首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Sea ice is influential in regulating energy exchanges between the ocean and the atmosphere, and has figured prominently in scientific studies of climate change and climate feedbacks. However, sea ice is also a vital component of everyday life in Inuit communities of the circumpolar Arctic. Therefore, it is important to understand the links between the potential impacts of climate change on Arctic sea ice extent, distribution, and thickness as well as the related consequences for northern coastal populations. This paper explores the relationship between sea ice and climate change from both scientific and Inuit perspectives. Based on an overview of diverse literature the experiences, methods, and goals which differentiate local and scientific sea ice knowledge are examined. These efforts are considered essential background upon which to develop more accurate assessments of community vulnerability to climate, and resulting sea ice, change. Inuit and scientific perspectives may indeed be the ideal complement when investigating the links between sea ice and climate change, but effective and appropriate conceptual bridges need to be built between the two types of expertise. The complementary nature of these knowledge systems may only be realized, in a practical sense, if significant effort is expended to: (i) understand sea ice from both Inuit and scientific perspectives, along with their underlying differences; (ii) investigate common interests or concerns; (iii) establish meaningful and reciprocal research partnerships with Inuit communities; (iv) engage in, and improve, collaborative research methods; and, (v) maintain ongoing dialogue.  相似文献   

2.
In this paper we describe sea ice change and variability during the Canadian International Polar Year (IPY) program and examine several regional and hemispheric causes of this change. In a companion paper (Barber et al., Climate Change 2012) we present an overview of the consequences of this observed change and variability on ecosystem function, climatically relevant gas exchange, habitats of primary and apex predators, and impacts on northern peoples. Sea ice-themed research projects within the fourth IPY were designed to be among the most diverse international science programs. They greatly enhanced the exchange of Inuit knowledge and scientific ideas across nations and disciplines. This interdisciplinary and cultural exchange helped to explain and communicate the impacts of a transition of the Arctic Ocean and ecosystem to a seasonally ice-free state, the commensurate replacement of perennial with annual sea ice types and the causes and consequences of this globally significant metamorphosis. This paper presents a synthesis of scientific sea ice research and traditional knowledge results from Canadian-led IPY projects between 2007 and 2009. In particular, a summary of sea ice trends, basin-wide and regional, is presented in conjunction with Inuit knowledge of sea ice, gathered from communities in northern Canada. We focus on the recent observed changes in sea ice and discuss some of the causes of this change including atmospheric and oceanic forcing of both dynamic and thermodynamic forcing on the ice. Pertinent results include: 1) In the Amundsen Gulf, at the western end of the Northwest Passage, open water persists longer than normal and winter sea ice is thinner and more mobile. 2) Large areas of summer sea ice are becoming heavily decayed during summer and can be broken up by long-period waves being generated in the now extensive open water areas of the Chukchi Sea. 3) Cyclones play an important role in flaw leads??regions of open water between pack ice and land-fast ice. They delay the formation of new ice and the growth of multi-year ice. 4) Feedbacks involving the increased period of open water, long-period wave generation, increased open-ocean roughness, and the precipitation of autumn snow are all partially responsible for the observed reduction in multiyear sea ice. 5) The atmosphere is observed as remaining generally stable throughout the winter, preventing vertical entrainment of moisture above the surface.  相似文献   

3.
Seasonal prediction skill of winter mid and high northern latitudes climate from sea ice variations in eight different Arctic regions is analyzed using detrended ERA-interim data and satellite sea ice data for the period 1980–2013. We find significant correlations between ice areas in both September and November and winter sea level pressure, air temperature and precipitation. The prediction skill is improved when using November sea ice conditions as predictor compared to September. This is particularly true for predicting winter NAO-like patterns and blocking situations in the Euro-Atlantic area. We find that sea ice variations in Barents Sea seem to be most important for the sign of the following winter NAO—negative after low ice—but amplitude and extension of the patterns are modulated by Greenland and Labrador Seas ice areas. November ice variability in the Greenland Sea provides the best prediction skill for central and western European temperature and ice variations in the Laptev/East Siberian Seas have the largest impact on the blocking number in the Euro-Atlantic region. Over North America, prediction skill is largest using September ice areas from the Pacific Arctic sector as predictor. Composite analyses of high and low regional autumn ice conditions reveal that the atmospheric response is not entirely linear suggesting changing predictive skill dependent on sign and amplitude of the anomaly. The results confirm the importance of realistic sea ice initial conditions for seasonal forecasts. However, correlations do seldom exceed 0.6 indicating that Arctic sea ice variations can only explain a part of winter climate variations in northern mid and high latitudes.  相似文献   

4.
Indigenous peoples offer alternative knowledge about climate variability and change based on their own locally developed knowledges and practices of resource use. In this article we discuss the role of traditional ecological knowledge in monitoring and adapting to changing environmental conditions. Our case study documents a project to record the seasonal knowledge of the Miriwoong people in northern Australia. The study demonstrates how indigenous groups’ accumulate detailed baseline information about their environment to guide their resource use and management, and develop worldviews and cultural values associated with this knowledge. We highlight how traditional ecological knowledge plays a critical role in mediating indigenous individuals and communities’ understandings of environmental changes in the East Kimberley region of north-west Australia, and how these beliefs may influence future decision-making about how to go about adapting to climate change at a local level.  相似文献   

5.
For more than a decade climate change has been the focus of much research and analysis. Despite the global implications of the problem, the overwhelming majority of the researchers involved worldwide in studying the problem and its possible solutions are from industrialized countries, and participation of lesser-industrialized countries has been limited. While the wide-ranging implications of this South–North divide are sometimes recognized, there is little analysis on the reasons for this divide, why it continues to exist, and what steps might be required to narrow it. Towards this end, this paper analyzes how climate change research and analysis is performed in India, a major lesser-industrialized country. Based on detailed interviews, it explores the factors that play a role in shaping the capability of India to perform, and respond to, climate-change analyses. Drawing on the Indian case study, the paper examines developing-country participation in the international climate science and assessment enterprise. This allows some reflection on the potential pitfalls for international discussions on climate change and what the international community and countries of the South can do to overcome them in order to address this conspicuous South–North divide.  相似文献   

6.
武炳义 《大气科学》2018,42(4):786-805
北极历来是影响东亚冬季天气、气候的关键区域之一。北极表面增暖要比全球平均快2~3倍,即所谓北极的放大效应。随着全球增暖的持续以及北极海冰的持续融化,北极的生态环境正在发生显著的变化,进而可能对北半球中、低纬度的天气、气候产生影响。本文概述了有关北极海冰融化影响冬季东亚天气、气候的主要研究进展,特别是自2000年以来,北极海冰异常偏少影响东亚冬季气候变率以及极端严寒事件的可能途径、存在的科学问题,以及学术界的争论焦点。秋、冬季节是北极海冰快速形成时期,此时北极海冰对大气环流的影响要强于大气对海冰的影响。近二十年来的研究结果表明,北极海冰异常偏少,不仅影响北冰洋局地的气温和降水变化,而且通过复杂的相互作用和反馈过程,对北半球中、低纬度的天气、气候产生影响。北极海冰通过以下两个可能机制来影响东亚冬季的天气、气候:(1)北极海冰的负反馈机制;(2)由海冰异常偏少引起的平流层-对流层相互作用机制。秋、冬季节北极海冰持续异常偏少,特别是,巴伦支海-喀拉海海冰异常偏少,既可以加强冬季西伯利亚高压(东亚冬季风偏强),也可以导致冬季风偏弱。导致海冰影响不确定性的部分原因是:(1)夏季北极大气环流状态影响北极海冰异常偏少对冬季大气环流的反馈效果;(2)冬季大气环流对北极海冰异常偏少响应的位置、强度不同造成的。秋、冬季节北极海冰持续异常偏少,在适宜的条件下(例如,前期夏季北极大气环流的热力和动力条件,有利于加强北极海冰偏少对冬季大气的反馈作用),可以激发出有利于冬季亚洲大陆极端严寒过程的大气环流异常。目前学术界争论焦点主要集中在以下两个方面:(1)关于北极增暖、北极海冰融化对中纬度区域影响的争论;(2)关于1980年代后期以来,冬季欧亚大陆表面气温呈现降温趋势的原因。目前,有关北极海冰融化影响冬季欧亚大陆次季节变化以及极端天气、气候事件的过程和机制,我们认知非常有限,亟需开展深入细致的研究。  相似文献   

7.
Canadian contributions to International Polar Year (IPY) 2007?C2008 were designed to improve the understanding of climate change impacts and adaptation and to gain insight into issues surrounding community health and well-being in Canada??s arctic. Fifty-two research projects, involving scientists, northern partners and communities, focused on the arctic atmosphere and climate, cryosphere, oceans, sea ice, marine ecosystems, terrestrial ecosystems, wildlife as well as human health and community well-being. Key research findings on these topics are presented in this special issue of Climatic Change. This introductory paper presents an overview of the international and Canadian IPY programs and a summary of Canadian IPY results, including progress made in data management and capacity building. The legacy of IPY in Canada includes expanded international scientific cooperation, meaningful partnerships with northern communities, and more northern residents with research training.  相似文献   

8.
Climate impact assessment has evolved as a range of tools, critical in evaluating potential impacts of climate change. This field has been driven by global concerns and is dominated by western scientific philosophies. Amid claims that it is failing in its role of informing policy, key issues implicated in application of assessment techniques are considered for the case of indigenous health in northern Australia. An argument is made for local scale studies which foster stakeholder involvement and focus on social, cultural and political landscapes; studies which produce outcomes of relevance to stakeholders and planners, as well as scientists and researchers.  相似文献   

9.
Indigenous Australians’ knowledge of weather and climate   总被引:1,自引:1,他引:0  
Although the last 200 years of colonisation has brought radical changes in economic and governance structures for thousands of Aboriginal and Torres Strait Islanders living in remote areas of northern Australia, many of these Indigenous people still rely upon, and live closely connected to, their natural environment. Over millennia, living ‘on country’, many of these communities have developed a sophisticated appreciation of their local ecosystems and the climatic patterns associated with the changes in them. Some of this knowledge is recorded in their oral history passed down through generations, documented in seasonal weather calendars in local languages and, to a limited degree, transcribed and translated into English. This knowledge is still highly valued by these communities today, as it is used to direct hunting, fishing and planting as well as to inform many seasonally dependant cultural events. In recent years, local observations have been recognised by non-Indigenous scientists as a vital source of environmental data where few historic records exist. Similar to the way that phenological observations in the UK and US provide baseline information on past climates, this paper suggests that Indigenous observations of seasonal change have the potential to fill gaps in climate data for tropical northern Australia, and could also serve to inform culturally appropriate adaptation strategies. One method of recording recent direct and indirect climate and weather observations for the Torres Strait Islands is documented in this paper to demonstrate the currency of local observations of climate and its variability. The paper concludes that a comprehensive, participatory programme to record Aboriginal and Torres Strait Islander knowledge of past climate patterns, and recent observations of change, would be timely and valuable for the communities themselves, as well as contributing to a greater understanding of regional climate change that would be useful for the wider Australian population.  相似文献   

10.
Seasonal minimum Antarctic sea ice extent (SIE) in 2022 hit a new record low since recordkeeping began in 1978 of 1.9 million km2 on 25 February, 0.17 million km2 lower than the previous record low set in 2017. Significant negative anomalies in the Bellingshausen/Amundsen Seas, the Weddell Sea, and the western Indian Ocean sector led to the new record minimum. The sea ice budget analysis presented here shows that thermodynamic processes dominate sea ice loss in summer through enhanced poleward heat transport and albedo–temperature feedback. In spring, both dynamic and thermodynamic processes contribute to negative sea ice anomalies. Specifically, dynamic ice loss dominates in the Amundsen Sea as evidenced by sea ice thickness (SIT) change, while positive surface heat fluxes contribute most to sea ice melt in the Weddell Sea.  相似文献   

11.
北极海冰的厚度和面积变化对大气环流影响的数值模拟   总被引:13,自引:2,他引:13  
文中利用中国科学院大气物理研究所设计的两层大气环流模式 ,模拟研究了北极海冰厚度和面积变化对大气环流的影响 ,尤其是对东亚区域气候变化的影响。模式中海冰厚度处理趋于合理分布 ,导致东亚冬、夏季风偏强 ,使冬季西伯利亚高压和冰岛低压的模拟结果更趋合理 ;另一方面 ,海冰厚度变化可以激发出跨越欧亚大陆的行星波传播 ,在低纬度地区 ,该行星波由西太平洋向东太平洋地区传播 ;海冰厚度变化对低纬度地区的对流活动也有影响。冬季北极巴伦支海海冰变化对后期大气环流也有显著的影响。数值模拟结果表明 :冬季巴伦支海海冰偏多 (少 )时 ,春季 (4~ 6月 )北太平洋中部海平面气压升高 (降低 ) ,阿留申低压减弱 (加深 ) ,有利于春季白令海海冰偏少 (多 ) ;而夏季 ,亚洲大陆热低压加深 (减弱 ) ,5 0 0 h Pa西太平洋副热带高压位置偏北 (南 )、强度偏强 (弱 ) ,东亚夏季风易偏强 (弱 )。  相似文献   

12.
Decadal prediction is one focus of the upcoming 5th IPCC Assessment report. To be able to interpret the results and to further improve the decadal predictions it is important to investigate the potential predictability in the participating climate models. This study analyzes the upper limit of climate predictability on decadal time scales and its dependency on sea ice albedo parameterization by performing two perfect ensemble experiments with the global coupled climate model EC-Earth. In the first experiment, the standard albedo formulation of EC-Earth is used, in the second experiment sea ice albedo is reduced. The potential prognostic predictability is analyzed for a set of oceanic and atmospheric parameters. The decadal predictability of the atmospheric circulation is small. The highest potential predictability was found in air temperature at 2?m height over the northern North Atlantic and the southern South Atlantic. Over land, only a few areas are significantly predictable. The predictability for continental size averages of air temperature is relatively good in all northern hemisphere regions. Sea ice thickness is highly predictable along the ice edges in the North Atlantic Arctic Sector. The meridional overturning circulation is highly predictable in both experiments and governs most of the decadal climate predictability in the northern hemisphere. The experiments using reduced sea ice albedo show some important differences like a generally higher predictability of atmospheric variables in the Arctic or higher predictability of air temperature in Europe. Furthermore, decadal variations are substantially smaller in the simulations with reduced ice albedo, which can be explained by reduced sea ice thickness in these simulations.  相似文献   

13.
The response of the Weddell Sea and Antarctic Peninsula to anthropogenic forcing simulated by a global climate model is analyzed. The model, despite its low resolution, is able to capture several aspects of the observed regional pattern of climate change. A strong warming and depletion of the sea ice cover in the western Weddell Sea contrasts with a slight cooling and a sea-ice extension in the eastern Weddell Sea. This simulated long-term climate change is modulated by interdecadal variability but also affected by some abrupt regional changes in the oceanic mixed layer depth. Between 1960 and 2030 a reorganization of the deep convection activity in the Weddell Sea sustains the opposition between the eastern and western Weddell Sea. The deep convection collapses in the western Weddell Sea in the 2030s. The sea ice retreat trend is then followed by an increase of the sea ice cover in the western Weddell Sea. In the eastern Weddell Sea another abrupt collapse of the deep convection activity occurs around 2080. This event is followed by a rapid cooling and sea ice extension during the next 20 years. Most of the surface changes are associated with large-scale atmospheric circulation changes that project on the dominant mode of natural variability but also with oceanic convection and circulation changes.  相似文献   

14.
Co-production between scientific and Indigenous knowledge has been identified as useful to generating adaptation pathways with Indigenous peoples, who are attached to their traditional lands and thus highly exposed to the impacts of climate change. However, ignoring the complex and contested histories of nation-state colonisation can result in naïve adaptation plans that increase vulnerability. Here, through a case study in central Australia, we investigate the conditions under which co-production between scientific and Indigenous knowledge can support climate change adaptation pathways among place-attached Indigenous communities. A research team including scientists, Ltyentye Apurte Rangers and other staff from the Central Land Council first undertook activities to co-produce climate change presentations in the local Arrernte language; enable community members to identify potential adaptation actions; and implement one action, erosion control. Second, we reflected on the outcomes of these activities in order to unpack deeper influences. Applying the theory of articulation complexes, we show how ideologies, institutions and economies have linked Indigenous societies and the establishing Australian nation-state since colonisation. The sequence of complexes characterised as frontier, mission, pastoral, land-rights, community-development and re-centralisation, which is current, have both enabled and constrained adaptation options. We found knowledge co-production generates adaptation pathways when: (1) effective methods for knowledge co-production are used, based on deeply respectful partnerships, cultural governance and working together through five co-production tasks—prepare, communicate, discuss, bring together and apply; (2) Indigenous people have ongoing connection to their traditional territories to maintain their Indigenous knowledge; (3) the relationship between the Indigenous people and the nation-state empowers local decision-making and learning, which requires and creates consent, trust, accountability, reciprocity, and resurgence of Indigenous culture, knowledge and practices. These conditions foster the emergence of articulation complexes that enable the necessary transformative change from the colonial legacies. Both these conditions and our approach are likely to be relevant for place-attached Indigenous peoples across the globe in generating climate adaptation pathways.  相似文献   

15.
Emphasizing the model‘s ability in mean climate reproduction in high northern latitudes, resultsfrom an ocean-sea ice-atmosphere coupled model are analyzed. It is shown that the coupled model cansimulate the main characteristics of annual mean global sea surface temperature and sea level pressurewell, but the extent of ice coverage produced in the Southern Hemisphere is not large enough. The maindistribution characteristics of simulated sea level pressure and temperature at 850 hPa in high northernlatitudes agree well with their counterparts in the NCEP reanalysis dataset, and the model can reproducethe Arctic Oscillation (AO) mode successfully. The simulated seasonal variation of sea ice in the NorthernHemisphere is rational and its main distribution features in winter agree well with those from observations.But the ice concentration in the sea ice edge area close to the Eurasian continent in the inner Arctic Oceanis much larger than the observation. There are significant interannual variation signals in the simulated seaice concentration in winter in high northern latitudes and the most significant area lies in the GreenlandSea, followed by the Barents Sea. All of these features agree well with the results from observations.  相似文献   

16.
The challenge of reaching common understanding of the processes and significance of environmental change amounts to a procedural vulnerability in climate change research that hinders successfully translating knowledge into equitable and effective adaptation policy. This article presents findings from research with Indigenous participants in West Arnhem, Australia, and identifies a procedural vulnerability to climate change research, where perceptions of change and their meaning have their context in Dreaming that supersedes and parallels Western scientific discourses of hazard and risk, but that are marginalised in studies and policies on climate change. This paper argues that moves to adapt remote Indigenous Australian communities to climate change risk missing the mark if they (a) assume that a strong reliance on particular ecosystem configurations makes Indigenous cultures universally vulnerable to environmental change, (b) do not recognise cosmologically embedded risks that are determined by Indigenous capacity to take care of country, and (c) do not recognise colonisation as an ongoing disaster in Indigenous Nations, and therefore treat secondary disasters such as poverty, ill health and welfare dependence as primary contributors to high climate change vulnerability. Procedural vulnerabilities contribute to policy failure, and in Australian contexts pose a risk of conceiving solutions to climate change vulnerability that involve moving people out of the way of environmental risks as they are conceived within colonial traditions, while moving them into the way of risks as conceived through the eyes of remote Indigenous communities. This research joins recent publications that encourage researchers and policy-makers to epistemologically ground proof risk assessments and to listen and engage in conversations that create ways of ‘seeing with both eyes’, while not being blind to the hazards of colonisation.  相似文献   

17.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy of Sciences.this paper investigates influences of thickness and extent variations in Arctic sea ice on the atmosphere circulation,particularly on climate variations in East Asia.The simulation results have indicated that sea ice thickness variation in the Arctic exhibits significant influences on simulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea ice thickness in the model leads directly to stronger winter and summer monsoon over East Asia.and improves the model's simulation results for Siberia high and Icelandic low in winter.On the other hand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,and in low latitudes,the wave propagates from the western Pacific across the equator to the eastern Pacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the following spring and summer are also significant.The simulation result shows that when winter sea ice extent in the target region is larger (smaller) than normal.(1)in the following spring (averaged from April to June).positive (negative) SLP anomalies occupy the northern central Pacific.which leads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea ice condition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent is deepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

18.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy ofSciences.this paper investigates influences of thickness and extent variations in Arctic sea ice onthe atmosphere circulation,particularly on climate variations in East Asia.The simulation resuhshave indicated that sea ice thickness variation in the Arctic exhibits significant influences onsimulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea icethickness in the model leads directly to stronger winter and summer monsoon over East Asia.andimproves the model's simulation results for Siberia high and Icelandic low in winter.On the otherhand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,andin low latitudes,the wave propagates from the western Pacific across the equator to the easternPacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the followingspring and summer are also significant.The simulation result shows that when winter sea iceextent in the target region is larger (smaller) than normal.(1)in the following spring (averagedfrom April to June).positive (negative) SLP anomalies occupy the northern central Pacific.whichleads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea icecondition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent isdeepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

19.
This study compares the impacts of interannual Arctic sea ice loss and ENSO events on winter haze days in mainland China through observational analyses and AGCM sensitivity experiments. The results suggest that (1) Arctic sea ice loss favors an increase in haze days in central–eastern China; (2) the impact of ENSO is overall contained within southern China, with increased (reduced) haze days during La Niña (El Niño) winters; and (3) the impacts from sea ice loss and ENSO are linearly additive. Mechanistically, Arctic sea ice loss causes quasi-barotropic positive height anomalies over the region from northern Europe to the Ural Mountains (Urals in brief) and weak and negative height anomalies over the region from central Asia to northeastern Asia. The former favors intensified frequency of the blocking over the regions from northern Europe to the Urals, whereas the latter favors an even air pressure distribution over Siberia, Mongolia, and East Asia. This large-scale circulation pattern favors more frequent occurrence of calm and steady weather in northern China and, as a consequence, increased occurrence of haze days. In comparison, La Niña (El Niño) exerts its influence along a tropical pathway by inducing a cyclonic (anticyclonic) lower-tropospheric atmospheric circulation response over the subtropical northwestern Pacific. The northeasterly (southwesterly) anomaly at the northwestern rear of the cyclone (anticyclone) causes reduced (intensified) rainfall over southeastern China, which favors increased (reduced) occurrence of haze days through the rain-washing effect.  相似文献   

20.
For the Cree First Nation communities of the eastern James Bay region in the Canadian Subarctic, local weather plays a key role in traditional subsistence activities. There is rising concern among the Cree about changes in inland ice conditions as they pose challenges to Cree livelihood, health and culture. Here we contrast Crees’ observations of inland ice conditions and long-term measurements obtained to foster interdisciplinary climate change research between scientists and Cree communities. We compiled qualitative observations of inland ice conditions and compared them with long-term measurements (> 25 years) of air temperature, precipitation and snow depth from three meteorological stations in the Cree territory. Cree hunters observed a weakening of lake ice cover (e.g., change in ice composition and structure, increased rain in winter). Trend analysis of long-term measurements showed a significant increase in mean autumn air temperature as well as in winter and autumn precipitation. By contrasting Cree hunters’ observations with climate data, we identified that an increase in fall and winter precipitation could be causing a weakening of inland ice through a change in its composition (i.e., snow ice instead of congelation ice). We conclude that Cree and scientific knowledge are complementary when investigating and understanding climate change in the Subarctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号