首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present 9 bottom222Rn profiles measured from the western and southern Indian Ocean during the 1977–1978 GEOSECS expedition. These profiles can be grouped into three cypes: one-layer, two-layer, and irregular types. The one-layer profiles with quasi-exponential distributions allow one to estimate the apparent vertical eddy diffusivity,Kv, with a simple model. The two-layer profiles show that there is a benthic boundary layer of the order of 50–100 m in which the excess222Rn distribution shows a vertical gradient much smaller than that of the layer immediately above. Within the boundary layer, the STD potential temperature (θ) and density(σ4) profiles are practically constant, and theKv values are of the order of 1000 cm2/s. The STD profiles for the water column above the boundary layer show gradients of increasing stability, and theKv values are of the order of 100 cm2/s. Modeling of the Rn data in the water column above the boundary layer indicates that there is a transition layer which effectively reduces the penetration of excess Rn from the benthic boundary layer into the upper layer.Sarmiento et al. [10] have shown that the buoyancy gradient or stability is inversely correlated with the apparent vertical eddy diffusivity, and the resulting buoyancy flux is fairly uniform, ranging from 1 to 14 × 10?6 cm2/s3 in the Atlantic and Pacific Oceans. However, Sarmiento et al. [11] show that a much higher buoyancy flux is associated with an intensified flow of the bottom water through a passage. In the Indian Ocean basins, we have found that the buoyancy flux has a comparable range (3–14 × 10?6 cm2/s3), except for a couple of stations where both stability and apparent vertical diffusivity are higher, resulting in a much higher buoyancy flux, probably indicative of rapid bottom water flow.  相似文献   

2.
Vertical eddy diffusivities (Kv's) have been estimated at fourteen widely separated locations from fourteen222Rn profiles and two228Ra profiles measured near the ocean floor as part of the Atlantic and Pacific GEOSECS programs. They show an inverse proportionality to the local buoyancy gradient [(g/?)(??pot/?z)] calculated from hydrographic measurements. The negative of the constant of proportionality is the buoyancy flux [?Kv(g/?)(??pot/?z)] which has a mean of ?4 × 10?6 cm2/sec3. Our results suggest that the buoyancy flux varies very little near the ocean floor. Kv's for the interior of the deep Pacific calculated from the relationship Kv = (4 × 10?6cm2/sec3)/[(g/?)(??pot/?z)] agree well with published estimates. Kv's calculated for the pycnocline are one to two orders of magnitude smaller than upper limits estimated from tritium and7Be distributions.Heat fluxes calculated with the model Kv's obtained from the222Rn profiles average 31 μcal cm?2 sec?1 in the Atlantic Ocean and 8 μcal cm?2 sec?1 in the Pacific Ocean.  相似文献   

3.
The “anomalous” layer in the lowermost mantle, identified as D″ in the notation of K.E. Bullen, appears in the PREM Earth model as a 150 km-thick zone in which the gradient of incompressibility with pressure, dKdP, is almost 1.6, instead of 3.2 as in the overlying mantle. Since PREM shows no accompanying change in density or density gradient, we identify D″ as a thermal boundary layer and not as a chemically distinct zone. The anomaly in dKdP is related to the temperature gradient by the temperature dependence of Ks, for which we present a thermodynamic identity in terms of accessible quantities. This gives the numerical result (?Ks/?T)P=?1.6×107 Pa K?1 for D″ material. The corresponding temperature increment over the D″ range is 840 K. Such a layer cannot be a static feature, but must be maintained by a downward motion of the lower mantle toward the core-mantle boundary with a strong horizontal flow near the base of D″. Assuming a core heat flux of 1.6 × 1012 W, the downward speed is 0.07 mm y?1 and the temperature profile in D″, scaled to match PREM data, is approximately exponential with a scale height of 73 km. The inferred thermal conductivity is 1.2 W m?1 K?1. Using these values we develop a new analytical model of D″ which is dynamically and thermally consistent. In this model, the lower-mantle material is heated and softened as it moves down into D″ where the strong temperature dependence of viscosity concentrates the horizontal flow in a layer ~ 12 km thick and similarly ensures its removal via narrow plumes.  相似文献   

4.
In a limno-corral (diameter 12 m, depth to sediments 10 m), located in Baldeggersee (Switzerland), vertical mixing has been measured during more than one year and compared to the conditions in the open lake (maximum depth 65 m, surface area 5.3 km2). The temperature method by McEwen and Hutchinson yields Kz values between 5×10−2 cm2s−1 at the upper boundary of the thermocline and 2×10−3 cm2s−1 at the bottom, a value near the molecular diffusion of heat at 4°C (1.36×10−3 cm2s−1). Kz calculated from profiles of excess radon-222 generally agree with those from the temperature data. Compared to the open lake, the corral has a more shallow epilimnion. However, during calm meteorological conditions, vertical mixing in the upper 10 m is similar outside and inside the corral. Supported by the Swiss National Science Foundation within the framework for its National Research Program on ‘Lake Currents.’  相似文献   

5.
Experiments to measure natural rates of sedimentation and to assess the tolerance of coral species to increased sedimentation were conducted at San Cristobal Reef, Puerto Rico. Sedimentation rates were measured over an 18 month period. Calcareous sediments were applied to colonies of Montastraea annularis, Diploria strigosa, D. clivosa, Acropora palmata and A. cervicornis in different frequencies and in different doses.Mean sedimentation rates from sediment traps were 9.6±2.4 (S.E.) mg cm?2 · day?1 at 10 cm above the bottom and 2.5±0.9 (S.E.) and 2.6±1.2 (S.E.) mg cm?2 · day?1 for two sets of traps at 50 cm above the bottom. Sediment application experiments indicated A. palmata was the least tolerant of the species tested. Although A. cervicornis and D. strigosa colonies were not significantly affected, single applications of 800 mg cm?2 to M. annularis colonies and of 200 mg cm?2 to A. palmata colonies caused death of underlying coral tissue. Algae colonized the smothered portions of these corals.  相似文献   

6.
Recent advances in the measurement and interpretation of geoid height anomalies provide a new way to estimate the thickness of the oceanic lithosphere as a function of crustal age. GEOS-III satellite altimetry measurements show abrupt changes in sea level across fracture zones which separate areas of lithosphere with different ages. These changes have the correct location, amplitude, and wavelength to be caused by the combined gravitational attraction of the relief across the fracture zone and the isostatic support of this relief. Eight profiles of geoid height and bathymetry across the Mendocino fracture zone are inverted to determine the depth of the isostatic compensation, assuming that the compensation occurs in a single layer. These depths are then interpreted with a thermal boundary layer model of lithospheric growth. To explain satisfactorily the geoid measurements, the thermal diffusivity of the upper mantle must be 3.3 × 10?3 cm2 s?1 and the thickness of the lithosphere, defined as the depth at which the geotherm reaches 95% of its maximum value, must be9.1km m.y.?1/2 × t1/2, where t is lithospheric age.  相似文献   

7.
We present the distribution of226Ra in eight vertical profiles from the eastern Pacific. The profiles are located along a meridional trend near 125°W, from 43°S to 29°N. Surface226Ra concentrations are about 7 dpm/100 kg, except for the two stations south of 30°S where the higher values are due to the Antarctic influence. Deep waters show a distinctive south-to-north increase in the226Ra content, from about 26 to 41 dpm/100 kg near the bottom. Unlike in the Atlantic and Antarctic Oceans, the effect of226Ra injection from bottom sediments is clearly discernible in the area. The presence of this primary226Ra can be traced up to at least 1–1.5 km above the ocean floor, making this part of the sea bed among the strongest source regions for the oceanic226Ra. Numerical solutions of a two-dimensional vertical advection-diffusion model applied to the deep (1.2–4 km)226Ra data give the following set of best fits: upwelling velocity(Vz) = 3.5m/yr, vertical eddy diffusivity(Kz) = 0.6cm2/s, horizontal (north-south) eddy diffusivity(Ky) = 1 × 107cm2/s, and water-column regeneration flux of226Ra(J) = 3.3 × 10?5dpmkg?1yr?1 as an upper limit. These parametric values are in general agreement with one-dimensional (vertical) model fits for the Ra-Ba system. However, consideration of226Ra balance leads us to suspect the appropriateness of describing the vertical exchange processes in the eastern Pacific with constantVz and Kz. If future modeling is attempted, it may be preferable to treat the area as a diffusion-dominant mixing regime with depth-dependent diffusivities.  相似文献   

8.
“The Ekman Drain”: a conduit to the deep ocean for shelf material   总被引:1,自引:1,他引:0  
A long (167 days) acoustic Doppler current profiler time series from the European continental slope west of Scotland has been analysed to investigate the influence of bathymetric steering on the slope current and the extent of down-slope transport in the bottom boundary layer. Within an interior region between the surface and bottom boundary layers, the direction of the flow is found to be remarkably consistent as required by the Taylor-Proudman theorem for geostrophic flow. The mean value of this interior flow direction is taken to be the effective direction of the bathymetry in controlling the geostrophic flow and so defines the rotation of coordinates required to determine along and cross-flow transports. Within a bottom boundary layer (BBL) of thickness ~100 m, the direction of the flow was deflected increasingly to the left with the mean veering angle ~12.5° at 12 mab and a down-slope speed of 2.6 cm s?1. The corresponding integrated transport (the “Ekman drain”) had an average value of ~1.6 m2 s?1 over the full observation period. This down-slope flow was significantly correlated (at 0.1 % level), with the stress applied by the along-slope flow although with considerable scatter (r.m.s. ~1 m2 s?1) which suggests the influence of other forcing mechanisms. Combining the BBL volume transport with an estimate of the mean concentration of suspended particulate material indicates an annual down-slope flux of 3.0?±?0.6 tonnes m?1 year?1, of which ~0.36?±?0.1 tonnes m?1 year?1 is carbon. Biogeochemical measurements indicate that the carbon flux in the Ekman drain predominates over settlement of organic material through the water column over the slope and provides for relatively rapid delivery of material to deep water.  相似文献   

9.
Data for the diffusion of cations in pyroxenes are relevant to a variety of sub-solidus processes including order-disorder and exsolution. Similar data must also be available if the reliability of geobarometers and geothermometers involving pyroxenes is to be assessed. Two types of diffusion experiment have been performed to determine cation diffusion rates in pyroxenes: (1) interdiffusion between single crystals of diopside and polycrystalline sinters enriched in Al and Fe, and (2) interdiffusion between single crystals of diopside and a glass of the same composition which was isotopically enriched in26Mg and43Ca. Following high-temperature annealing for periods up to several hundred hours, analysis of the diffusion couples, using an electron microprobe and an ion microprobe respectively, failed to show any measurable diffusion profiles. From these “null result” experiments the diffusion coefficients (D) for Al and Fe in diopside are estimated to be less than4×10?14cm2s?1 at 1200°C, and values ofD for Ca and Mg in diopside are estimated to be less than7 × 10?14cm2s?1 at 1250°C. These rates are significantly slower than published tracer-type diffusion data for Ca and Al.A review of studies of order-disorder, microstructural coarsening, and diffusion in pyroxenes suggest that activation energies for cation exchange are typically in excess of 60 kcal mol?1. Transport rates will be assisted, and activation energies lowered by sample non-stoichiometry, inhomogeneities, high dislocation densities and the presence of water.The collective data for Al, Mg and Ca diffusion in diopside indicate diffusion coefficients? 10?15cm2s?1 at 1200°C. A comparison with data for diffusion in garnet, olivine and spinel suggests that pyroxenes may have the highest blocking temperatures.  相似文献   

10.
2-D shallow velocity structure is derived by travel-time inversion of the first arrival seismic refraction and wide-angle reflection data along the E–W trending Narayanpur–Nandurbar and N–S Kothar–Sakri profiles, located in the Narmada–Tapti region of the Deccan syneclise. Deccan volcanic (Trap) rocks are exposed along the two profiles. Inversion of seismic data reveals two layered velocity structures above the basement along the two profiles. The first layer with a P-wave velocity of 5.15–5.25 km s?1 and thickness varying from 0.7–1.5 km represents the Deccan Trap formation along the Narayanpur–Nandurbar profile. The Trap layer velocity ranges from 4.5 to 5.20 km s?1 and the thickness varies from 0.95 to 1.5 km along the Kothar–Sakri profile. The second layer represents the low velocity Mesozoic sediments with a P-wave velocity of 3.5 km s?1 and thickness ranging from about 0.70 to 1.6 km and 0.55 to 1.1 km along the E–W and N–S profiles, respectively. Presence of a low-velocity zone (LVZ) below the volcanic rocks in the study area is inferred from the travel-time ‘skip’ and amplitude decay of the first arrival refraction data together with the prominent wide-angle reflection phase immediately after the first arrivals from the Deccan Trap formation. The basement with a P-wave velocity of 5.8–6.05 km s?1 lies at a depth ranging from 1.5 to 2.45 km along the profiles. The velocity models of the profiles are similar to each other at the intersection point. The results indicate the existence of a Mesozoic basin in the Narmada–Tapti region of the Deccan syneclise.  相似文献   

11.
Three ferromanganese nodules handpicked from the tops of 2500 cm2 area box cores taken from the north equatorial Pacific have been analysed for their U-Th series nuclides.230Thexc concentrations in the surface 1–2 mm of the top side of the nodules indicate growth rates of 1.8–4.6 mm/106 yr. In two of the nodules a significant discontinuity in the230Thexc depth profile has been observed at ~0.3 m.y. ago, suggesting that the nodule growth has been episodic. The concentration profiles of231Paexc (measured via227Th) yield growth rates similar to the230Thexc data. The bottom sides of the nodules display exponential decrease of230Thexc/232Th activity ratio with depth, yielding growth rates of 1.5–3.3 mm/106 yr.The230Thexc and231Paexc concentrations in the outermost layer of the bottom face are significantly lower than in the outermost layer of the top face. Comparison of the extrapolated230Thexc/232Th and230Thexc/231Paexc activity ratios for the top and bottom surfaces yields an “age” of (5?15) × 104 yr for the bottom relative to the top. This “age” most probably represents the time elapsed since the nodules have attained the present orientation.The210Pb concentration in the surface ~0.1 mm of the top side is in large excess over its parent226Ra. Elsewhere in the nodule, up to ~1 mm depth in both top and bottom sides,210Pb is deficient relative to226Ra, probably due to222Rn loss. The absence of210Pbexc below the outermost layer of the top face rules out the possibility of a sampling artifact as the cause of the observed exponentially decreasing230Thexc and231Paexc concentration profiles. The flux of210Pbexc to the nodules ranges between 0.31 and 0.58 dpm/cm2 yr. The exhalation rate of222Rn, estimated from the226Ra-210Pb disequilibrium is ~570 dpm/cm2 yr from the top side and >2000 dpm/cm2 yr from the bottom side.226Ra is deficient in the top side relative to230Th up to ~0.5–1 mm and is in large excess throughout the bottom. The data indicate a net gain of226Ra into the nodule, corresponding to a flux of (24?46) × 10?3 dpm/cm2 yr. On a total area basis the gain of226Ra into the nodules is <20% of the226Ra escaping from the sediments. A similar gain of228Ra into the bottom side of the nodules is reflected by the high228Th/232Th activity ratios observed in the outermost layer in contact with sediments.  相似文献   

12.
Summary An instrument for use with a captive balloon has been developed for the investigation of the vertical distribution of222Rn and its daughter ions of high mobility. The system consists of a light weight ion collector of the Gerdien type and an automatic air sampler. Simultaneous collections of222Rn and its daughter ions having mobilities of known limits makes it possible to determine the concentration of the radioactive ions relative to the ambient concentration of222Rn in different atmospheric conditions in the air layer adjacent to the ground where aircraft and tower measurements are not practicable. Vertical profiles taken over a mountain ridge in a well-mixed atmosphere show almost constant concentrations of222Rn and its daughter ions with altitude. In some cases a slight increase in the concentrations of222Rn and its daughter ions with altitude has been observed. The radioactive ion concentration relative to the ambient concentration of222Rn in the boundary layer is of the order of 3%.  相似文献   

13.
The occurrence of anomalous (nonthermal) profiles of green emission of oxygen atoms detected with a Fabry-Perot spectrometer in auroras with the effect of a rapid decrease in the intensity of the wings of their dissociative component has been investigated. Based on an analysis of these measured profiles, it has been found that the characteristic time of recombination of a molecular oxygen ion at altitudes of 200–400 km is about 5–7 s. It appears that these molecular ions occur in a horizontally limited region of the auroral ionosphere as a result of ionization by a space localized flux of soft electrons with energies of 0.2–0.4 keV penetrating up to altitudes of 200 km. The estimation of the electron flux produces a value of 1010–1013 electrons cm?2 s?1. They generate the excess concentration n(O 2 + ) ~ 5.6 × 105 cm?3.  相似文献   

14.
Fluxes of metals to the top and bottom surfaces of a manganese nodule were determined by combining radiochemical (230Th,231Pa,232Th,238U,234U) and detailed chemical data. The top of the nodule had been growing in its collected orientation at 4.7 mm Myr?1 for at least 0.5 Myr and accreting Mn at 200 μg cm?2 kyr?1. The bottom of the nodule had been growing in its collected orientation at about 12 mm Myr?1 for at least 0.3 Myr and accreting Mn at about 700 μg cm?2 yr?1. Although the top of the nodule was enriched in iron relative to the bottom, the nodule had been accreting Fe 50% faster on the bottom.232Th was also accumulating more rapidly in the bottom despite a 20-fold enrichment of230Th on the top.The distribution of alpha-emitting nuclides calculated from detailed radiochemical measurements matched closely the pattern revealed by 109-day exposures of alpha-sensitive film to the nodule. However, the shape and slope of the total alpha profile with depth into the nodule was affected strongly by226Ra and222Rn migrations making the alpha-track technique alone an inadequate method of measuring nodule growth rates.Diffusion of radium in the nodule may have been affected by diagenetic reactions which produce barite, phillipsite and todorokite within 1 mm of the nodule surface; however, our sampling interval was too broad to document the effect. We have not been able to resolve the importance of nodule diagenesis on the gross chemistry of the nodule.  相似文献   

15.
Annealing experiments in order to study grain boundary migration (GBM) were carried out at temperatures of 1513–1773 K from 10 min to 100 hours at atmospheric pressure. Grain growth due to GBM is observed in the formation of margins of neoblastic grains which display very different structures of dislocations from that of consumed porphyroclastic and initial neoblastic grains.The velocity of GBM obtained here is approximated to be c=gh in which k is 1.15×10?9 cm3 s?1, Q is the activation energy for GBM in olivine at 210±20 kJ mol?1 and ρ is the dislocation density of consumed olivine (cm?2.Inasmuch as GBM in static annealing reduces stored strain energy in olivines, it is one of the softening processes counteracting work-hardening by dislocation multiplication and tangling as well as dislocation annihilation. GBM-softening is dominant in low temperature annealing but in high temperatures dislocation recovery predominantly takes place.  相似文献   

16.
The broad (~500 km) southeastern Bering Sea continental shelf contains three fronts; outer (shelf break, ~170-m depth), middle (~100-m depth), and inner (~50-m depth). The shelf break and inner fronts appear to be analogous to similar fronts reported from other mid-latitude continental shelves; extensively studied examples are from the mid-Atlantic bight, off Nova Scotia, and around the British Isles. The middle front may have counterparts on the broad North Sea and East China Sea shelves.One-month current and temperature records from either side of the middle front, ~150 km landward from the shelf break, showed convergence in the layers deeper than 30 m in both the cross-shelf flow field and heat flux. The convergence was ~3 cm s?1, so an average upwelling at ~1 × 10?3cm s?1 and divergence in the surface layer were required to maintain continuity. Variations in the degree of convergence arose primarily from 1 to 5-day fluctuations in sub-tidal flow across the outer shelf domain seaward of the front.Diffusive landward heat flux was dominated by tidal scales. Horizontal eddy conductivities describing the flux were ~1 ? 106 on the landward side and ~5 × 106cm2 s?1 on the seaward side, and were less in the layers above the bottom layer. Advective flux by the mean flow was the same order as diffusive flux, but landward in the bottom layer and seaward in the mid-water column layers, in agreement with deductions from water mass analyses. Frontal effects reduced the net cross-shelf heat flux beneath ~30 m by about 50%. The observation of a flow convergence in the middle of a broad, flat continental shelf poses an important question of dynamics.  相似文献   

17.
Limited information exists on one of the mechanisms governing sediment input to streams: streambank erosion by ground water seepage. The objective of this research was to demonstrate the importance of streambank composition and stratigraphy in controlling seepage flow and to quantify correlation of seepage flow/erosion with precipitation, stream stage and soil pore water pressure. The streambank site was located in Northern Mississippi in the Goodwin Creek watershed. Soil samples from layers on the streambank face suggested less than an order of magnitude difference in vertical hydraulic conductivity (Ks) with depth, but differences between lateral Ks of a concretion layer and the vertical Ks of the underlying layers contributed to the propensity for lateral flow. Goodwin Creek seeps were not similar to other seeps reported in the literature, in that eroded sediment originated from layers underneath the primary seepage layer. Subsurface flow and sediment load, quantified using 50 cm wide collection pans, were dependent on the type of seep: intermittent low‐flow (LF) seeps (flow rates typically less than 0·05 L min?1), persistent high‐flow (HF) seeps (average flow rate of 0·39 L min?1) and buried seeps, which eroded unconsolidated bank material from previous bank failures. The timing of LF seeps correlated to river stage and precipitation. The HF seeps at Goodwin Creek began after rainfall events resulted in the adjacent streambank reaching near saturation (i.e. soil pore water pressures greater than ?5 kPa). Seep discharge from HF seeps reached a maximum of 1·0 L min?1 and sediment concentrations commonly approached 100 g L?1. Buried seeps were intermittent but exhibited the most significant erosion rates (738 g min?1) and sediment concentrations (989 g L?1). In cases where perched water table conditions exist and persistent HF seeps occur, seepage erosion and bank collapse of streambank sediment may be significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Five near-bottom excess-radon profiles have been measured at the Geosecs-I station in the northeast Pacific, at varying intervals over a period of two and a half years. These profiles vary considerably in both structure and radon concentration, indicating transient characteristics of the bottom water in the deep Pacific. Only two of the five profiles are of the quasi-exponential type (Y. Chung and H. Craig); the stationary vertical eddy diffusivities calculated from these two profiles are 129 cm2/sec in November, 1971, and 22 cm2/sec obtained five months later.A single bottom-radon profile was measured in the western-boundary-current region of the South Pacific at the Geosecs-III station. This profile is also of the quasi-exponential type, with a vertical diffusivity of 32 cm2/sec. Although the radon concentrations of the three quasi-exponential profiles and the calculated diffusivities are quite different, the integrated excess-radon inventory in the water column, and the calculated flux of radon across the sediment—water interface, vary by only a factor of two in the two areas studied.  相似文献   

19.
Persistent weak temperature stratification characterizes the epilimnion of Lake Opeongo, Ontario, Canada, and reduces the magnitude of turbulent mixing. Throughout July and August 2009, the epilimnion was isothermal for only 34 % of the record, while for 28 % of the record there was at least a 2 °C temperature difference across the 5 m deep epilimnion. During these stratified periods, there were increases in gradient Richardson numbers (Ri g ), and decreases in rates of dissipation of turbulent kinetic energy ( $\varepsilon$ ), the turbulence activity parameter (I = εN 2), an indicator of active mixing, and vertical eddy diffusivity (K z ) inferred from temperature microstructure profiles. During periods of shear induced mixing, values of ε approached 10?6 m2 s?3 and decreased during periods of increasing Ri g . For 0 < Ri g  < 1, average values of I were ~1,000 and values of K z were slightly higher than 10?4 m2 s?1. For Ri g >1, average values of I were ~300 and K z was reduced by one to three orders of magnitude. Mixing during cold fronts occurred over time scales of minutes to hours, which worked to erode diurnal thermoclines. However, during periods of persistent secondary thermoclines, mixing was suppressed throughout the epilimnion.  相似文献   

20.
Seven vertical profiles of226Ra have been measured along an east-west traverse at about 30°N from San Diego to northwest of Hawaii. These profiles show that there is a distinct core of Ra maximum spreading westward as a tongue in the northeast Pacific deep water. This core starts in the east with 21.1 Ra units (1Ra unit= 10?14g/kg) at 3.9 km depth at about 130°W, and deepens westward to 4.1 km with its Ra reduced to 18.3 units at 150°W. A similar core with some uncertainty due to possible sampling errors extends westward near the bottom at 5.2 km depth from 19.4 Ra units at 150°W to 15.9 units at about 180° longitude. In addition, these profiles appear to be correlated with each other in structure above the cores of Ra maximum. These cores indicate that the Ra input depends locally on the type and composition of sediments and so the flux varies over the ocean bottom. On the basis of a one-dimensional diffusion-decay model, a horizontal diffusion coefficient of 106 cm2/sec has been computed along these cores. Although this value appears to be slightly lower, it is not inconsistent with those derived from other physical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号