首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 434 毫秒
1.
The October 21, 1766 earthquake is the most widely felt event in the seismic history of Trinidad and Venezuela. Previous works diverged on the interpretation of the historical data available for this event. They associated the earthquake either with the Lesser Antilles subduction zone, with strike-slip motion along El Pilar fault, or with intraplate deformation at the edge of Guyana shield. Isoseismal areas are proposed after a new search and analysis of primary and secondary sources of historical information. Two of the largest earthquakes of the twentieth century which occurred in the region, the 1968 (M S 6.4, h = 103 km), and the 1997 (M W 6.9, h = 25 km) events, for which both intensity data and instrumentally determined source parameters are available, are used to calibrate the isoseismal areas and to interpret them in terms of source depth and magnitude. It is concluded that the large extent of intensity values higher than V is diagnostic of the depth (85 ± 20 km) of the 1766 source, and of local amplifications of ground motion due to soft soil conditions and to strong contrasts of impedance at the edge of Guyana shield. It is proposed that the event occurred either in slab, or close to the bottom lithospheric interface between the Caribbean and South American plates (∼11°N; ∼62.5°W). The value of the magnitude is estimated at 6.5 < M S < 7.5 depending on the source depth and on the decay of ground motion as a function of distance. Deep and intermediate depth earthquakes can induce important casualties in Trinidad, Venezuela, and Guyana, possibly more damaging than those induced by shallower earthquakes along the strike of El Pilar Fault.  相似文献   

2.
The Riyue Mt. Fault is a secondary fault controlled by the major regional boundary faults (East Kunlun Fault and Qilian-Haiyuan Fault). It lies in the interior of Qaidam-Qilianshan block and between the major regional boundary faults. The Riyue Mt. fault zone locates in the special tectonic setting which can provide some evidences for recent activity of outward extension of NE Tibetan plateau, so it is of significance to determine the activity of Riyue Mt. Fault since late Pleistocene to Holocene. In this paper, we have obtained some findings along the Dezhou segment of Riyue Mt. Fault by interpreting the piedmont alluvial fans, measuring fault scarps, and excavating trenches across the fault scarp. The findings are as follows:(1) Since the late Pleistocene, there are an alluvial fan fp and three river terraces T1-T3 formed on the Dezhou segment. The abandonment age of fp is approximately (21.2±0.6) ka, and that of the river terrace T2 is (12.4±0.11) ka. (2) Since the late Pleistocene, the dextral strike-slip rate of the Riyue Mt. Fault is (2.41±0.25) mm/a. In the Holocene, the dextral strike-slip rate of the fault is (2.18±0.40) mm/a, and its vertical displacement rate is (0.24±0.16) mm/a. This result indicates that the dextral strike-slip rate of the Riyue Mt. Fault has not changed since the late Pleistocene. It is believed that, as one of the dextral strikeslip faults, sandwiched between the the regional big left-lateral strike-slip faults, the Riyue Mt. Fault didn't cut the boundary zone of the large block. What's more, the dextral strike-slip faults play an important role in the coordination of deformation between the sub-blocks during the long term growth and expansion of the northeast Tibetan plateau.  相似文献   

3.
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers. The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.  相似文献   

4.
柯坪推覆构造的根部断裂记录到的地震活动相对较弱,以至于多数学者认为该断裂晚第四纪以来活动性不强。笔者根据遥感影像解译和野外调查得到迈丹断裂的几何展布,确认F3阿合奇段为最新地表破裂带,并通过一系列河流阶地的左旋位移测量确定其晚更新世以来有过走滑活动。结合地貌测量和探槽开挖得到断层垂直错距,探槽揭示的古地震事件发生在距今(1.76±0.22)ka之后,根据现场考察获得的活动构造定量数据,依据不同震级与地表破裂关系式推算出该次古地震震级为7.5级。研究成果可能对区域活动断裂的研究以及区域活动构造图像的完整性提供基础资料,同时最新地表破裂证据的发现可能有助于更新认识该断裂的危险性。  相似文献   

5.
The sinistral strike-slip characteristic of the Altyn Tagh Fault gradually disappears near the Jiuxi Basin at the west end of Hexi Corridor, and the Kuantanshan Fault and the northern marginal fault of Heishan on its east are thrust structures. There are two faults distributed in the north of Kuantanshan, namely, the Taerwan-Chijiaciwo Fault and the Ganxiashan Fault, both are featured with obvious activity. Predecessors thought that the Taerwan-Chijiaciwo Fault is a thrust fault with low movement rate, but there is few detailed study on its horizontal motion. Is there horizontal strike-slip movement in the northern marginal fault of Kuantanshan? This issue has an important significance to further explore the structural transformation mode between the Altyn Tagh strike-slip faults and the northern thrust faults in the north margin of Qilianshan. Using high resolution remote sensing images and field work, such as combining with UAV SfM photogrammetry, the paper studies the strike-slip characteristics of the Taerwan-Chijiaciwo Fault and Ganxiashan Fault on the northern margin of Kuantanshan, and get two preliminary understandings:(1) The northern marginal fault of Kuantanshan is an active right-lateral strike-slip fault with thrust component, the horizontal to vertical dislocation ratio is about 3-4 times. Based on the statistics of dislocation amount of the gullies and terraces along the north marginal Kuantanshan fault, it is preliminarily estimated that the late Pleistocene right-lateral strike-slip rate is about 0.2-0.25 mm/a and the Holocene right-lateral strike-slip rate is about 0.5-1.5 mm/a. (2) The main driving force to the tectonics at the western end of Hexi Corridor, where the northern marginal fault of Kuantanshan locates, comes from the northward extrusion of the Qilian Mountains, which results in the right-lateral strike-slip of the northern marginal fault of Kuananshan and the thrust movement of several faults inside the Jiuxi Basin. The effect of the Altyn Tagh Fault on other tectonic structures is not obvious in this region.  相似文献   

6.
Influenced by the far-field effect of India-Eurasia collision, Tianshan Mountains is one of the most intensely deformed and seismically active intracontinental orogenic belts in Cenozoic. The deformation of Tianshan is not only concentrated on its south and north margins, but also on the interior of the orogen. The deformation of the interior of Tianshan is dominated by NW-trending right-lateral strike-slip faults and ENE-trending left-lateral strike-slip faults. Compared with numerous studies on the south and north margins of Tianshan, little work has been done to quantify the slip rates of faults within the Tianshan Mountains. Therefore, it is a significant approach for geologists to understand the current tectonic deformation style of Tianshan Mountains by studying the late Quaternary deformation characteristics of large fault and fold zones extending through the interior of Tianshan. In this paper, we focus on a large near EW trending fault, the Baoertu Fault (BETF) in the interior of Tianshan, which is a large fault in the eastern Tianshan area with apparent features of deformation, and a boundary fault between the central and southern Tianshan. An MS5.0 earthquake event occurred on BETF, which indicates that this fault is still active. In order to understand the kinematics and obtain the late Quaternary slip rate of BETF, we made a detailed research on its late Quaternary kinematic features based on remote sensing interpretation, drone photography, and field geological and geomorphologic survey, the results show that the BETF is of left-lateral strike-slip with thrust component in late Quaternary. In the northwestern Kumishi basin, BETF sinistrally offsets the late Pleistocene piedmont alluvial fans, forming fault scarps and generating sinistral displacement of gullies and geomorphic surfaces. In the bedrock region west of Benbutu village, BETF cuts through the bedrock and forms the trough valley. Besides, a series of drainages or rivers which cross the fault zone and date from late Pleistocene have been left-laterally offset systematically, resulting in a sinistral displacement ranging 0.93~4.53km. By constructing the digital elevation model (DEM) for the three sites of typical deformed morphologic units, we measured the heights of fault scarps and left-lateral displacements of different gullies forming in different times, and the result shows that BEFT is dominated by left-lateral strike-slip with thrust component. We realign the bended channels across the fault at BET01 site and obtain the largest displacement of 67m. And we propose that the abandon age of the deformed fan is about 120ka according to the features of the fan. Based on the offsets of channels at BET01 and the abandon age of deformed fan, we estimate the slip rate of 0.56mm/a since late Quaternary. The Tianshan Mountains is divided into several sub-blocks by large faults within the orogen. The deformation in the interior of Tianshan can be accommodated or absorbed by relative movement or rotation. The relative movement of the two sub-blocks surrounded by Boa Fault, Kaiduhe Fault and BETF is the dominant cause for the left-lateral movement of BETF. The left-lateral strike-slip with reverse component of BETF in late Quaternary not only accommodates the horizontal stain within eastern Tianshan but also absorbs some SN shortening of the crust.  相似文献   

7.
Strike-slip fault plays an important role in the process of tectonic deformation since Cenozoic in Asia. The role of strike-slip fault in the process of mountain building and continental deformation has always been an important issue of universal concern to the earth science community. Junggar Basin is located in the hinterland of Central Asia, bordering on the north the Altay region and the Baikal rift system, which are prone to devastating earthquakes, the Tianshan orogenic belt and the Tibet Plateau on the south, and the rigid blocks, such as Erdos, the South China, the North China Plain and Amur, on the east. Affected by the effect of the Indian-Eurasian collision on the south of the basin and at the same time, driven by the southward push of the Mongolian-Siberian plate, the active structures in the periphery of the basin show a relatively strong activity. The main deformation patterns are represented by the large-scale NNW-trending right-lateral strike-slip faults dominated by right-lateral shearing, the NNE-trending left-lateral strike-slip faults dominated by left-lateral shearing, and the thrust-nappe structure systems distributed in piedmont of Tianshan in the south of the basin. There are three near-parallel-distributed left-lateral strike-slip faults in the west edge of the basin, from the east to the west, they are:the Daerbute Fault, the Toli Fault and the Dongbielieke Fault. This paper focuses on the Dongbielieke Fault in the western Junggar region. The Dongbielieke Fault is a Holocene active fault, located at the key position of the western Junggar orogenic belt. The total length of the fault is 120km, striking NE. Since the late Quaternary, the continuous activity of the Dongbielieke Fault has caused obvious left-lateral displacement at all geomorphologic units along the fault, and a linear continuous straight steep scarp was formed on the eastern side of the Tacheng Basin. According to the strike and the movement of fault, the fault can be divided into three segments, namely, the north, middle and south segment. In order to obtain a more accurate magnitude of the left-lateral strike-slip displacement and the accumulative left-lateral strike-slip displacement of different geomorphic surfaces, we chose the Ahebiedou River in the southern segment and used the UAV to take three-dimensional photographs to obtain the digital elevation model(the accuracy is 10cm). And on this basis, the amount of left-lateral strike-slip displacement of various geological masses and geomorphic surfaces(lines)since their formation is obtained. The maximum left-lateral displacement of the terrace T5 is(30.7±2.1)m and the minimum left-lateral displacement is(20.1±1.3)m; the left-lateral displacement of the terrace T4 is(12±0.9)m, and the left-lateral displacement of the terrace T2 is(8.7±0.6)m. OSL dating samples from the surface of different level terraces(T5, T4, T2 and T1)are collected, processed and measured, and the ages of the terraces of various levels are obtained. By measuring the amount of left-lateral displacements since the Late Quaternary of the Dongbielieke Fault and combining the dating results of the various geomorphic surfaces, the displacements and slip rates of the fault on each level of the terraces since the formation of the T5 terrace are calculated. Using the maximum displacement of(30.7±2.1)m of the T5 terrace and the age of the geomorphic surface on the west bank of the river, we obtained the slip rate of(0.7±0.11)mm/a; similarly, using the minimum displacement of(20.1±1.3)m and the age of the geomorphic surface of the east bank, we obtained the slip rate of(0.46±0.07)mm/a. T5 terrace is developed on both banks of the river and on both walls of the fault. After the terraces are offset by faulting, the terraces on foot wall in the left bank of the river are far away from the river, and the erosion basically stops. After that, the river mainly cuts the terraces on the east bank. Therefore, the west bank retains a more accurate displacement of the geomorphic surface(Gold et al., 2009), so the left-lateral slip rate of the T5 terrace is taken as(0.7±0.11)mm/a. The left-lateral slip rate calculated for T4 and T2 terraces is similar, with an average value of(0.91±0.18)mm/a. In the evolution process of river terraces, the lateral erosion of high-level terrace is much larger than that of low-level terrace, so the slip rate of T4 and T2 terraces is closer to the true value. The left-lateral slip rate of the Dongbielieke Fault since the late Quaternary is(0.91±0.18)m/a. Compared with the GPS slip rate in the western Junggar area, it is considered that the NE-trending strike-slip motion in this area is dominated by the Dongbielieke Fault, which absorbs a large amount of residual deformation while maintaining a relatively high left-lateral slip rate.  相似文献   

8.
The Guadalentín Depression, located in SE Spain (Murcia Region), is bounded by two of the main NE-SW master faults of the Eastern Betics Cordilleras: The Lorca-Alhama and the Palomares left-lateral strike-slip faults. Available earthquake data indicate that, in the last 600 years, some sectors of the Lorca-Alhama Fault and the entire sector of the Palomares Fault have not been associated with significant historical seismicity. However, they show a wide range of diagnostic features of earthquake surface displacements on late Pleistocene and Holocene alluvial and colluvial surfaces. Aside from the left-lateral offsets recorded along 045–050 ° master fault strands of the Lorca-Alhama Fault, major paleoseismic surface displacements show different kinematics in relation to the broad orientation of the fault strands: (1) vertical normal displacements along 010–020 ° trending faults mainly preserved as degraded fault scarps of 2.5-1.8 m high (Aljibejo site); and (2) vertical reverse displacements, with average offsets of 0.2 – 1 m, along 065–080 ° subsidiary faults. In this last group, the younger one (Carraclaca Baths site) remains as a fault scarp of 0.8 m height affecting a cascade tufa which was active until the Spanish Roman Period (2nd Century B.C. to 6th Century A.D.). In other cases, reverse offsets resulted in smaller displacements (0.26 m) of paleosols, but show a recurrent behaviour (La Escarihuela site). The strongest earthquakes recorded in the study area did not exceed more than Mb 4.5 or MSK Intensity VIII (historical) with no evidence of coseismic rupture. Therefore, the preliminary data presented here seem to indicate that the paleoseismic activity on both faults is capable of producing coseismic surface displacements, probably reaching magnitudes of at least 6.5. These data show that paleoseismic studies based on geomorphological analyses are a useful tool in the assessment of the relative degree of activity of apparently ‘aseismic’ fault traces.  相似文献   

9.
Fault segmentation and fault steps and their evolution are relevant to the dynamics and size of earthquake ruptures, the distribution of fault damage zones and the capacity of fault seal. Furthermore, segment interactions and coalescence are the fundamental processes for fault growth. To contribute to this end, we investigated the architecture of strike-slip faults by combining field observations in the Valley of Fire State Park, Nevada, and the published data sets. First, we studied the trace complexity for 49 faults with offsets ranging from 12 m to 460 km. We established that the number of fault steps (hence fault segments) per unit length is correlated to the maximum fault offset by a negative power law. The faults have longer segments and fewer steps when their offsets increase, indicating the progressive growth, smoothening and simplification of the fault traces as a function of the offset, as proposed by previous investigators. Second, we studied the dimensions of the segments and steps composing ~20 of the previous fault systems. The mean segment length, mean step length and mean step width are all correlated to the maximum fault offset by positive power laws over four orders of magnitude of the offset. In addition, the segment length distributions of four of the faults with offsets ranging from 80 m to 100 km are all lognormal, with most of the segment lengths falling in the range of one to five times the maximum offset of the faults. Finally, the fault steps have an approximately constant length-to-width ratio indicating that, regardless of their environment, strike-slip faults have a remarkable self-similar architecture probably due to the mechanical processes responsible for fault growth. Our data sets can be used as tools to better predict the geometrical attributes of strike-slip fault systems with important consequences for earthquake ruptures, the distribution and properties of fault damage zones, and fault sealing potential.  相似文献   

10.
The two mainstream deformation models of the Tibet plateau are continental escape model and crustal thickening model, the former suggests that the NW-trending Karakoram Fault, Gyaring Co Fault, Beng Co Fault and the Jiali Fault as the Karakoram-Jiali fault zone is the southern border belt and that the dextral strike-slip rate is estimated as up to 10~20mm/yr. However, research results in recent years show that the slip rates along those faults are significantly less than earlier estimates. Taylor et al. (2003)suggest that the conjugate strike-slip faults control the active deformation in the central Tibet. The lack of research on the slip behavior of the NE-trending faults in the central Tibet Plateau constrains our understanding of the central Tibet deformation model. Thus, we choose the NE-direction Qixiang Co Fault located at the north of the Gyaring Co Fault as research object. Based on the interpretation of satellite images, we found several faulted geomorphic sites. Using RTK-GPS ground control point and unmanned aerial vehicle (UAV)topographic surveying, we obtained less than 10cm/pix-resolution digital elevation model (DEM)in the Yaqu town site. We used the LaDiCaoz_v2.1 software to automatically extract the left-lateral offset of the largest gully on the terrace T2 surface, which is (21.3±7.1)m, and the vertical dislocation of the scarp on the terrace T2 surface, which is (0.9±0.1)m. The age of both U-series dating samples on the terrace T2 is (4.98±0.17)ka and (5.98±0.07)ka, respectively. The Holocene left-lateral slip rate along Qixiang Co Fault is (3.56±1.19)mm/a and the vertical slip rate is (0.15±0.02)mm/a. The kinematic characteristics of the sinistral strike-slip with normal slip coincide with the eastward motion of the central Tibet plateau, and its magnitude is in agreement with its conjugate Gyaring Co Fault, suggesting that the deformation pattern of the central Tibetan plateau complies with the conjugate strike-slip faults mode.  相似文献   

11.
The 40km-long, NEE trending Reshui-Taostuo River Fault was found in the southern Dulan-Chaka highland by recent field investigation, which is a strike-slip fault with some normal component. DEM data was generated by small unmanned aerial vehicle(UAV)on key geomorphic units with resolution<0.05m. Based on the interpretation and field investigation, we get two conclusions:1)It is the first time to define the Reshui-Taostuo River Fault, and the fault is 40km long with a 6km-long surface rupture; 2)There are left-handed dislocations in the gullies and terraces cut by the fault. On the high-resolution DEM image obtained by UAV, the offsets are(9.3±0.5) m, (17.9±1.5) m, and(36.8±2) m, measured by topographic profile recovery of gullies. The recovery measurements of two terraces present that the horizontal offset of T1/T0 is(18.2±1.5) m and the T2/T1 is (35.8±2) m, which is consistent with the offsets from gullies. According to the historical earthquake records, a M5 3/4 earthquake on April 10, 1938 and a MS5.0 earthquake on March 21, 1952 occurred at the eastern end of the surface rupture, which may be related to the activity of the fault. By checking the county records of Dulan and other relevant data, we find that there are no literature records about the two earthquakes, which is possibly due to the far distance to the epicenter at that time, the scarcity of population in Dulan, or that the earthquake occurred too long ago that led to losing its records. The southernmost ends of the Eastern Kunlun Fault and the Elashan Fault converge to form a wedge-shaped extruded fault block toward the northwest. The Dulan Basin, located at the end of the wedge-shaped fault block, is affected by regional NE and SW principal compressive stress and the shear stress of the two boundary faults. The Dulan Basin experienced a complex deformation process of compression accompanying with extension. In the process of extrusion, the specific form of extension is the strike-slip faults at each side of the wedge, and there is indeed a north-east and south-west compression between the two controlling wedge-shaped fault block boundary faults, the Eastern Kunlun and Elashan Faults. The inferred mechanism of triangular wedge extrusion deformation in this area is quite different from the pure rigid extrusion model. Therefore, Dulan Basin is a wedge-shaped block sandwiched between the two large-scale strike-slip faults. Due to the compression of the northeast and southwest directions of the region, the peripheral faults of the Dulan Basin form a series of southeast converging plume thrust faults on the northeast edge of the basin near the Elashan Fault, which are parallel to the Elashan Fault in morphology and may converge with the Elashan Fault in subsurface. The southern marginal fault of the Dulan Basin(Reshui-Taostuo River Fault)near the Eastern Kunlun fault zone is jointly affected by the left-lateral strike-slip Eastern Kunlun Fault and the right-lateral strike-slip Elashan Fault, presenting a left-lateral strike-slip characteristic. Meanwhile, the wedge-shaped fault block extrudes to the northwest, causing local extension at the southeast end, and the fault shows the extensional deformation. These faults absorb or transform the shear stress in the northeastern margin of the Tibet Plateau. Therefore, our discovery of the Dulan Reshui-Taostuo River Fault provides important constraints for better understanding of the internal deformation mode and mechanism of the fault block in the northeastern Tibetan plateau. The strike of Reshui-Taostuo River Fault is different from the southern marginal fault of the Qaidam Basin. The Qaidam south marginal burial fault is the boundary fault between the Qaidam Basin and the East Kunlun structural belt, with a total length of ~500km. The geophysical data show that Qaidam south marginal burial fault forms at the boundary between the positive gravity anomaly of the southern East Kunlun structural belt and the negative gravity anomaly gradient zone of the northern Qaidam Basin, showing as a thrust fault towards the basin. The western segment of the fault was active at late Pleistocene, and the eastern segment near Dulan County was active at early-middle Pleistocene. The Reshui-Taostuo River Fault is characterized by sinistral strike-slip with a normal component. The field evidence indicates that the latest active period of this fault was Holocene, with a total length of only 40km. Neither remote sensing image interpretation nor field investigation indicate the fault extends further westward and intersects with the Qaidam south marginal burial fault. Moreover, it shows that its strike is relatively consistent with the East Kunlun fault zone in spatial distribution and has a certain angle with the burial fault in the southern margin of Qaidam Basin. Therefore, there is no structural connection between the Reshui-Taostuo River Fault and the Qaidam south marginal burial fault.  相似文献   

12.
通过分析阿尔金断裂带西段车尔臣河出山口以西 85°~ 86°E的高精度SPOT卫星影像 ,结合野外考察和年代学研究 ,对阿尔金断裂带西段 3个典型走滑断层的断错地貌进行了研究。在库拉木拉克 ,阿尔金断裂带西段自 (6 0 2± 0 4 7)kaBP以来的左旋滑动速率为 (11 6± 2 6 )mm/a ,自 (15 6 7± 1 19)kaBP以来的左旋滑动速率为 (9 6± 2 6 )mm/a ;阿羌牧场附近 ,自 (2 0 6± 0 16 )kaBP以来的左旋滑动速率为 (12 1± 1 9)mm/a ;达拉库岸萨依附近 ,自 (4 91± 0 39)kaBP以来的左旋滑动速率为(12 2± 3 0 )mm/a。由此得到阿尔金断裂带全新世以来的平均滑动速率约为 (11 4± 2 5 )mm/a。以阿尔金断裂带走向N75°E计算 ,阿尔金断裂带西段左旋走滑所吸收的青藏高原SN向缩短速率为 (3 0±0 6 )mm/a  相似文献   

13.
The Ebomiao Fault is a newly discovered active fault near the block boundary between the Tibetan plateau and the Alashan Block. This fault locates in the southern margin of the Beishan Mountain, which is generally considered to be a tectonically inactive zone, and active fault and earthquake are never expected to emerge, so the discovery of this active fault challenges the traditional thoughts. As a result, studying the new activity of this fault would shed new light on the neotectonic evolution of the Beishan Mountain and tectonic interaction effects between the Tibetan plateau and the Alashan Block. Based on some mature and traditional research methods of active tectonics such as satellite image interpretation, trenches excavation, differential GPS measurement, Unmanned Aircraft Vehicle Photogrammetry(UAVP), and Optical Stimulated Luminescence(OSL)dating, we quantitatively study the new activity features of the Ebomiao Fault.
Through this study, we complete the fault geometry of the Ebomiao Fault and extend the fault eastward by 25km on the basis of the 20km-fault trace identified previously, the total length of the fault is extened to 45km, which is capable of generating magnitude 7 earthquake calculated from the empirical relationships between earthquake magnitude and fault length. The Ebomiao Fault is manifested as several segments of linear scarps on the land surface, the scarps are characterized by poor continuity because of seasonal flood erosion. Linear scarps are either north- or south-facing scarps that emerge intermittently. Fourteen differential GPS profiles show that the height of the north-facing scarps ranges from (0.22±0.02)m to (1.32±0.1)m, and seven differential GPS profiles show the height of south-facing scarps ranging from (0.33±0.1)m to (0.64±0.1)m. To clarify the causes of the linear scarps with opposite-facing directions, we dug seven trenches across these scarps, the trench profiles show that the south-dipping reverse faults dominate the north-facing scarps, the dipping angles range from 23° to 86°. However, the south-facing scarps are controlled by south-dipping normal faults with dipping angles spanning from 60° to 81°.
The Ebomiao Fault is dominated by left-lateral strike-slip activity, with a small amount of vertical-slip component. From the submeter-resolution digital elevation models(DEM)constructed by UAVP, the measured left-lateral displacement of 19 gullies in the western segment of the Ebomiao Fault are(3.8±0.5)~(105±25)m, while the height of the north-facing scarps on this segment are(0.22±0.02)~(1.32±0.10)m(L3-L7), the left-lateral displacement is much larger than the scarp height. In this segment, there are three gullies preserving typical left-lateral offsets, one gully among them preserves two levels of alluvial terraces, the terrace riser between the upper terrace and the lower terrace is clear and shows horizontal offset. Based on high-resolution DEM interpretation and displacement restoration by LaDiCaoz software, the left-lateral displacement of the terrace riser is measured to be(16.7±0.5)m. The formation time of the terrace riser is approximated by the OSL age of the upper terrace, which is (11.2±1.5)ka BP at (0.68±0.03)m beneath the surface, and(11.4±0.6)ka at (0.89±0.03)m beneath the surface, the OSL age (11.2±1.5)ka BP at (0.68±0.03)m beneath the surface is more close to the formation time of the upper terrace because of a nearer distance to sediment contact between alluvial fan and eolian sand silt. Taking the (16.7±0.5)m left-lateral displacement of the terrace riser and the upper terrace age (11.2±1.5)ka, we calculate a left-lateral strike-slip rate of(1.52±0.25)mm/a for the Ebomiao Fault. The main source for the slip rate error is that the terrace risers on both walls of the fault are not definitely corresponded. The north wall of the fault is covered by eolian sand, we can only presume the location of terrace riser by geomorphic analysis. In addition, the samples used to calculate slip rate before were collected from the aeolian sand deposits on the north side of the fault, they are not sediments of the fan terraces, so they could not accurately define the formation age of the upper terrace. This study dates the upper terrace directly on the south wall of the fault.
Since the late Cenozoic, the new activity of the Ebomiao Fault may have responded to the shear component of the relative movement between the Tibetan plateau and the Alashan Block under the macroscopic geological background of the northeastern-expanding of the Tibetan plateau. The north-facing fault scarps are dominated by south-dipping low-angle reverse faults, the emergence of this kind of faults(faults overthrusting from the Jinta Basin to the Beishan Mountain)suggests the far-field effect of block convergence between Tibetan plateau and Alashan Block, which results in the relative compression and crustal shortening. As for whether the Ebomiao Fault and Qilianshan thrust system are connected in the deep, more work is needed.  相似文献   

14.
This study defines the Late Cenozoic stress regimes acting around the Bolu Basin along the North Anatolian Fault in northwestern Turkey. The inferred regional stress regime, obtained from the inversion of measured fault-slip vectors as well as focal mechanism solutions, is significant and induces the right-lateral displacement of the North Anatolian Fault. The field observations have also revealed extensional structures in and around the Bolu Basin. These extensional structures can be interpreted as either a local effect of the regional transtensional stress regime or as the result of the interaction of the fault geometries of the dextral Duzce Fault and the southern escarpment of the North Anatolian Fault, bordering the Bolu Basin in the north and in the south, respectively.The inversion of slip vectors measured on fault planes indicates that a strike-slip stress regime with consistent NW- and NE-trending σHmax(σ1) and σHmin(σ3) axes is dominant. Stress ratio (R) values provided by inversion of slip vectors measured on both major and minor faults and field observations show significant variations of principal stress magnitudes within the strike-slip stress regime resulting in older transpression to younger transtension. These two stress states, producing dextral displacement along NAF, are coaxial with a consistent NE-trending σ3 axis. The earthquake focal mechanism inversions confirm that the transtensional stress regime has continued into recent times, having identical horizontal stress axis directions, characterized by NW and NE-trending σ1 and σ3 axes, respectively. A locally consistent NE-trending extensional, normal faulting regime is also seen in the Bolu Basin. The stress-tensor change within the strike-slip stress regime can be explained by variations in horizontal stress magnitudes that probably occurred in Quaternary times as a result of the westward extrusion of the Anatolian block.  相似文献   

15.
The North Anatolian Fault (NAF), which extends from Karl?ova in Eastern Turkey to the Gulf of Saros in the Northern Aegean Sea, is one of the longest active strike-slip faults in the world with a length of about 1500 km. Within the North Anatolian Shear Zone (NASZ) there are long splays off the main trunk of the NAF veering towards the interior parts of Anatolia. Although the whole shear zone is still seismically active, the major seismicity is concentrated along the main branch of the NAF. Splays of the NAF dissect the shear zone into different continental blocks. The largest splay of the NAF was selected to analyze the distribution of movements between the faults delimiting these blocks. Four years of GPS measurements and modeling results indicate that the differential motion between the Anatolian collage and the Eurasian plate along the central part of the NAF is partitioned between fault splays and varies between 18.7 ± 1.6 and 21.5 ± 2.1 mm/yr with the main branch taking ∼90% of the motion.  相似文献   

16.
Due to the interaction between the Tibetan plateau, the Alxa block and the Ordos block, the western margin of Ordos(33.5°~39°N, 104°~108°E)has complex tectonic features and deformation patterns with strong tectonic activities and active faults. Active faults with different strikes and characteristics have been developed, including the Haiyuan Fault, the Xiangshan-Tianjingshan Fault, the Liupanshan Fault, the Yunwushan Fault, the Yantongshan Fault, the eastern Luoshan Fault, the Sanguankou-Niushoushan Fault, the Yellow River Fault, the west Qinling Fault, and the Xiaoguanshan Fault. In this study, 7 845 earthquakes(M≥1.0)from January 1st, 1990 to June 30th, 2018 were relocated using the double-difference location algorithm, and finally, we got valid locations for 4 417 earthquakes. Meanwhile, we determined focal mechanism solutions for 54 earthquakes(M≥3.5)from February 28th, 2009 to September 2nd, 2017 by the Cut and Paste(CAP)method and collected 15 focal mechanism solutions from previous studies. The spatial distribution law of the earthquake, the main active fault geometry and the regional tectonic stress field characteristics are studied comprehensively. We found that the earthquakes are more spatially concentrated after the relocation, and the epicenters of larger earthquakes(M≥3.5) are located at the edge of main active faults. The average hypocenter depth is about 8km and the seismogenic layer ranges from 0 to 20km. The spatial distributions and geometry structures of the faults and the regional deformation feature are clearly mapped with the relocated earthquakes and vertical profiles. The complex focal mechanism solutions indicate that the arc-shaped tectonic belt consisting of Haiyuan Fault, Xiangshan-Tianjingshan Fault and Yantongshan Fault is dominated by compression and torsion; the Yellow River Fault is mainly by stretching; the west Qinling Fault is characterized by shear and compression. The structural properties of the fault structure are dominated by strike-slip and thrust, with a larger strike-slip component. The near-north-south Yellow River Fault is characterized by high angle NW dipping and normal fault motion. Based on small earthquake relocation and focal mechanism solution results, and in combination with published active structures and geophysical data in the study area, it is confirmed that the western margin of Ordos is affected by the three blocks of the Tibetan plateau, the Alax and the Ordos, presenting different tectonic deformation modes, and there are also obvious differences in motion among the secondary blocks between the active faults. The area south of the Xiangshan-Tianjingshan Fault has moved southeastward since the early Quaternary; the Yinchuan Basin and the block in the eastern margin of the Yellow River Fault move toward the SE direction.  相似文献   

17.
西秦岭北缘断裂带是青藏高原东北部一条左旋走滑为主的活动断裂带,其在黄香沟一段活动性较强,活动现象典型。对沿断裂带分布的地貌、地质体等晚第四纪位移量的研究表明,在黄香沟一带,断裂晚更新世晚期以来的水平位移量最大为40~60m;最小为6~8m,可能是一次滑动事件的特征位错量。断裂带上的位移具有分组特征,各组位移值之间具有6~8m的稳定增量。位移值的分组性和增量特征反映了该段断裂具有特征地震的活动特征,而7组位错值则反映了断裂7次特征活动事件。关于黄香沟一带与断裂相关的微地貌分析,也获得了大致相对应的事件次数。并由此初步推测,晚更新世晚期以来,该断裂带有过多次强烈活动,活动期次明显  相似文献   

18.
The current and conventional fault-crossing short baseline measurement has a relatively high precision, but its measurement arrays usually fail to or cannot completely span major active fault zones due to the short length of the baselines, which are only tens to 100 meters. GNSS measurement has relatively low resolution on near-fault deformation and hence is not suitable for monitoring those faults with low motion and deformation rates, due to sparse stations and relatively low accuracy of the GNSS observation. We recently built up two experimental sites on the eastern boundary of the active Sichuan-Yunnan block, one crossing the Daqing section of the Zemuhe Fault and the other crossing the Longshu section of the Zhaotong Fault, aiming to test the measurement of near-fault motion and deformation by using fault-crossing arrays of one-kilometer-long baselines. In this paper, from a three-year-long data set we firstly introduce the selection of the sites and the methods of the measurement. We then calculate and analyze the near-field displacement and strain of the two sites by using three hypothetical models, the rigid body, elastic and composed models, proposed by previous researchers. In the rigid body model, we assume that an observed fault is located between two rigid blocks and the observed variances in baseline lengths result from the relative motion of the blocks. In the elastic model, we assume that a fault deforms uniformly within the fault zone over which a baseline array spans, and in the array baselines in different directions may play roles as strainmeters whose observations allow us to calculate three components of near-fault horizontal strain. In the composed model, we assume that both displacement and strain are accumulated within the fault zone that a baseline array spans, and both contribute to the observed variances in baseline lengths. Our results show that, from the rigid body model, variations in horizontal fault-parallel displacement component of the Zemuhe Fault at the Daqing site fluctuate within 3mm without obvious tendencies. The displacement variation in the fault-normal component keeps dropping in 2015 and 2016 with a cumulative decrease of 6mm, reflecting transverse horizontal compression, and it turns to rise slightly(suggesting extension)in 2017. From the elastic model, the variation in horizontal fault-normal strain component of the fault at Daqing shows mainly compression, with an annual variation close to 10-5, and variations in the other two strain components are at the order of 10-6. For the Longshu Fault, the rigid-body displacement of the fault varies totally within a few millimeters, but shows a dextral strike-slip tendency that is consistent with the fault motion known from geological investigation, and the observed dextral-slip rate is about 0.7mm/a on average. The fault-parallel strain component of the Longshu Fault is compressional within 2×10-6, and the fault-normal strain component is mainly extensional. Restricted by the assumption of rigid-body model, we have to ignore homolateral deformation on either side of an observed fault and attribute such deformation to the fault displacement, resulting in an upper limit estimate of the fault displacement. The elastic model emphasizes more the deformation on an observed fault zone and may give us information about localizations of near-fault strain. The results of the two sites from the composed model suggest that it needs caution when using this model due to that big uncertainty would be introduced in solving relevant equations. Level surveying has also been carried out at the meantime at the two sites. The leveling series of the Daqing site fluctuates within 4mm and shows no tendency, meaning little vertical component of fault motion has been observed at this site; while, from the rigid-body model, the fault-normal motion shows transverse-horizontal compression of up to 6mm, indicating that the motion of the Zemuhe Fault at Daqing is dominantly horizontal. The leveling series of the Longshu site shows a variation with amplitude comparable with that observed from the baseline series here, suggesting a minor component of thrust faulting; while the baseline series of the same site do not present tendencies of fault-normal displacement. Since the steep-dip faults at the two sites are dominantly strike-slip in geological time scale, we ignore probable vertical movement temporarily. In addition, lengths of homolateral baselines on either side of the faults change somewhat over time, and this makes us consider the existence of minor faults on either side of the main faults. These probable minor faults may not reach to the surface and have not been identified through geological mapping; they might result in the observed variances in lengths of homolateral baselines, fortunately such variations are small relative to those in fault-crossing baselines. In summary, the fault-crossing measurement using arrays with one-kilometer-long baselines provides us information about near-fault movement and strain, and has a slightly higher resolution relative to current GNSS observation at similar time and space scales, and therefore this geodetic technology will be used until GNSS networks with dense near-fault stations are available in the future.  相似文献   

19.
As the most active intracontinental orogenic belt in the world, the Tianshan orogenic belt has complex and diverse internal structural deformation patterns, and among them, the particularly striking is the linear straight U-type valley landscapes which cut inside the mountains by multiple NW-SE and ENE-WSW strike-slip faults. Many of the modern strong earthquakes in Tianshan orogenic belt are closely related to these strike-slip faults. Therefore, it is important to elaborate the activity characteristics of these faults to understand the deformation process inside the Tianshan Mountains belt. This paper focuses on one of the NW-SE right-lateral strike-slip fault (the Kaiduhe Fault), which lies inside the southeastern Tianshan. Typical offset landforms and scarp lineaments on the western segment of the Kaiduhe Fault can be used to study the activity characteristics and strike-slip rate. In particular, the fault cuts through the late Quaternary alluvial fans and a series of river gullies were right-laterally faulted, producing dextral offsets ranging from 3 to 248m. A digital elevation model (DEM)with resolution of 0.25m was established by using multi-angle photogrammetry technique to stripe about 12km linear tectonic landforms along the Kaiduhe Fault. Geological and geomorphic mapping in DEM with 22 high-resolution dextral offset measurements reveals that the dextral offsets can be divide into four groups of 3.5m, 7.0m, 11.8m and 14.5m. It is presumed from the approximately uniformly-spaced offsets that the coseismic offset was 3~4m. In addition, the exposure age of an older alluvial fan surface was about 235.7ka by in situ 10Be terrestrial cosmogenic nuclide method. Combining the exposure ages and the maximum dextral offset of 248m, we found that the strike-slip rate of the Kaiduhe Fault is about 1mm/a. It is found by this study that the Kaiduhe Fault plays an important role in regulating SN compression deformation within Tianshan Mountains, and it should also be the main stress-strain accumulation area which has the risk of occurrence of strong earthquake.  相似文献   

20.
The southern margin of the Iberian Peninsula hosts the convergent boundary between the European and African Plates. The area is characterised by low to moderate magnitude shallow earthquakes, although large historical events have also occurred. In order to determine the possible sources of these events, we recently acquired swath-bathymetry, TOBI sidescan sonar and high-resolution seismic data on the Almería Margin (Eastern Alboran Sea). The new dataset reveals the offshore continuation of the NE–SW trending Carboneras Fault, a master fault in the Eastern Betic Shear Zone, and its associated structures (N150 and NS faults). These structures are active since they cut the Late Quaternary sedimentary units. The submarine Carboneras Fault zone is 100 km long, 5–10 km wide, and is divided into two N045 and N060 segments separated by an underlapping restraining stepover. Geomorphic features typically found in subaerial strike-slip faults, such as deflected drainage, water gaps, shutter ridges, pressure ridges and “en echelon” folds suggest a strike-slip motion combined with a vertical component along the submarine Carboneras Fault. Considering the NNW–SSE regional shortening axis, a left-lateral movement is deduced for the Carboneras Fault, whereas right-lateral and normal components are suggested for the associated N150 and NS faults, respectively. The offshore portion of this fault is at least twice as long as its onshore portion and together they constitute one of the longest structures in the southeastern Iberian Margin. Despite the fact that present day seismicity in the Almería margin seems to be associated with the N150 to NS faults, the Carboneras Fault is a potential source of large magnitude (Mw ∼7.2) events. Hence, the Carboneras Fault zone could pose a significant earthquake and tsunami hazard to the coasts of Spain and North Africa, and should therefore be considered in any hazard re-evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号