated δ13C values of the Ca-oxalate crystals show depletion from the tissue values in the two C3 species and enrichment in the C4 and CAM representatives. The C. mexicana samples show the greatest change between the tissue and Ca-oxalates (7.3‰) but the least mean weight percentage (11%), whereas A. canescens shows the greatest overall change, with a −2.8‰ isotopic shift and over 48% mean weight percentage. Variability within the samples undergoing each treatment remained relatively unchanged even with increased cellulose purity. This paper provides estimates of isotopic offsets necessary to correct from one treatment to another. Significant differences in δ13C among different treatments confirm the need to state the tissue fraction analyzed when reporting δ13C results.  相似文献   

9.
Influence of diet on the distribution of carbon isotopes in animals   总被引:4,自引:0,他引:4  
The influence of diet on the distribution of carbon isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant carbon isotopic composition.The isotopic composition of the whole body of an animal reflects the isotopic composition of its diet, but the animal is on average enriched in δ13C by about 1‰ relative to the diet. In three of the four cases examined, the 13C enrichment of the whole body relative to the diet is balanced by a 13C depletion of the respired CO2. The isotopic relationships between the whole bodies of animals and their diets are similar for different species raised on the same diet and for the same species raised on different diets. However, the δ13C values of whole bodies of individuals of a species raised on the same diet may differ by up to 2‰. The relationship between the 13C/12C ratio of a tissue and the 13C/12C ratio of the diet depends both on the type of tissue and on the nature of the diet. Many of the isotopic relationships among the major biochemical fractions, namely the lipid, carbohydrate and protein fractions, are qualitatively preserved as diet carbon is incorporated into the animal. However, the difference between the δ13C values of a biochemical fraction in an animal and in its diet may be as large as 3‰. The δ13C values of the biochemical components collagen, chitin and the insoluble organic fraction of shells, all of which are often preserved in fossil material, are related to the isotopic composition of the diet.These results indicate that it will be possible to perform dietary analysis based on the determination of the 13C/12C ratio of animal carbon. Analysis of the total animal carbon will in most cases provide a better measure of diet than the analysis of individual tissues, biochemical fractions, or biochemical components. The limits of accuracy of this method will generally restrict its application to situations in which the diet is derived from sources with relatively large differences in their δ13C values, such as terrestrial vs aquatic organisms or C3 vs C4 plants. The method should be applicable to fossil as well as to living material.  相似文献   

10.
The fractionation of 13C between calcite and graphite, Δ(Cc-Gr). is consistently small (2.6–4.8 permil) in 34 assemblages from upper amphibolite- and granulite-facies marbles of the Grenville Province. In 25 samples from the Adirondack Mountains, New York, it decreases regularly with increasing metamorphic temperature. The fractionations are independent of absolute δ13C values of calcite (?2.9 to +5.0). For T = 600–800°C, the Adirondack data are described by Δ(Cc-Gr) = ?0.00748TC) + 8.68. This good correlation between Δ and T suggests that carbon isotope equilibrium was attained in these high-grade marbles and that the theoretical calculations of this fractionation by Bottinga are approximately 2 permil too large in this temperature range. Because of the relatively high temperature sensitivity suggested by these results and by Bottinga's calculations, and the pressure independence of isotope fractionation, Δ(Cc-Gr) may provide a very good thermometer for high-grade marbles.Comparison of this field calibration for Δ(Cc-Gr) vs temperature with results from other terranes supports the utility of Δ(Cc-Gr) for geothermometry and suggests that graphite is much more sluggish to exchange than calcite, that exchange between calcite and graphite occurs at temperatures as low as 300°C, and that equilibrium may normally be attained only when peak metamorphic temperatures are greater than 500–600°C.Because 13C exchange is an unavoidable metamorphic process at temperatures above 300°C, high values of δ13C(Gr) in moderate- to high-grade carbonate-bearing rocks do not provide a sufficient criterion to infer an abiogenic origin for the graphite.  相似文献   

11.
Microorganisms are ubiquitous in deep subsurface environments, but their role in the global carbon cycle is not well-understood. The natural abundance δ13C and Δ14C values of microbial membrane phospholipid fatty acids (PLFAs) were measured and used to assess the carbon sources of bacteria in sedimentary and granitic groundwaters sampled from three boreholes in the vicinity of the Tono Uranium Mine, Gifu, Japan. Sample storage experiments were performed and drill waters analyzed to characterize potential sources of microbial contamination. The most abundant PLFA structures in all waters sampled were 16:0, 16:1ω7c, cy17:0, and 18:1ω7c. A PLFA biomarker for type II methanotrophs, 18:1ω8c, comprised 3% and 18% of total PLFAs in anoxic sedimentary and granitic waters, respectively, sampled from the KNA-6 borehole. The presence of this biomarker was unexpected given that type II methanotrophs are considered obligate aerobes. However, a bacterium that grows aerobically with CH4 as the sole energy source and which also produces 56% of its total PLFAs as 18:1ω8c was isolated from both waters, providing additional evidence for the presence of type II methanotrophs. The Δ14C values determined for type II methanotroph PLFAs in the sedimentary (−861‰) and granite (−867‰) waters were very similar to the Δ14C values of dissolved inorganic carbon (DIC) in each water (∼−850‰). This suggests that type II methanotrophs ultimately derive all their carbon from inorganic sources, whether directly from DIC and/or from CH4 produced by the reduction of DIC. In contrast, δ13C values of type II PLFAs in the sedimentary (−93‰) and granite (−60‰) waters indicate that these organisms use different carbon assimilation schemes in each environment despite very similar δ13CCH4 values (∼−95‰) for each water. The δ13CPLFA values (−28‰ to −45‰) of non-methanotrophic bacteria in the KNA-6 LTL water do not clearly distinguish between heterotrophic and autotrophic metabolisms, but Δ14CPLFA values indicate that >65% of total bacteria filtered from the KNA-6 LTL water are heterotrophs. Ancient Δ14C values (∼−1000‰) of some PLFAs suggest that many heterotrophs utilize ancient organic matter, perhaps from lignite seams within the sedimentary rocks. The more negative range of δ13CPLFA values determined for the KNA-6 granitic water (−42‰ to −66‰) are likely the result of a microbial ecosystem dominated by chemolithoautotrophy, perhaps fuelled by abiogenic H2. Results of sample storage experiments showed substantial shifts in microbial community composition and δ13CPLFA values (as much as 5‰) during 2-4 days of dark, refrigerated, aseptic storage. However, water samples collected and immediately filtered back in the lab from freshly drilled MSB-2 borehole appeared to maintain the same relative relationships between δ13CPLFA values for sedimentary and granitic host rocks as observed for samples directly filtered under artesian flow from the KNA-6 borehole of the Tono Uranium Mine.  相似文献   

12.
High-resolution natural abundance stable carbon isotope analyses across annual growth rings in evergreen trees reveal a cyclic increase and decrease in the measured carbon isotopic composition (δ13C), but the causes of this pattern are poorly understood. We compiled new and published high-resolution δ13C data from across annual growth rings of 33 modern evergreen trees from 10 genera and 15 globally distributed sites to quantify the parameters that affect the observed δ13C pattern. Across a broad range of latitude, temperature, and precipitation regimes, we found that the average, measured seasonal change in δ13C (Δδ13Cmeas, ‰) within tree rings of evergreen species reflects changes in the carbon isotopic composition of atmospheric carbon dioxide (Δδ13CCO2) and changes in seasonal precipitation (ΔP) according to the following equation: Δδ13Cmeas = Δδ13CCO2 - 0.82(ΔP) + 0.73; R2 = 0.96. Seasonal changes in temperature, pCO2, and light levels were not found to significantly affect Δδ13Cmeas. We propose that this relationship can be used to quantify seasonal patterns in paleoprecipitation from intra-ring profiles of δ13C measured from non-permineralized, fossil wood.  相似文献   

13.
13C/12C and 18O/16O ratios of aragonite shells of modern land snails from the southern Great Plains of North America were measured for samples from twelve localities in a narrow east-west corridor that extended from the Flint Hills in North Central Oklahoma to the foothills of the Sangre de Cristo Mountains in Northern New Mexico, USA. Across the study area, shell δ18O values (PDB scale) ranged from −4.1‰ to 1.2‰, while δ13C values ranged from −13.2‰ to 0.0‰. δ18O values of the shell aragonite were predicted with a published, steady state, evaporative flux balance model. The predicted values differed (with one exception) by less than 1‰ from locality averages of measured δ18O values. This similarity suggests that relative humidity at the time of snail activity is an important control on the δ18O values of the aragonite and emphasizes the seasonal nature of the climatic information preserved in the shells. Correlated δ13C values of coexisting Vallonia and Gastrocopta suggest similar feeding habits and imply that these genera can provide information on variations in southern Great Plains plant ecology. Although there is considerable scatter, multispecies, transect average δ13C values of the modern aragonite shells are related to variations in the type of photosynthesis (i.e., C3, C4) in the local plant communities. The results of this study emphasize the desirability of obtaining isotope ratios representing averages of many shells in a locale to reduce possible biases associated with local variations among individuals, species, etc., and thus better represent the “neighborhood” scale temporal and/or spatial environmental variations of interest in studies of modern and ancient systems.  相似文献   

14.
Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen δ15N values is necessary. Determinations of δ15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different δ15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone (n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and δ15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen δ15N values reveals a 2‰ offset from bulk collagen δ15N values which is attributable to the δ15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The δ15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk δ15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the δ15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the δ15N value of threonine with increasing trophic level indicates a fundamental difference between the biosynthetic pathway of threonine and the other amino acids. The δ15N value of phenylalanine does not change significantly with trophic level, reflecting its conservative nature as an essential amino acid, and thus represents the isotopic composition of the nitrogen at the base of the food web. Δ15NGlu-Phe values in particular are shown to reflect trophic level nitrogen sources within a food web. In relation to the reconstruction of ancient human diet the contribution of marine and terrestrial protein are strongly reflected in Δ15NGlu-Phe values. Differences in nitrogen metabolism are also shown to have an influence upon individual amino acid δ15N values with Δ15NGlu-Phe values emphasising differences between the different physiological adaptations. The latter is demonstrated in tortoises, which can excrete nitrogen in the form of uric acid and urea and display negative Δ15NGlu-Phe values whereas those for marine and terrestrial mammals are positive. The findings amplify the potential advantages of compound-specific nitrogen isotope analysis in the study of nitrogen flow within food webs and in the reconstruction of past human diets.  相似文献   

15.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

16.
The toxodont megaherbivores Toxodon and Mixotoxodon were endemic to South and Central America during the late Quaternary. Isotopic signatures of 47 toxodont teeth were analyzed to reconstruct diet and ancient habitat. Tooth enamel carbon isotope data from six regions of South and Central America indicate significant differences in toxodont diet and local vegetation during the late Quaternary. Toxodonts ranged ecologically from C3 forest browsers in the Amazon (mean δ13C = −13.4‰), to mixed C3 grazers and/or browsers living either in C3 grasslands, or mixed C3 forested and grassland habitats in Honduras (mean δ13C = −9.3‰), Buenos Aires province, Argentina (δ13C = −8.7‰), and Bahia, Brazil (mean δ13C = −8.6‰), to predominantly C4 grazers in northern Argentina (δ13C = −4.4‰), to specialized C4 grazers in the Chaco of Bolivia (δ13C = −0.1‰). Although these toxodonts had very high-crowned teeth classically interpreted for grazing, the isotopic data indicate that these megaherbivores had the evolutionary capacity to feed on a variety of dominant local vegetation. In the ancient Amazon region, carbon isotope data for the toxodonts indicate a C3-based tropical rainforest habitat with no evidence for grasslands as would be predicted from the Neotropical forest refugia hypothesis.  相似文献   

17.
We analyzed the isotopic patterns found in the tooth enamel of modern feral horses from Shackleford Banks, North Carolina (USA), which has a temperate climate and supports primarily C4 grasslands. Enamel δ13C values averaged −4.1‰ with a standard deviation (1σ) of 1.7‰, which corresponds to an average diet of 66 ± 12% C4 plants. Our results differ from dietary reconstructions from 1978 to 1981, which found that horses consumed 91% C4 plants. This suggests that horses have increased their consumption of C3 forbs, likely as a result of the removal of cattle, sheep, and goats from the island. Shackleford surface waters had δ18O values that averaged −3.3 ± 0.5‰ and −1.3 ± 1.8‰ on the western and eastern ends of the island, respectively. Tooth enamel samples averaged 27.3 ± 1.5‰ and displayed the same range of δ18O values as surface waters. The variability of both δ18O and the δ13C values among individuals within this population demonstrates that horses from relatively homogenous temperate environments can display a wide range of isotopic values. Given the observed range of isotopic values for modern horses, we suggest that researchers use the mean values of multiple (≥9) equids when attempting to reconstruct average paleodiets and/or paleoenvironmental conditions.  相似文献   

18.
We evaluate the impact of exceptionally sparse plant cover (0-20%) and rainfall (2-114 mm/yr) on the stable carbon and oxygen composition of soil carbonate along elevation transects in what is among the driest places on the planet, the Atacama Desert in northern Chile. δ13C and δ18O values of carbonates from the Atacama are the highest of any desert in the world. δ13C (VPDB) values from soil carbonate range from −8.2‰ at the wettest sites to +7.9‰ at the driest. We measured plant composition and modeled respiration rates required to form these carbonate isotopic values using a modified version of the soil diffusion model of [Cerling (1984) Earth Planet. Sci. Lett.71, 229-240], in which we assumed an exponential form of the soil CO2 production function, and relatively shallow (20-30 cm) average production depths. Overall, we find that respiration rates are the main predictor of the δ13C value of soil carbonate in the Atacama, whereas the fraction C3 to C4 biomass at individual sites has a subordinate influence. The high average δ13C value (+4.1‰) of carbonate from the driest study sites indicates it formed—perhaps abiotically—in the presence of pure atmospheric CO218O (VPDB) values from soil carbonate range from −5.9‰ at the wettest sites to +7.3‰ at the driest and show much less regular variation with elevation change than δ13C values. δ18O values for soil carbonate predicted from local temperature and δ18O values of rainfall values suggest that extreme (>80% in some cases) soil dewatering by evaporation occurs at most sites prior to carbonate formation. The effects of evaporation compromise the use of δ18O values from ancient soil carbonate to reconstruct paleoelevation in such arid settings.  相似文献   

19.
Well-preserved aragonitic land snail shells (Vallonia) from late Pleistocene Eolian sediment in the Folsom archaeological site in New Mexico exhibit an overall decrease of δ18OPDB from maximum values of +2.7‰ (more positive than modern) to younger samples with lower average values of about −3.6‰ (within the modern range). The age of the samples (approximately 10,500 14C yr B.P.) suggests that the decrease in δ18O may manifest climatic changes associated with the Younger Dryas. Some combination of increased relative humidity and cooler temperatures with decreased δ18O of precipitation during the times of snail activity can explain the decrease in shell δ18O. A well-known Paleoindian bison kill occurred at the Folsom site during this inferred environmental transition.Average δ13C values of the aragonite shells of the fossil Vallonia range from −7.3 to −6.0‰ among different archaeological levels and are not as negative as modern values. This suggests that the proportion of C4 vegetation at the Folsom site approximately 10,500 14C yr B.P. was greater than at present; a result which is consistent with other evidence for higher proportions of C4 plants in the region at that time.  相似文献   

20.
The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition.The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ15N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ15N values. The variability of the relationship between the δ15N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in 15N relative to the diet, with the difference between the δ15N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ15N values ofcollagen and chitin. biochemical components that are often preserved in fossil animal remains, are also related to the δ15N value of the diet.The dependence of the δ15N values of whole animals and their tissues and biochemical components on the δ15N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ15N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources.The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ15C and δ15N values of bone collagen suggest that C4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号