首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We discuss the f(R) gravity model in which the origin of dark energy is identified as a modification of gravity. The Noether symmetry with gauge term is investigated for the f(R) cosmological model. By utilization of the Noether Gauge Symmetry (NGS) approach, we obtain two exact forms f(R) for which such symmetries exist. Further it is shown that these forms of f(R) are stable.  相似文献   

2.
We introduce a new approach for investigating the weak field limit of vacuum field equations in f(R) gravity and we find the weak field limit of f(R)=R+μ 4/R gravity. Furthermore, we study the strong gravity regime in R+μ 4/R model of f(R) gravity. We show the existence of strong gravitational field in vacuum for such model. We find out in the limit μ→0, the weak field limit and the strong gravitational field can be regarded as a perturbed Schwarzschild metric.  相似文献   

3.
In this paper, we search the existence of Bianchi type I cosmological model in f(R,T) gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the gravitational field equations in the metric formalism, and reconstruct the corresponding f(R,T) functions. Attention is attached to the special case, f(R,T)=f 1(R)+f 2(T) and two examples are assumed for this model. In the first example, we consider the unification of matter dominated and accelerated phases with f(R) gravity in anisotropic universe, and in the second instance, model of f(R,T) gravity with transition of matter dominated phase to the acceleration phase is obtained. In both cases, f(R,T) is proportional to a power of R with exponents depending on the input parameters.  相似文献   

4.
5.
Evolution of the universe is discussed in the framework of f(R) theory of gravity. The deceleration parameter is used to interpret various phases of the universe. We investigate the future evolution of the flat FRW universe by using observationally viable f(R) models. A numerical technique is applied to solve the evolution equation in terms of Hubble parameter which is used to explore late time acceleration of the universe. Some novel and interesting results based on the choice of coupling parameters in gravitational action are obtained. We can conclude that the considered f(R) models imply unification of matter dominated epoch with present accelerating phase of the universe.  相似文献   

6.
7.
The paper deals with a spatially homogeneous and anisotropic universe filled with perfect fluid and dark energy components. We consider the f(R,T) theory according to holographic and new agegraphic dark energy in the Bianchi type I universe. In this study, we concentrate on two particular models of f(R,T) gravity namely, R+2f(T) and f(R)+λT. We conclude that the derived f(R,T) models can represent phantom or quintessence regimes of the universe.  相似文献   

8.
We have constructed Locally Rotationally Symmetric Bianchi type I (LRSBI) cosmological models in the f(R,T) theory of gravity when the source of gravitation is the bulk viscous fluid. The models are constructed for f(R,T)=R+2f(T) and f(R,T)=f 1(R)+f 2(T). We found that in the first case the model degenerates into effective stiff fluid model of the universe. In the second case we obtained degenerate effective stiff fluid model as well as general bulk viscous models of the universe. Some physical and kinematical properties of the models are also discussed.  相似文献   

9.
In this paper, we study a cosmological application of the new agegraphic dark energy density in the f(R) gravity framework. We employ the new agegraphic model of dark energy to obtain the equation of state for the new agegraphic energy density in a spatially flat universe. Our calculations show, taking n<0, that it is possible to have w Λ crossing −1. This implies that one can generate a phantom-like equation of state from a new agegraphic dark energy model in a flat universe in the modified gravity cosmology framework. Also, we develop a reconstruction scheme for the modified gravity with f(R) action.  相似文献   

10.
In this study, we consider a flat Friedmann-Robertson-Walker (FRW) universe in the context of Palatini f(R) theory of gravity. Using the dynamical equivalence between f(R) gravity and scalar-tensor theories, we construct a point Lagrangian in the flat FRW spacetime. Applying Noether gauge symmetry approach for this f(R) Lagrangian we find out the form of f(R) and the exact solution for cosmic scale factor. It is shown that the resulting form of f(R) yield a power-law expansion for the scale factor of the universe.  相似文献   

11.
We study an special law for the deceleration parameter, recently proposed by Akarsu and Dereli, in the context of f(R), f(T) and $f(\mathcal{G})$ theories of modified gravity. This law covers the law of Berman for obtaining exact cosmological models to account for the current acceleration of the universe, and also gives the opportunity to generalize many of the dark energy models having better consistency with the cosmological observations. Our aim is to reconstruct the f(R), f(T) and $f(\mathcal{G})$ models inspired by this law of variable deceleration parameter. Such models may then exhibit better consistency with the cosmological observations.  相似文献   

12.
The exact solutions of the field equations in respect of LRS Bianchi type-I space time filled with perfect fluid in the framework of f(R,T) gravity (Harko et al., arXiv: [gr-qc], 2011) are derived. The physical behavior of the model is studied. In fact, the possibility of reconstruction of the LRS Bianchi type-I cosmology with an appropriate choice of a function f(T) has been proved in f(R,T) gravity.  相似文献   

13.
We consider a collapsing sphere and discuss its evolution under the vanishing expansion scalar in the framework of f(R) gravity. The fluid is assumed to be locally anisotropic which evolves adiabatically. To study the dynamics of the collapsing fluid, Newtonian and post Newtonian regimes are taken into account. The field equations are investigated for a well-known f(R) model of the form R+δR 2 admitting Schwarzschild solution. The perturbation scheme is used on the dynamical equations to explore the instability conditions of expansionfree fluid evolution. We conclude that instability conditions depend upon pressure anisotropy, energy density and some constraints arising from this theory.  相似文献   

14.
15.
Experiments on the violation of equivalence principle (EP) and solar system give a number of constraints in which any modified gravity model must satisfy them. We study these constraints on a kind of f(R) gravity as f(R) = R(1±eln([(R)/(Rc)]))f(R) = R(1\pm\epsilon\ln({R \over R_{c}})). For this investigation we use of chameleon mechanism and show that a spherically body has thin-shell in this model. So that we obtain an effective coupling of the fifth force which is suppressed through a chameleon mechanism. Also, we obtain γ PPN =1±1.13×10−5 which is agreement with experiment results. At last, we show that for R c ρ c this model is consistent with EP, thin shell condition and fifth force of chameleon mechanism for ε⋍10−14.  相似文献   

16.
This work investigates the validity of the generalized second law of thermodynamics in modified f(R) Horava–Lifshitz gravity proposed by Chaichian et al. (Class. Quantum Grav. 27: 185021, 2010), which is invariant under foliation-preserving diffeomorphisms. It has been observed that the equation of state parameter behaves like quintessence (w>−1). We study the thermodynamics of the apparent, event and particle horizons in this modified gravity. We observe that under this gravity, the time derivative of total entropy stays at positive level and hence the generalized second law is validated.  相似文献   

17.
A spatially homogeneous Bianchi type-III space-time is considered in the presence of perfect fluid source in the frame work of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) with the help of a special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento B 74:182, 1983). A cosmological model with an appropriate choice of the function f(T) has been constructed. The physical behavior of the model is studied.  相似文献   

18.
In this paper, we investigate static cylindrically symmetric solution in metric f(R) gravity by taking matter in the form of dust. The assumption of constant Ricci scalar curvature is taken to find the solution. The energy distribution of this solution is explored by applying Landau-Lifshitz energy-momentum complex. In addition, we explore the stability as well as constant scalar curvature conditions for some viable f(R) models along with their energy distribution. It is interesting to mention here that these models satisfy the above mentioned conditions.  相似文献   

19.
The energy densities of dark matter (DM) and dark energy (DE) are of the same order at the present epoch despite the fact that both these quantities have contrasting characteristics and are presumed to have evolved distinctively with cosmic evolution. This is a major issue in standard ΛCDM cosmology and is termed “The Coincidence Problem” which hitherto cannot be explained by any fundamental theory. In this spirit, Bisabr (2010) reported a cosmological scenario in f(R) gravity where DM and DE interact and exchange energy with each other and therefore evolve dependently. We investigate the efficiency and model independancy of the technique reported in Bisabr (2010) in addressing the Coincidence problem with the help of two f(R) gravity models with model parameters constrained from various observations. Our result confirm the idea that not all scalar-tensor gravity theories and models can circumvent the Coincidence Problem and any cosmological scenario with interacting fluids is highly model dependent and hence alternate model independent theories and ideas should be nominated to solve this mystery.  相似文献   

20.
In this paper, we investigate spherically symmetric perfect fluid gravitational collapse in metric f(R) gravity. We take non-static spherically symmetric metric in the interior region and static spherically symmetric metric in the exterior region of a star. The junction conditions between interior and exterior spacetimes are derived. The field equations in f(R) theory are solved using the assumption of constant Ricci scalar. Inserting their solution into junction conditions, the gravitational mass is found. Further, the apparent horizons and their time of formation is discussed. We conclude that the constant scalar curvature term f(R 0) acts as a source of repulsive force and thus slows down the collapse of matter. The comparison with the corresponding results available in general relativity indicates that f(R 0) plays the role of the cosmological constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号