首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The knowledge of the variability, the anthropogenic versus natural origin and corresponding environmental risk for potentially harmful elements in urban topsoils is of importance to assess human impact. The aims of the present study were: (1) to assess the distribution of heavy metals (Sn, Li, Ga, Ba, Fe, Mn, Co, Be, Ti, Al, Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Zn, Cu, Pb, Se, Mo, Sc and Ag) in urban environment; (2) to discriminate natural and anthropogenic contributions; and (3) to identify possible sources of pollution. Multivariate statistic approaches (principal component analysis and cluster analysis) were adopted for data treatment, allowing the identification of three main factors controlling the heavy metal variability in Xuzhou urban topsoils. Results demonstrate that Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Br, Zn, Cu, S, Pb, Se, Mo, Sc and Ag could be inferred to be tracers of anthropogenic pollution, whereas Al, Ti, Ga, Li, V, Co, Pt, Mn and Be were interpreted to be mainly inherited from parent materials. Iron, Ba, Sn, Pd and Br were interpreted to be affected by mixed sources.  相似文献   

2.
Seven carbonaceous chondrites (Allan Hills A77307, Adelaide, Al Rais, Coolidge, Grosnaja, Karoonda and Renazzo) with uncertain classifications were analyzed by instrumental and radiochemical neutron activation analysis for 29 elements: Na, Mg, Al, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Ge, As, Se, Br, Ru, Cd, Sb, La, Sm, Eu, Yb, Lu, Os, Ir and Au. Five of these chondrites (A77307, Adelaide, Al Rais, Karoonda and Renazzo) are unique ‘grouplets’, not closely related to other groups or to each other. Only Coolidge (CV4) and Grosnaja (CV3-an) are members of previously established groups. A77307 and Adelaide have refractory lithophile abundances similar to those in the CM-CO clan; A77307 probably is a member of that clan, but Adelaide, which shows CV-like petrographic characteristics, cannot as yet be assigned to a clan. Al Rais and Renazzo have similar refractory lithophile abundances (essentially at CI levels) and probably belong to the same clan, i.e., formed in the same region of the nebula. There are insufficient data to determine whether they formed at the same general region as the CI chondrites, but separates having O-isotope compositions near the terrestrial fractionation line indicate that this is plausible. Karoonda has refractory lithophile abundances ~ 1.21 × CI and appears to belong to a new clan distinct from CM-CO (1.11 × CI) and CV (1.34×).  相似文献   

3.
Twenty carbonaceous chondrites were analyzed by instrumental and radiochemical neutron activation analysis for Na, Mg, Al, K, Ca, Sc, V. Cr, Mn. Fe, Co, Ni, Zn, Ga, Ge, As, Se. Br. Ru, Cd, In, Sb, La, Sm, Eu, Yb, Lu, Os, Ir, and Au. Analysis of 2 or more samples of all but 2 chondrites has helped yield a high precision that allowed the resolution of numerous previously unrecognized trends. Refractory lithophile abundances decrease through the sequence CV (1.33 × CI), CM-CO (1.11 × CI) and CI. The abundances of the common siderophiles Fe, Ni and Co follow the order CI >CM >CO >CV, with CV chondrites depleted about 15% relative to CI. Volatile lithophile (Mn to K) and volatile siderophile (As to Ge) abundances decrease in the order CI >CM >CO >CV. The volatile trends in CO and CV chondrites reverse for the more volatile elements (Br to Cd) producing the sequence CI >CM >CV >CO. These three different sequences in the ordering of group elemental abundances can be used to resolve compositionally the four carbonaceous chondrite groups.We define clans to consist of one or more groups formed at a narrow range of heliocentric distances. Quantization of refractory lithophile abundances indicates the existence of three carbonaceous chondrite clans: CI, CM-CO, and CV. Despite similarities in parameters such as volatile abundances and O-isotope compositions differences in chondrule size and refractory abundances suggest that CO and CV chondrites are indeed best placed in separate clans. The relative heliocentric distance at which CI chondrites formed cannot be inferred, thus it seems safer to assign them to a separate clan.  相似文献   

4.
The mineral phases including olivine, orthopyroxene, clinopyroxene, troilite, nickel-iron, plagioclase, chromite and the phosphates were separated from several meteorites. These were a hypersthene chondrite (Modoc), a bronzite chondrite (Guareña), an enstatite chondrite (Khairpur), and two eucrites (Haraiya and Moore County); diopside was separated from the Nakhla achondrite. The purified minerals were analyzed for trace and minor elements by spark source mass spectrometry and instrumental neutron activation analysis. On the meteorites examined our results show that Co, Ni, Cu, Ge, As, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt and Au are entirely or almost entirely siderophile; Na, Rb, Sr, Y, Ba and the rare earth elements lithophile; Se chalcophile. The transition elements So, Ti, V, Cr and Mn are lithophile in most stony meteorites, but show chalcophile affinities in the enstatite chondrites (and enstatite achondrites), as do Zn, Zr and Nb. In the ordinary chondrites Ga shows both lithophile and siderophile affinities, but becomes entirely siderophile in the enstatite chondrites. Molybdenum and tellurium show strong siderophile and weaker chalcophile affinity. The lithophile elements are distributed among the minerals according to the crystallochemical factors, the most effective controlling factor being ionic size.  相似文献   

5.
The abundances of Fe, Ni, Co, Au, Ir, Ga, As and Mg have been determined by instrumental neutron activation analysis in 38 type 3 ordinary chondrites (10 of which may be paired) and 15 equilibrated chondrites. Classification of type 3 ordinary chondrites into the H, L and LL classes using oxygen isotopes and parameters which reflect oxidation state (Fa and Fs in the olivine and pyroxene and Co in kamacite) is difficult or impossible. Bulk compositional parameters, based on the equilibrated chondrites, have therefore been used to classify the type 3 chondrites. The distribution of the type 3 ordinary chondrites over the classes is very different from that of the equilibrated chondrites, the LL chondrites being more heavily represented. The type 3 ordinary chondrites contain 5 to 15 percent lower abundances of siderophile elements and a compilation of the present data and literature data indicates a small, systematic decrease in siderophile element concentration with decreasing petrologic type. The type 3 ordinary chondrites have, like the equilibrated ordinary chondrites, suffered a fractionation of their siderophile elements, but the loss of Ni in comparison with Au and Ir is greater for the type 3 chondrites. These siderophile element trends were established at the nebula phase of chondritic history and the co-variation with petrologic type implies onion-shell structures for the ordinary chondrite parent bodies. It is also clear that the relationship between the type 3 and the equilibrated ordinary chondrites involves more than simple, closed-system metamorphism.  相似文献   

6.
Neutron activation data on 14 trace elements in Allende bulk samples and in fractions of spheroidal Ca-Al-rich inclusions show several distinct distribution patterns. Refractories Ir and Sc have high inclusion/bulk ratios and show little variation with depth. Manganese, Fe, Co, Ni, Ga, Cd and In have low inclusion/bulk ratios and decrease with increasing depth; their presence in the inclusions reflects matrix contamination. Sodium and other alkalies have high inclusion/bulk ratios (near 0.5) and decrease with increasing depth; their high concentration despite moderate volatility seems related to condensation reactions in which refractory Al-bearing minerals are reactants. Chromium, Zn, Ge and Au show patterns similar to those of the alkalies; this seems to indicate that refractory minerals are reactants in their condensation reactions, but thermodynamic support for this hypothesis has not been found.We propose that the large size of Allende spheroidal inclusions indicates an origin by incomplete vaporization of presolar solid matter followed by recondensation of refractories on a limited number of condensation nuclei. The low abundance of large refractory inclusions in ordinary and enstatite chondrites reflects complete vaporization of presolar solids at their formation locations; constraints on homogeneous nucleation resulted in the simultaneous condensation of refractories and olivine at these locations.Quadruplicate analyses of the Orgueil chondrite are in good agreement with previous determinations with the exception of small systematic differences in Au and Ir.  相似文献   

7.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

8.
INAA data for Ca, Sc, Hf, La, Ce, Sm, Eu, Tb, Yb, Lu, Os, Ir, Ru, Na, Cl, Br, Fe, Mn, Cr, Co, Au, As, and Sb are presented for ten amoeboid aggregates from the Allende meteorite. Only one lacks olivine. Seven of the remainder, as a group, have cosmic proportions of refractory lithophile and siderophile elements and appear to have formed when coarse-grained Allende inclusion material underwent partial reaction with a low-temperature nebular gas and mixture with FeO-rich olivine. The other two have highly fractionated abundances of refractory elements relative to one another compared to Cl chondrites, including Group II REE patterns, and probably formed by the mixing of fine-grained Allende inclusion material with FeO-rich olivine. Non-refractory siderophile components are also different in composition in each type of amoeboid olivine aggregate.  相似文献   

9.
Instrumental neutron activation analysis(INAA) of 14 single oldhamite grains separated from the Qingzhen chondrite (EH3) for refractory(La,Ce,Sm ,Eu,Yb,Lu,Ca,Sc,Hf, and Th),volatile (Na,Cr,Zn,Se,Br,etc.)and siderophile elements (Fe,Ni,Co,Ir,Au ,and As) revealed that oldhamite is highly rich in refractory elements.The mineral serves as the principal carrier of REE and contains about 80% of the REEs in the Qingzhen enstatite chondrite .Furthermore, the large enrichment of LREE relative to HREE is noticed in oldhamite from the Qingzhen .In general, the oldhamite from metal-sulfide assemblages is richer in REE than that from the matrix,i.e.,the earlier the oldhamite grains condensed, the richer they are in REE. Meanwhile.oldhamite is also rich in vol-atile elements such as Se,Br, etc.In terms of the distribution of trace elements in oldhamitc from the Qingzhen ,the chondrite is srggested to have resulted from high-temperature condensation of solar nebula.  相似文献   

10.
采用粉末压片法制样,使用新型X射线荧光光谱仪,对土壤样品中的C、N、S、Cl、Na、Mg、Al、Si、K、Ca、Fe、As、Ba、Br、Ce、Co、Cr、Cu、Ga、Hf、La、Mn、Nb、Ni、P、Pb、Rb、Sc、Sr、Th、Ti、U、V、Y、Zn、Zr等36种组分的直接同时测试进行了探讨测试。研究了测试中各种分析条件及存在问题。结果表明,方法的检出限、精密度和准确度大多数满足多目标地球化学调查样品分析质量的要求,标准物质的测定值与其标准值相吻合,适合土壤样品中多组分的同时直接测定。  相似文献   

11.
The contamination of soils by metals from various sources is a subject of increasing concern in recent times. Twenty-eight elements (Fe, Ti, Cr, Al, Ga, Pb, Sc, Ba, Li, Cd, Be, Co, Cu, Mn, Ni, V, Zn, Mo, Pt, Pd, Au, As, Sb, Se, Hg, Bi, Ag and Sn) have been analyzed from urban topsoil from the city of Xuzhou. The concentrations of these analyzed elements have been correlated to some soil parameters such as organic matter, pH, cation exchange capacity, carbonate content, and granulometric fractions (clay, silt and sand). Results of the statistical analysis show a large variety and complexity in these relationships. The spatial distributions of these metal concentrations were also constructed using geographical information system. The spatial distribution patterns of the elements analyzed show that traffic and industrial activities are the principal anthropogenic pollutant sources.  相似文献   

12.
Concentrations of rare-earth elements (REE), Sc, Fe, Co, Cr, Na and Ir in the bulk sample and mineral separates of the isotopically unique Allende inclusion, EK 1-4-1, were determined by instrumental neutron activation analysis. REE concentrations were also determined by mass-spectrometric isotope dilution for two density separates.The inclusion showed enrichment of light REE over heavy REE with a positive Yb anomaly, thus showing a tendency to resemble group II fine-grained inclusions in REE abundances, although EK 1-4-1 is a coarse-grained inclusion. High Cr concentrations also indicate group II affinity. However, high Ir (6 ppm) and Sc (105 ppm), and low FeO (1.80%), and Co (13.8 ppm) concentrations in the bulk sample and low Na concentrations in mineral separates show group I affinity.Between melilite and pyroxene fractions, the same samples in which mass-fractionated O isotope ratios were observed (Clayton and Mayeda, 1977), REE, Sc, Co and Fe showed distributions which are substantially different from those observed for “ordinary” Allende type B inclusions. These two minerals do not appear to be in equilibrium with respect to trace element distributions.The results indicate that the isotopically unique EK 1-4-1 is also unusual in its elemental abundances and distributions.  相似文献   

13.
Major and trace element and modal analyses are presented for unaltered, epidotized, and carbonated tholeiite flows from the Barberton greenstone belt. Au, As, Sb, Sr, Fe+3, Ca, Br, Ga, and U are enriched and H2O, Na, Mg, Fe+2, K, Rb, Ba, Si, Ti, P, Ni, Cs, Zn, Nb, Cu, Zr, and Co are depleted during epidotization. CO2, H2O, Fe+2, Ti, Zn, Y, Nb, Ga, Ta, and light REE are enriched and Na, Sr, Cr, Ba, Fe+3, Ca, Cs, Sb, Au, Mn, and U are depleted during carbonization-chloritization. The elements least affected by epidotization are Hf, Ta, Sc, Cr, Th, and REE; those least affected by carbonization-chloritization are Hf, Ni, Co, Zr, Th, and heavy REE. Both alteration processes can significantly change major element concentrations (and ratios) and hence caution should be used in distinguishing tholeiites from komatiites based on major elements alone. The amount of variation of many of the least mobile trace elements in the altered flows is approximately the same as allowed by magma model calculations. Hence, up to about 10% carbonization and 60% epidotization of tholeiite do not appreciably affect the interpretation of trace-element models for magma generation.  相似文献   

14.
Laser ablation inductively coupled plasma mass spectrometry was used to measure abundances of P, Cr, Fe, Co, Ni, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt, and Au in metal grains in the Bencubbin-like chondrites Bencubbin, Weatherford, and Gujba to determine the origin of large metal aggregates in bencubbinites. A strong volatility-controlled signature is observed among the metal grains. The refractory siderophiles Ru, Rh, Re, Os, Ir, and Pt are unfractionated from one another, and are present in approximately chondritic relative abundances. The less refractory elements Fe, Co, Ni, Pd, and Au are fractionated from the refractory siderophiles, with a chondritic Ni/Co ratio and a higher than chondritic Pd/Fe ratio. The moderately volatile siderophile elements Ga, Ge, As, Sn, and Sb are depleted in the metal, relative to chondritic abundances, by up to 3 orders of magnitude. The trace siderophile element data are inconsistent with the following proposed origins of Bencubbin-Weatherford-Gujba metal: (1) condensation from the canonical solar nebula, (2) oxidation of an initially chondritic metal composition, and (3) equilibration with a S-rich partial melt. A condensation model for metal-enriched (×107 CI) gas is developed. Formation by condensation or evaporation in such a high-density, metal-enriched gas is consistent with the trace element measurements. The proposed model for generating such a gas is protoplanetary impact involving a metal-rich body.  相似文献   

15.
Multivariate statistical analysis has been used for detailed examination of the relationship between the magnetic properties of Xuzhou urban topsoil, for example concentration-dependent properties (mass magnetic susceptibility (χ), susceptibility of anhysteretic remanent magnetization (χ ARM), saturation isothermal remanent magnetization (SIRM), soft remanent magnetization (SOFT), and frequency-dependent magnetic susceptibility (χ FD)) and feature-dependent properties (S −100 mT ratio, SIRM/χ ratio and F 300 mT ratio), and the concentrations of metals (Ti, Fe, Cr, Al, Ga, Pb, Sc, Ba, Li, Cd, Be, Co, Cu, Mn, Ni, V, Zn, Mo, Pt, Pd, Au, As, Sb, Se, Hg, Bi, Ag, and Sn), S, and Br in the soil. The results show that SIRM/χ ratios correlate best with the heavy metals (Hg, Cr, Sb, As, and Bi) which are mainly derived from coal-combustion emissions whereas χ FD correlates best with the metals (Al, Ti, V, Be, Co, Ga, Mn, and Li) which principally originate from soil parents. Concentration-dependent magnetic properties (χ ARM, χ, SIRM, and SOFT) correlate well with elements (Se, Pb, Cu, Zn, Fe, Ag, Sc, Ba, Mo, Br, S, Cd, Ni, etc.) which are mainly derived from road-traffic emissions. For the same chemical element, χ ARM, SIRM, and SOFT values are frequently better correlated than χ values, and χ ARM values are the best indicators of the concentrations of these elements associated with traffic emissions in this study area. In addition, S −100 mT ratios significantly correlate positively with Se, Sc, Pb, Cu, Zn, Mo, and S whereas F 300 mT ratios only correlate positively with Pt and negatively with Fe. These results confirm the suitability of different magnetic properties for characterizing the concentrations of heavy metals, S, and Br in Xuzhou urban topsoil.  相似文献   

16.
A neutron activation analysis technique was used to determine Au, Re, Co, Mo, As, Sb, Ga, Se, Te, Hg, Zn, Bi and Tl in 11 carbonaceous chondrites, 12 unequilibrated ordinary chondrites (UOC), and 4 equilibrated ordinary chondrites. The first 6 elements are ‘undepleted’, the next 3 ‘normally-depleted’ and the last 4 ‘strongly-depleted’. Except for Hg, ‘depleted-element’ abundances in carbonaceous chondrites lead to mean relative ratios of C1:C2:C3 = 1.00:0.53:0.29, i.e. those predicted by a two-component (mixing of high-temperature and low-temperature fractions) model. The last 4 nominally ‘undepleted’ elements are somewhat depleted in ordinary chondrites, As and Sb showing partial depletion in C3 and the latter in C2 chondrites as well. This requires a modification of the two-component model to indicate that deposition of elements during condensation of high temperature material was not an all-or-nothing process.Apart from Bi and Tl, the elements studied have similar abundances in unequilibrated and equilibrated ordinary chondrites and only the former are unquestionably correlated with the degree of disequilibrium in silicate minerals. Only some ‘strongly-depleted’ elements exhibit at least one of the following—proportional depletion in UOC, progressive depletion in petrographic grades 3–6 ordinary chondrites and enrichment in the gas-containing dark portion of gas-rich, light-dark meteorites—indicating that such depletion does not ensure that an element will exhibit these trends. Partly or completely siderophile As, Au, Co, Ga, Mo, Re and Sb vary with chemical type in the same manner in both unequilibrated and equilibrated ordinary chondrites and doubtless reflect a process involving fractionation of metallic iron.  相似文献   

17.
Concentrations of some heavy metals and trace elements such as Cr,Ga,Ni,Zn,Mo,Cu, Pb,Yb,Y,Nb,Ti,Sr,Ba,Mn,Sc,Co,V,Zr,Fe,Al,W,Se,Bi,Sb,As,Cd in recent mollusk shells and factors affecting their distribution and deposits collected from various depths in the southern and southwestern parts of the Marmara Sea are investigated.The distribution of the elements in the shells is categorized into four groups.Of these,concentrations of 12 elements(As,Bi,Cd,Co,Ga,Mo,Nb, Sb,Se,Sc,W and Yb)are below zero [(0.053-0.79)×10~(-6)];concentrations of seven elements(Cr,Ni, Pb,V,Y,Zr and Cu)are(1.0-6.0)×10~(-6);concentrations of four elements(Ti,Mn,Ba and Zn)are 10- 20×10~(-6);and concentrations of five elements(Si,Al,Fe,Mg and Sr)are(47.44-268.11)×10~(-6).The taxonomic characteristics of the 29 elements were studied separately in mollusk shells such as Chamalea gallina(Linné),Pitar-rudis(Poll),Nassarius reticulatus(Linné),Venerupis senescens (Coocconi),Mytilus galloprovincialis(Lamarck),Mytilaster lineatus(Gemelin in Linné)and Chlamys glabra.It was found that,in mollusk taxonomy,the elements have unique values.In other words, element concentrations in various mollusk shells depend mainly on the taxonomic characteristics of mollusks.In various bionomic environments different element distributions of the same species are attributed to the different geochemical characters of the each environment.Data obtained in this study indicate that the organisms are the most active and deterministic factors of the environment.  相似文献   

18.
Osmium isotopic compositions, abundances of highly siderophile elements (HSE: platinum group elements, Re and Au), the chalcogen elements S, Se and Te and major and minor elements were analysed in physically separated size fractions and components of the ordinary chondrites WSG 95300 (H3.3, meteorite find) and Parnallee (LL3.6, meteorite fall). Fine grained magnetic fractions are 268-65 times enriched in HSE compared to the non-magnetic fractions. A significant deviation of some fractions of WSG 95300 from the 4.568 Ga 187Re-187Os isochron was caused by redistribution of Re due to weathering of metal. HSE abundance patterns show that at least four different types of HSE carriers are present in WSG 95300 and Parnallee. The HSE carriers display (i) CI chondritic HSE ratios, (ii) variable Re/Os ratios, (iii) lower than CI chondritic Pd/Ir and Au/Ir and (iv) higher Pt/Ir and Pt/Ru than in CI chondrites. These differences between components clearly indicate the loss of refractory HSE carrier phases before accretion of the components. Tellurium abundances correlate with Pd and are decoupled from S, suggesting that most Te partitioned into metal during the last high-temperature event. Tellurium is depleted in all fractions compared to CI chondrite normalized Se abundances. The depletion of Te is likely associated with the high temperature history of the metal precursors of H and LL chondrites and occurred independent of the metal loss event that depleted LL chondrites in siderophile elements. Most non-magnetic and slightly magnetic fractions have S/Se close to CI chondrites. In contrast, the decoupling of Te and Se from S in magnetic fractions suggests the influence of volatility and metal-silicate partitioning on the abundances of the chalcogen elements. The influence of terrestrial weathering on chalcogen element systematics of these meteorites appears to be negligible.  相似文献   

19.
An attempt has been made to estimate the chemical composition of the earth's primitive mantle by a critical evaluation of data derived from ultramafic mantle samples and partial melting model calculations for mafic and ultramafic magmas of various ages.Compatible (Al, Ca, Si, Mg, Fe) and moderately incompatible (Ti, Zr, heavy and middle rare earth) elements in basaltic magma sources have not changed significantly since the early Archaean (~3.5 Byr). Estimated abundances for refractory lithophile elements (such as Al, Ca, Ti, Zr, Y, Se, REE etc.) in the primitive mantle are about 2.0 times ordinary chondrites (~ 1.1 times Cl chondrites relative to Mg). Highly incompatible volatile elements (K, Rb, Cs, Tl, Pb etc.) are depleted in the mantle throughout geological time. Abundances of Fe, Ni and Co are obtained on the basis of values for ultramafic nodules and model calculations using komatiites of various ages. The results show little (? 20%?) dispersion and there is no obvious secular variation since 3.5 Byr. Noble metals show similar effects. These data permit constraints to be placed on the timing of core formation.The estimated elemental abundances for the primitive mantle are normalized to Cl chondrites relative to Mg and plotted against the solar condensation temperature at 10?4 atm. Above 700 K there are two parallel trends which are defined by lithophile elements (Al, Ca, REE, Ti, Mg, Si, Cr, Mn, Na, K, Rb, F, Zn etc.) and siderophile elements (W, Ni, Co, P, As, Ag, Sb and Ge) respectively. The depletion factor for the siderophile trend relative to the lithophile trend is about 0.085. Within each trend there is a continuous depletion towards lower temperature. A third trend is defined by noble metals (Ir, Os, Re, Pd, Pt and Au) with a depletion factor of about 0.003 relative to Cl chondrites. These trends are interpreted in terms of core-mantle differentiation and volatility-controlled processes operating before and during earth accretion.  相似文献   

20.
Bulk compositions of metallic Fe-Ni from two equilibrated ordinary chondrites, Jilin (H5) and Anlong (H5), and two unequilibrated ones, GRV 9919 (L3) and GRV 021603 (H3), were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The CI-, Co-normalized abundances of siderophile and chalcophile elements of metallic Fe-Ni from the unequilibrated ordinary chondrites correlate with 50% condensation temperatures (i.e., volatility) of the elements. The refractory siderophile elements (i.e., platinum group elements, Re), Au, Ni and Co show a flat pattern (1.01×CI Co-normalized), while moderate elements (As, Cu, Ag, Ga, Ge, Zn) decrease with volatility from 0.63×CI (Co-normalized, As) to 0.05×CI (Co-normalized, Zn). Cr and Mn show deficit relative to the trend, probably due to their main partition in silicates and sulfides (nonmagnetic). Metallic Fe-Ni from the equilibrated ordinary chondrites shows similar patterns, except for strong deficit of Cr, Mn, Ag and Zn. It is indicated that these elements were almost all partitioned into silicates and/or sulfides during thermal metamorphism. The similar deficit of Cr, Mn, Ag and Zn was also found in iron meteorites. Our analyses demonstrate similar behaviors of W and Mo as refractory siderophile elements during condensation of the solar nebula, except for slight depletion of Mo in the L3 and H5 chondrites. The Mo-depletion of metallic Fe-Ni from GRV 9919 (L3) relative to GRV 021603 (H3) could be due to a more oxidizing condition of the former than the latter in the solar nebula. In contrast, the Mo-depletion of the metallic Fe-Ni from the H5 chondrites may reflect partition of Mo from metal to silicates and/or sulfides during thermal metamorphism in the asteroidal body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号