首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase Relations of Peralkaline Silicic Magmas and Petrogenetic Implications   总被引:16,自引:5,他引:16  
The phase relationships of three peralkaline rhyolites fromthe Kenya Rift have been established at 150 and 50 MPa, at oxygenfugacities of NNO - 1·6 and NNO + 3·6 (log fO2relative to the Ni–NiO solid buffer), between 800 and660°C and for melt H2O contents ranging between saturationand nominally anhydrous. The stability fields of fayalite, sodicamphiboles, chevkinite and fluorite in natural hydrous silicicmagmas are established. Additional phases include quartz, alkalifeldspar, ferrohedenbergite, biotite, aegirine, titanite, montdoriteand oxides. Ferrohedenbergite crystallization is restrictedto the least peralkaline rock, together with fayalite; it isreplaced at low melt water contents by ferrorichterite. Riebeckite–arfvedsoniteappears only in the more peralkaline rocks, at temperaturesbelow 750°C (dry) and below 670°C at H2O saturation.Under oxidizing conditions, it breaks down to aegirine. In themore peralkaline rocks, biotite is restricted to temperaturesbelow 700°C and conditions close to H2O saturation. At 50MPa, the tectosilicate liquidus temperatures are raised by 50–60°C,and that of amphibole by 30°C. Riebeckite–arfvedsonitestability extends down nearly to atmospheric pressure, as aresult of its F-rich character. The solidi of all three rocksare depressed by 40–100°C compared with the solidusof the metaluminous granite system, as a result of the abundanceof F and Cl. Low fO2 lowers solidus temperatures by at least30°C. Comparison with studies of metaluminous and peraluminousfelsic magmas shows that plagioclase crystallization is suppressedas soon as the melt becomes peralkaline, whatever its CaO orvolatile contents. In contrast, at 100 MPa and H2O saturation,the liquidus temperatures of quartz and alkali feldspar arenot significantly affected by changes in rock peralkalinity,showing that the incorporation of water in peralkaline meltsdiminishes the depression of liquidus temperatures in dry peralkalinesilicic melts compared with dry metaluminous or peraluminousvarieties. At 150 MPa, pre-eruptive melt H2O contents rangefrom 4 wt % in the least peralkaline rock to nearly 6 wt % inthe two more peralkaline compositions, in broad agreement withprevious melt inclusion data. The experimental results implymagmatic fO2 at or below the fayalite–quartz–magnetitesolid buffer, temperatures between 740 and 660°C, and meltevolution under near H2O saturation conditions. KEY WORDS: peralkaline; rhyolite; phase equilibria  相似文献   

2.
The igneous complex of Ballachulish is a composite calc-alkalinepluton of Caledonian age (412 ? 28 Ma), emplaced in Dalradianmetasediments at a pressure of 3 ? 0–5 kb (c. 10 km depth).The 4 by 7 km intrusion is composed of a zoned monzodiorite-quartzdiorite envelope with a distinct flowand deformation-foliation,surrounding a younger core of porphyritic granite. Two-pyroxene thermometry, Fe-Ti oxide thermobarometry, and stabilityrelationships of ternary feldspars, biotite, and amphibolesare used to calibrate the 3 kb isobaric crystallization sequencewith respect to the following parameters: the fractionationstage of the host rocks, the water content of the magmas, phasecompositions, and oxygen fugacity. Plagioclase, augite, andoxides generally yielded submagmatic temperatures due to theextensive recrystallization and re-equilibration of these phasesin the 900–l550?C subsolidus range. The ‘dry’monzodiorites apparently contained less than 1 wt. % initialmagmatic water, and remained H2O-deficient and vapor-absentthroughout their entire crystallization range. In contrast,2.5–3 wt.% initial H2O is estimated for the more fractionatedquartz diorites and the younger granites. The main crystallizationinterval for Opx–Cpx–Plg primocrysts in the dioritescovers c. 1100–950?C. Late-magmatic biotite and alkalifeldspar join the paragenetic sequence below 980?860?C, at fO2near NNO. A solidus temperature of c. 900?C is inferred forthis ‘dry’ system, in which amphiboles are entirelysubsolidus. At the present level of emplacement, crystallizationintervals of {small tilde} 1050–690?C and{small tilde}900–680?C are suggested for the quartz diorites and thegranites, which probably terminated crystallization in the presenceof a hydrous fluid.  相似文献   

3.
The 2·63 Ga Louis Lake batholith, a calc-alkalic plutonexposed in Wind River Range of western Wyoming, consists ofminor diorite, quartz diorite, granodiorite, and granite. Atshallow structural levels the batholith is pyroxene free, butat deeper levels, all units of the batholith contain pyroxenes.On its northern margin the batholith was emplaced at P = 5–6kbar, T = 775–800°C, fO2 at FMQ (fayalite–magnetite–quartz)+ 1·5 to FMQ + 1·8, and aH2O  相似文献   

4.
The mid-Jurassic calcalkaline Russian Peak intrusive complex,located in the Klamath Mountains of northern California, consistsof an elliptical peridotite-to-quartz diorite suite intrudedby two plutons of granodiorite. Several techniques were usedto decipher the crystallization conditions for ultramafic rocks,quartz diorite, and granodiorite, including comparison of parageneseswith crystallization experiments, application of geothermometersand barometers, and evaluation of phase equilibria. Contactmetamorphic assemblages, hornblende barometry, and amphibolesubstitution schemes indicate that pressures of intrusion were{small tilde}3 kbar. Plagioclase and pyroxene thermometry indicateintrusion temperatures of {small tilde}1000C for quartz dioriteand 900C for granodiorite. Phase equilibrium analysis for thereaction phlogopite+quartz=K-feldspar+enstatite+H2O, coupledwith an estimate of the water-saturated quartz diorite solidus,suggests that the solidus of two-pyroxene quartz diorite wasat {small tilde}780C with a mole fraction of water of {smalltilde}0•55. The composition of granodiorite is very similarto that used in several crystallization experiments and indicatesa solidus of 70025C. Estimates of oxygen fugacity, obtainedfrom equilibrium relations of olivine, orthopyroxene, and spinelin ultramafic rocks, magnetite and ilmenite in quartz diorite,and magnetite, K-feldspar, and biotite in quartz diorite andgranodiorite are 2•1–2•5 and 1•0–1•3log units above the quartz-fayalite-magnetite (QFM) buffer forgranodiorite and quartz diorite at their respective solidustemperatures; and 1•0–4•0 log units above QFMfor ultramafic rocks and quartz diorite at subsolidus temperatures.Thus, the quartz diorite magma was hotter, drier, and slightlyreduced relative to the grandiorite magma, differences thatset important constraints on the genesis of the Russian Peakmagmas. These results also indicate that quartz diorite wasundersaturated with respect to H2O as it reached its solidus,a condition that is consistent with the absence of deutericalteration in this unit. In contrast, granodiorite shows extensivedeuteric alteration and features pegmatites, quartz pods, andradial dikes as might be expected for H2O-saturated conditions. Although calcalkaline plutonic complexes present serious difficultiesin estimating the intensive parameters of crystallization, judiciousapplication of appropriate methods may result in the successfulevaluation of the conditions of crystallization of such complexes.  相似文献   

5.
Phenocryst zoning patterns are used to identify open-systemmagmatic processes in the products of the 2001 eruption of ShiveluchVolcano, Kamchatka. The lavas and pumices studied are hornblende–plagioclaseandesites with average pre-eruptive temperatures of 840°Cand fO2 of 1·5–2·1 log units above nickel–nickeloxide (NNO). Plagioclase zoning includes oscillatory and patchyzonation and sieve textures. Hornblendes are commonly unzoned,but some show simple, multiple or patchy zoning. Apatite microphenocrystsdisplay normal and reverse zoning of sulphur. The textural similarityof patchy hornblende and plagioclase, together with Ba–Srsystematics in patchy plagioclase, indicate that the cores ofthese crystals were derived from cumulate material. Plagioclase–liquidequilibria suggest that the patchy texture develops by resorptionduring H2O-undersaturated decompression. When H2O-saturatedcrystallization recommences at lower pressure, reduced pH2Oresults in lower XAn in plagioclase, causing more Al-rich hornblendeto crystallize. Plagioclase cores with diffuse oscillatory zoning,and unzoned hornblende crystals, probably represent a populationof crystals resident in the magma chamber for long periods oftime. In contrast, oscillatory zoning in the rims of plagioclasephenocrysts may reflect eruption dynamics during decompressioncrystallization. Increasing Fe/Al in oscillatory zoned rimssuggests oxidation as a result of degassing of H2O during decompression.A general lack of textural overlap between phenocryst typessuggests that different phenocryst populations were spatiallyor temporally isolated during crystallization. We present evidencethat the host andesite has mixed with both more felsic and moremafic magmas. Olivine and orthopyroxene xenocrysts with reactionor overgrowth rims and strong normal zoning indicate mixingwith basalt. Sieve-textured plagioclase resulted from mixingof a more felsic magma with the host andesite. The mineralogyand mineral compositions of a mafic andesite enclave are identicalto those of the host magma, which implies efficient thermalquenching, and thus small volumes of intruding magma. Mixingof this magma with the host andesite results in phenocryst zoningbecause of differences in dissolved volatile contents. We suggestthat small magma pulses differentiated at depth and ascendedintermittently into the growing magma chamber, producing incrementalvariations in whole-rock compositions. KEY WORDS: patchy zoning; magma mixing; Shiveluch  相似文献   

6.
We apply an oxygen barometer based on the Fe content of CaTiO3perovskite to estimate the oxygen fugacity (fO2) during thecrystallization and emplacement of kimberlites in differenteruptive phases of a single pipe, or between different pipes,clusters or provinces. Mineral chemical data for perovskitewere compiled from the literature and obtained in our detailedstudy of perovskites from 11 kimberlites at Somerset Islandand Lac de Gras, Canada. Perovskite compositions in kimberlitesrecord a range in fO2 of many orders of magnitude from NNO–5to NNO+6 [where log fO2 is given relative to the nickel–nickeloxide (NNO) buffer]. The range of fO2 recorded by differentparageneses of perovskite within a single pipe can vary up tothree orders of magnitude with trends toward both oxidationand reduction during crystallization. Kimberlites record someof the greatest ranges, and the highest known fO2 conditionsfor any terrestrial magma. This is attributed to the presenceof deep and oxidized source regions and the variable interplayof ferric–ferrous vs carbon–fluid equilibria duringascent of kimberlite magmas. Three kimberlite pipes from theLac de Gras field show that higher fO2 values correlate withhigher proportions of more resorbed diamonds, suggesting thatthis variable has a measurable effect on the physical propertiesof diamonds in a pipe. KEY WORDS: kimberlites; oxygen fugacity; perovskite; diamond; redox; mantle  相似文献   

7.
The Negash pluton consists of monzogranites, granodiorites,hybrid quartz monzodiorites, quartz monzodiorites and pyroxenemonzodiorites, emplaced at 608 ± 7 Ma (zircon U–Pb)in low-grade volcaniclastic sediments. Field relationships betweenmafic and felsic rocks result from mingling and hybridizationat the lower interface of a mafic sheet injected into partiallycrystallized, phenocryst-laden, granodiorite magma (back-veining),and hybridization during simultaneous ascent of mafic and felsicmagmas in the feeder zone located to the NW of the pluton. Therock suite displays low 87Sr/86Sr(608) (0·70260–0·70350)and positive  相似文献   

8.
The sulfur content in basaltic melts coexisting with eithersulfide or sulfate melts was determined experimentally. Theexperimental conditions were in the range of 1300–1355°Cand 1·0–1·6 GPa, conditions appropriatefor the melting of the upper mantle above subduction zones.Under these conditions, both sulfide and sulfate were presentas immiscible liquids, as inferred from the round geometriesof the quenched sulfide and sulfate phases. The measured S contentin basaltic melts saturated with sulfate liquids ([S] = 1·5± 0·2 wt %) was 10 times higher than the S contentin basaltic melts saturated with sulfide liquids ([S] = 0·14± 0·02 wt %). In our experiments, sulfate liquidswere stable at fO2 as low as FMQ = +1·85 [FMQ = log (fO2)sample– log (fO2)FMQ, where FMQ is the fayalite–magnetite–quartzoxygen buffer], and evidence from other sources indicates thatsulfates will be stable at lower fO2 in melts with lower activitiesof silica. Because chalcophile and highly siderophile elements,such as Cu, Ni, Au, and Pd, are partitioned preferentially intosulfide phases, melting of sufficiently oxidized sources, inwhich sulfides are not stable, would favor incorporation ofthese elements into the silicate melt produced. Such melts wouldhave a higher potential to generate ore deposits. This studyshows that the high sulfur contents of such oxidized basaltsalso means that relatively small amounts of such magmas canprovide significant amounts of sulfur to exsolving volatilephases and account for the bulk of the sulfur expelled in somevolcanic eruptions, such the 1991 eruption of Mount Pinatubo. KEY WORDS: basalt; mantle; oxidation state; sulfate; sulfur  相似文献   

9.
Near-liquidus crystallization experiments have been carried out on two basalts (12.5 and 7.8 wt% MgO) from Soufriere, St Vincent (Lesser Antilles arc) to document the early stages of differentiation in calc-alkaline magmas. The water-undersaturated experiments were performed mostly at 4 kbar, with 1.6 to 7.7 wt% H2O in the melt, and under oxidizing conditions (ΔNNO = −0.8 to +2.4). A few 10 kbar experiments were also performed. Early differentiation of primitive, hydrous, high-magnesia basalts (HMB) is controlled by ol + cpx + sp fractionation. Residual melts of typical high-alumina basalt (HAB) composition are obtained after 30–40% crystallization. The role of H2O in depressing plagioclase crystallization leads to a direct relation between the Al2O3 content of the residual melt and its H2O concentration, calibrated as a geohygrometer. The most primitive phenocryst assemblage in the Soufriere suite (Fo89.6 olivine, Mg-, Al- and Ti-rich clinopyroxene, Cr–Al spinel) crystallized from near-primary (Mg# = 73.5), hydrous (∼5 wt% H2O) and very oxidized (ΔNNO = +1.5–2.0) HMB liquids at middle crustal pressures and temperatures from ∼1,160 to ∼1,060°C. Hornblende played no role in the early petrogenetic evolution. Derivative HAB melts may contain up to 7–8 wt% dissolved H2O. Primitive basaltic liquids at Soufriere, St Vincent, have a wide range of H2O concentrations (2–5 wt%).  相似文献   

10.
Crystallization experiments on three comendites provide evidencefor the genetic relationships between peralkaline rhyolitesin the central Kenya rift valley. The crystallization of calcicclinopyroxene in slightly peralkaline rhyolites inhibits increasein peralkalinity by counteracting the effects of feldspar. Fractionationunder high fO2 conditions produces residual liquids that areless, or only slightly more, peralkaline than the bulk composition.In contrast, crystallization under reduced conditions (<FMQ,where FMQ is the fayalite–magnetite–quartz buffer)and at high fF2 inhibits calcic clinopyroxene and yields residualliquids that are more peralkaline than coexisting alkali feldspar,whose subsequent crystallization increases the peralkalinityof the liquid. A marginally peralkaline rhyolite [molar (Na2O+ K2O)/Al2O3 (NK/A) = 1·05] can yield a more typicallycomenditic rhyolite (NK/A = 1·28) after 95 wt % of crystallization.This comendite yields pantelleritic derivatives (NK/A >1·4)after 25 wt % crystallization. Upon further crystallization,extreme peralkaline compositions (NK/A  相似文献   

11.
The near-liquidus crystallization of a high-K basalt (PST-9golden pumice, 49·4 wt % SiO2, 1·85 wt % K2O,7·96 wt % MgO) from the present-day activity of Stromboli(Aeolian Islands, Italy) has been experimentally investigatedbetween 1050 and 1175°C, at pressures from 50 to 400 MPa,for melt H2O concentrations between 1·2 and 5·5wt % and NNO ranging from –0·07 to +2·32.A drop-quench device was systematically used. AuPd alloys wereused as containers in most cases, resulting in an average Feloss of 13% for the 34 charges studied. Major crystallizingphases include clinopyroxene, olivine and plagioclase. Fe–Tioxide was encountered in a few charges. Clinopyroxene is theliquidus phase at 400 MPa down to at least 200 MPa, followedby olivine and plagioclase. The compositions of all major phasesand glass vary systematically with the proportion of crystals.Ca in clinopyroxene sensitively depends on the H2O concentrationof the coexisting melt, and clinopyroxene Mg-number shows aweak negative correlation with NNO. The experimental data allowthe liquidus surface of PST-9 to be defined. When used in combinationwith melt inclusion data, a consistent set of pre-eruptive pressures(100–270 MPa), temperatures (1140–1160°C) andmelt H2O concentrations is obtained. Near-liquidus phase equilibriaand clinopyroxene Ca contents require melt H2O concentrations<2·7–3·6 and 3 ± 1 wt %, respectively,overlapping with the maximum frequency of glass inclusion data(2·5–2·7 wt % H2O). For olivine to crystallizeclose to the liquidus, pressures close to 200 MPa are needed.Redox conditions around NNO = +0·5 are inferred fromclinopyroxene compositions. The determined pre-eruptive parametersrefer to the storage region of golden pumice melts, which islocated at a depth of around 7·5 km, within the metamorphicarc crust. Golden pumice melts ascending from their storagezone along an adiabat will not experience crystallization ontheir way to the surface. KEY WORDS: basalt; pumice; experiment; phase equilibria; Stromboli  相似文献   

12.
Calc-alkaline batholiths of the Archaean Minto block, northeasternSuperior Province, Canada, have pyroxene- and hornblende-bearingmineral assemblages inferred to have crystallized from hot,water-undersaturated magmas at 2·729–2·724Ga. A regional amphibolite- to granulite-facies tectonothermalevent at 2·70 Ga resulted in mild to negligible metamorphiceffects on the dominantly granodioritic units. Geochemical,textural and thermobarometric studies define the crystallizationhistory in compositions ranging from cumulate pyroxenite throughquartz diorite, granodiorite, granite, and syn-magmatic gabbroicdykes. Early magmatic assemblages include orthopyroxene, clinopyroxene,plagioclase, biotite, Fe–Ti oxides and ternary feldspar,indicating crystallization from magmas containing <2 wt %H2O at 1100–900°C. Water enrichment in the residualmelt induced hornblende crystallization at 5 ± 1 kbar,800–600°C. Characterized by a continuum of large ionlithophile element (LILE)-enriched, high field strength element(HFSE)-depleted compositions, the I-type suite resembles moderncontinental arc batholiths in composition and size but not primarymineralogy. Magmatic arcs produced between 2·75 and 1·85Ga commonly have charnockitic components, possibly because slab-derivedfluids interacted with mantle wedges at ambient temperatureshigher by 100°C than at present, producing large volumesof water-deficient magma. KEY WORDS: granitoid rocks; igneous pyroxenes; water-undersaturated magma; charnockite  相似文献   

13.
The Archaean craton of Zimbabwe includes two major episodesof crust generation at 3.5 and 2.9 Ga recorded in the emplacementof tonalite-gneiss granitoids. A total of 180 samples of representativegneisses and massive tonalites and sills has been collectedfrom three areas in the southern part of the craton, at Mashaba,Chingezi, and Shabani. These rocks have been analysed for major,trace, and rare earth elements to evaluate the effects of thefractional crystallization and partial melting processes inthe generation of this segment of Archaean crust. Three groups are distinguished on the basis of their major andtrace element contents, and they follow two main trends of differentiation:the sodic and the calc-alkaline (sensu stricto) trends. GroupI samples are tonalitic in composition and follow a sodic trendcharacterized by decreasing CaO/Na2O ratios. Y and Sr behaveas compatible elements and are negatively correlated with Rb.REE patterns are moderately fractionated with La/Ybn=4–23.5.The characteristics of this group have been described only inthe Archaean craton from Swaziland. Group II is an intermediateGroup with a marked decrease in Na2O/K2O with increasing differentiation,similar to the Archaean tonalite-trondhjemite-granodiorite suitesfrom Finland or the Pilbara Block, Australia. Samples displaybiotite tonalite and trondhjemite compositions, and Y, Sr, andRb are all incompatible. The REE patterns are strongly fractionated,with La/Ybn=23–44, and with small positive or negativeEu anomalies, as observed in other Archaean tonalite-trondhjemites.Group III is composed mainly of trondhjemites and granites similarto many post-Archaean granitoids: they follow a calc-alkalinetrend (sensu stricto) with decreasing CaO/Na2O and Na2O/K2O.Sr and Y are incompatible, whereas Rb increases with differentiation.REE patterns are variably fractionated, with La/Ybn=6–36,with high REE contents, and marked negative Eu anomalies. The above geochemical features are explained in a three-stagepetrogenetic model. The first stage consists of 6–20%melting of upper-mantle peridotite and the generation of tholeiiticbasalts, as observed in the associated greenstone belts. Thesecond stage involves 4–25% partial melting of metamorphosedbasalts with a Gt amphibolite (15–45% Pl + 30–50%Hb+2–35% Cpx+3– 15% Gt) residue resulting in theGroup I samples, under water-unsaturated conditions at intermediatepressure (16 kbar), or with an eclogite residue to generatethe parental magmas for the Group II rocks. The third stageis lowpressure fractional crystallization (<8 kbar) of liquidsgenerated during this second stage, leaving a 19–20% Qtz+36–42%Pl0–2% HbMt cumulate for the more evolved Group II samples,and 55% fractional crystallization of a 14% Qtz+37.6% Pl (An26)3.3%Bt+0.1% Ilm0.8% Mt cumulate for Group III samples. The highlyfractionated REE patterns of the Group II rocks are inheritedfrom the second stage of partial melting of the metamorphosedbasalt source rocks with an eclogite residue. Thus Group IIand III initial liquids were generated through partial meltingof eclogite and Gt amphibolite, respectively. The genetic relationshipsbetween Group I sodic and Group III calc-alkaline suites areevaluated, with the latter resulting from various stages offractional crystallization processes of parental magmas withinthe sodic suite.  相似文献   

14.
TAMURA  Y. 《Journal of Petrology》1995,36(2):417-434
The Mio-Pliocene Shirahama Group, Izu Peninsula, Central Japan,a well-exposed submarine volcanic arc complex of lava flows,pyroclastic rocks and associated shallow intrusives, is characterizedby a tholeiitic series (basalt to dacite) and a calc-alkalineseries (andesite to dacite). Chemical variations in the tholeiiticseries and calc-alkaline series are consistent with crystalfractionation from basalt and magnesian andesite (boninite),respectively. Crystal–liquid phase relations of thesemagmas have been investigated by study of sample suites fromthese two series. Compositions of liquids in equilibrium withphenocrysts were determined by microprobe grid analyses, inwhich 49 points were averaged in 03 mm 03 mm groundmassareas. The liquid compositions, coupled with the phenocrystmineralogy of the same samples, define the liquid lines of descentof these volcanic arc magmas. Major findings include the following:(1) Crystallization of the tholeiitic series magma is consistentwith early stage crystallization in the simple system Fo–Di–Silica–H2O,with olivine having a reaction relation to augite and the tholeiiticliquid. (2) The later stage products of the tholeiitic seriesmagma are, however, crystal-poor (<10%) dacites with no maficminerals, suggesting that tholeiitic liquids, hypersthene andaugite were no longer on the cotectic (3) A characteristic ofthe calc-alkaline series magmas is the development of rhyoliticliquids. Hypersthene, augite, plagioclase and Fe–Ti oxideoccur in most calc-alkaline rocks studied, and hornblende andquartz can be found in about half of these. However, their differentiationpaths show that the cotectic relation between quartz and liquidended at a later stage, resulting in the resorption of quartzphenocrysts and ultimately in the formation of quartz-free magmas.(4) The late-stage liquids of both the tholeiitic and calc-alkalineseries have deviated from their cotectics, which cannot be explainedby fractional crystallization alone. The addition of H2O froman outside system is probably required to explain the differentiationpaths. (5) The formation of chilled margins, the in situ crystallizationof a magma chamber in the solidification zone, and/or the migrationof groundwater into the magma chamber are thought to be likelyprocesses affecting magmas during their migration and intrusioninto the crust. An extreme effect of H2O addition would be tolower the liquidus temperatures of all precipitating silicatephases far below their restorable range before eruption, resultingin the production of aphyric magmas. Even when a temperaturedecrease in the magma chamber causes a liquid to intersect theliquidus of a pre-existing phase, the addition of H2O shiftsthe cotectic toward SiO2, resulting in quartz being the lastphase to crystallize. The resorption of quartz is interpretedto be the result of a liquidus boundary shift caused by theaddition of H2O. The genesis of aphyric rhyolites is thereforeinferred to result from fractional crystallization followingaddition of H20. KEY WORDS: Shirahama Group; Japan; island arc; rhyolite; magma series  相似文献   

15.
Crystallization experiments at 400 MPa, oxidized condition (logfO2= NNO + 1, where NNO is nickel–nickel oxide buffer) andover a range of temperatures (850–950°C) and fluidcomposition (XH2Oin = 0·3–1) have been carriedout to constrain the storage conditions of the sulphur-richmagma of the Huerto Andesite (an anhydrite, pyrrhotite, andS-rich apatite-bearing, post-Fish Canyon Tuff mafic lava). Theresults are used to evaluate the role of fluids released fromthe crystallization of magmas such as the Huerto Andesite onthe remobilization of the largely crystallized dacitic FishCanyon magma body. Experiments were performed using the naturalandesitic bulk composition with and without added sulphur. Thepresence of sulphur slightly affects the phase equilibria bychanging the phase proportions, stability fields of plagioclase,pyroxenes and ilmenite, and also affects the plagioclase composition.Phase equilibria and mineral composition data indicate thatthe magma may have contained 4·5 wt % water in the meltand that the pre-eruptive temperature was 875 ± 25°C.Assuming that the magma was in equilibrium with a fluid phase,the CO2 concentration of the melt is estimated to be in therange 2000–4000 ppm (at 400 MPa). Before eruption, theandesite had an oxidation state very close to, or slightly within,the co-stability field of anhydrite–pyrrhotite at NNO+ 1·1. At these conditions, the sulphur content in themelt is 500 ppm. Assuming open-system degassing resulting fromcontinuing crystallization at depth, most of the CO2 dissolvedin the andesitic melt should be released after the crystallizationof <10 vol. % of the magma, corresponding to a cooling from875 to 825–850°C. Thus, the fluids released owingto crystallization processes should be mainly composed of waterat temperatures below 825°C. KEY WORDS: experimental study; andesite; volatile; Fish Canyon Tuff; Huerto Andesite  相似文献   

16.
Many basaltic flood provinces are characterized by the existenceof voluminous amounts of silicic magmas, yet the role of thesilicic component in sulphur emissions associated with trapactivity remains poorly known. We have performed experimentsand theoretical calculations to address this issue. The meltsulphur content and fluid/melt partitioning at saturation witheither sulphide or sulphate or both have been experimentallydetermined in three peralkaline rhyolites, which are a majorcomponent of some flood provinces. Experiments were performedat 150 MPa, 800–900°C, fO2 in the range NNO –2 to NNO + 3 and under water-rich conditions. The sulphur contentis strongly dependent on the peralkalinity of the melt, in additionto fO2, and reaches 1000 ppm at NNO + 1 in the most stronglyperalkaline composition at 800°C. At all values of fO2,peralkaline melts can carry 5–20 times more sulphur thantheir metaluminous equivalents. Mildly peralkaline compositionsshow little variation in fluid/melt sulphur partitioning withchanging fO2 (DS 270). In the most peralkaline melt, DS risessharply at fO2 > NNO + 1 to values of >500. The partitioncoefficient increases steadily for Sbulk between 1 and 6 wt% but remains about constant for Sbulk between 0·5 and1 wt %. At bulk sulphur contents lower than 4 wt %, a temperatureincrease from 800 to 900°C decreases DS by 10%. These results,along with (1) thermodynamic calculations on the behaviour ofsulphur during the crystallization of basalt and partial meltingof the crust and (2) recent experimental constraints on sulphursolubility in metaluminous rhyolites, show that basalt fractionationcan produce rhyolitic magmas having much more sulphur than rhyolitesderived from crustal anatexis. In particular, hot and dry metaluminoussilicic magmas produced by melting of dehydrated lower crustare virtually devoid of sulphur. In contrast, peralkaline rhyolitesformed by crystal fractionation of alkali basalt can concentrateup to 90% of the original sulphur content of the parental magmas,especially when the basalt is CO2-rich. On this basis, we estimatethe amounts of sulphur potentially released to the atmosphereby the silicic component of flood eruptive sequences. The peralkalineEthiopian and Deccan rhyolites could have produced 1017 and1018 g of S, respectively, which are comparable amounts to publishedestimates for the basaltic activity of each province. In contrast,despite similar erupted volumes, the metaluminous Paraná–Etendekasilicic eruptives could have injected only 4·6 x 1015g of S in the atmosphere. Peralkaline flood sequences may thushave greater environmental effects than those of metaluminousaffinity, in agreement with evidence available from mass extinctionsand oceanic anoxic events. KEY WORDS: silicic flood eruptions; sulphur; experiment; Ethiopia; Deccan  相似文献   

17.
We report the results of partial melting experiments between8 and 32 kbar, on four natural amphibolites representative ofmetamorphosed Archean tholeiite (greenstone), high-alumina basalt,low-potassium tholeiite and alkali-rich basalt. For each rock,we monitor changes in the relative proportions and compositionof partial melt and coexisting residual (crystalline) phasesfrom 1000 to 1150C, within and beyond the amphibole dehydrationreaction interval. Low percentage melts coexisting with an amphiboliteor garnet amphibolite residue at 1000–1025C and 8–16kbar are highly silicic (high-K2O granitic at 5%; melting, low-Al2O3trondhjemitic at 5–10%). Greater than 20% melting is onlyachieved beyond the amphibole-out phase boundary. Silicic tointermediate composition liquids (high-Al2O3 trondhjemitic-tonalitic,granodioritic, quartz dioritic, dioritic) result from 20–40%melting between 1050 and 1100C, leaving a granulite (plagioclase+ clinopyroxene orthopyroxene olivine) residue at 8 kbarand garnet granulite to eclogite (garnet + clinopyroxene) residuesat 12–32 kbar. Still higher degrees of melting ( 40–60%)result in mafic liquids corresponding to low-MgO, high-Al2O3basaltic and basaltic andesite compositions, which coexist withgranulitic residues at 8 kbar and edogitic or garnet granulitic(garnet + clinopyroxene + plagioclase orthopyroxene) residuesat higher pressures (12–28 kbar). As much as 40% by volumehigh-Al2O3 trondhjemitic-tonalitic liquid coexists with an eclogiticresidue at 1100–1150C and 32 kbar. The experimental datasuggest that the Archean tonalite-trondhjemite-granodiorite(TTG) suite of rocks, and their Phanerozoic equivalents, thetonalite-trondhjemite-dacite suite (including ‘adakites’and other Na-rich granitoids), can be generated by 10–40%melting of partially hydrated metabasalt at pressures abovethe garnet-in phase boundary (12 kbar) and temperatures between1000 and 1100C. Anomalously hot and/or thick metabasaltic crustis implied. Although a rare occurrence along modern convergentplate margins, subductionrelated melting of young, hot oceaniccrust (e.g. ocean ridges) may have been an important (essential)element in the growth of the continental crust in the Archean,if plate tectonic processes were operative. Coupled silicicmelt generation-segregation and mafic restite disposal may alsooccur at the base of continental or primitive (sub-arc?) crust,where crustal overthickening is a consequence of underplatingand overaccretion of mafic magmas. In either setting, net growthof continental crust and crustmantle recycling may be facilitatedby relatively high degrees of melting and extreme density contrastsbetween trondhjemitictonalitic liquids and garnet-rich residues.Continuous chemical trends are apparent between the experimentalcrystalline residues, and mafic migmatites and garnet granulitexenoliths from the lower crust, although lower-crustal xenolithsin general record lower temperatures (600–900C) and pressures(5–13 kbar) than corresponding residual assemblages fromthe experiments. However, geo-thermobarometry on eclogite xenolithsin kimberlites from the subcontinental mantle indicates conditionsappropriate for melting through and beyond the amphibole reactioninterval and the granulite-eclogite transition. If these samplesrepresent ancient (eclogitized) remnants of subducted or otherwisefoundered basaltic crust, then the intervening history of theirprotoliths may in some cases include partial melting. KEY WORDS: dehydration melting; metabasalt; continental growth; crust–mantle recycling *Corresponding author. Present address: Mineral Physics Institute and Center for High Pressure Research, Department of Earth and Space Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA  相似文献   

18.
AUDETAT  A.; PETTKE  T. 《Journal of Petrology》2006,47(10):2021-2046
The magmatic processes leading to porphyry-Cu mineralizationat Santa Rita are reconstructed on the basis of petrographicstudies, thermobarometry, and laser-ablation inductively-coupled-plasmamass-spectrometry analyses of silicate melt and sulfide inclusionsfrom dikes ranging from basaltic andesite to rhyodacite. Combinedresults suggest that magma evolution at Santa Rita is similarto that of sulfur-rich volcanoes situated above subduction zones,being characterized by repeated injection of hot, mafic magmainto an anhydrite-bearing magma chamber of rhyodacitic composition.The most mafic end-member identified at Santa Rita is a shoshoniticbasaltic andesite that crystallized at 1000–1050°C,1–3 kbar and log fO2 = NNO + 0·7 to NNO + 1·0,whereas the rhyodacite crystallized at 730–760°C andlog fO2 = NNO + 1·3 to NNO + 1·9. Mixing betweenthe two magmas caused precipitation of 0·1–0·2wt % magmatic sulfides and an associated decrease in the Cucontent of the silicate melt from 300–500 ppm to lessthan 20 ppm. Quantitative modeling suggests that temporal storageof ore-metals in magmatic sulfides does not significantly enhancethe amount of copper ultimately available to ore-forming hydrothermalfluids. Magmatic sulfides are therefore not vital to the formationof porphyry-Cu deposits, unless a mechanism is required thatholds back ore-forming metals until late in the evolution ofthe volcanic–plutonic system. KEY WORDS: porphyry-Cu; sulfur; sulfides; magma mixing; LA-ICP-MS  相似文献   

19.
WALLACE  PAUL J. 《Journal of Petrology》2002,43(7):1311-1326
Submarine pillow basalts (34 Ma) recovered from the NorthernKerguelen Plateau at ODP Site 1140 contain abundant unalteredglass, providing the first opportunity to measure the volatilecontents of tholeiitic basaltic magmas related to the Kerguelenmantle plume. The glasses have La/Sm and Nb/Zr ratios that varyfrom values similar to Southeast Indian Ridge (SEIR) MORB (Unit1), to slightly more enriched (Unit 6), to values transitionalbetween SEIR MORB and basaltic magmas formed by melting of theKerguelen plume (Units 2 and 3). Volatile contents for glassesin Units 1 and 6 are similar to depleted mid-ocean ridge basalt(MORB) values (0·25–0·27 wt % H2O, 1240–1450ppm S, 42–54 ppm Cl). In contrast, H2O contents are higherfor the enriched glasses (Unit 2, 0·44 wt % H2O; Unit3, 0·69 wt %), as are S (1500 ppm) and Cl (146–206ppm). Cl/K ratios for all glasses are relatively low (0·03–0·04),indicating that assimilation of hydrothermally altered materialdid not occur during shallow-level crystallization. H2O/Ce forthe enriched glasses (Units 2 and 3) is significantly lowerthan Pacific and South Atlantic MORB values, suggesting thatlow H2O/Ce may be an inherent characteristic of the Kerguelenplume source. Vapor saturation pressures calculated using theH2O and CO2 contents of the glasses indicate that  相似文献   

20.
A petrological study was carried out on Mg-skarn-bearing dunitecumulates that are part of the Neo-Proterozoic Ioko-Dovyrenintrusion (North Baikal region, Russia). Skarn xenoliths containbrucite pseudomorphs after periclase, forsterite and Cr-poorspinel. Fine-grained forsterite–spinel skarns occur withthe brucite skarns or as isolated schlieren. Field relationshipsreveal that the Mg-skarns formed from silica-poor dolomiticxenoliths by interaction with the mafic magma of the Ioko-Dovyrenintrusion. Rapid heating of dolomitic xenoliths by the maficmagma caused the decomposition of dolomite into calcite + periclase,releasing much CO2. Further heating quantitatively melted thecalcite. A periclase-rich restite was left behind after extractionof the low-density, low-viscosity calcite melt. The extractedcalcite melt mixed with the surrounding mafic melt. This resultedin crystallization of olivine with CaO contents up to 1·67wt %. A local decrease in the silica concentration stabilizedCaAl2SiO6-rich clinopyroxene. Brucite/periclase-free forsterite–spinelskarns probably originated by crystallization from the maficmelt close to the xenoliths at elevated fO2. The high fO2 wascaused by CO2-rich fluids released during the decompositionof the xenoliths. The above case study provides the first evidencefor partial melting of dolomite xenoliths during incorporationby a mafic magma. KEY WORDS: dunite; dolomite assimilation; partial melting  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号