首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese in the North Pacific   总被引:1,自引:0,他引:1  
A quantitative and precise method for determination of dissolved Mn at the nanomole(nmol)/kg level in seawater has been developed and used to study the distribution of Mn in the northeast Pacific. Mn concentrations in the surface mixed layer decrease from 1.0 to 0.6 nmol/kg between the central gyre and the western boundary of the California Current, then increase to values from 2 to 6 nmol/kg near the coastal boundary (in contrast to the distribution of210Pb). Particulate Mn in the surface waters accounts for only about 1% of the total.Vertical distributions of Mn are characterized by surface maxima, minima near 300 m, maxima at mid-depth coinciding with the oxygen minimum and the labile nutrient maxima, and concentrations in Pacific bottom waters of approximately 0.2 nmol/kg. The oceanic distribution of Mn appears to be dominated by external inputs superimposed upon overall scavenging which can lead to Mn maxima in (1) the surface waters due to riverine and atmospheric sources; (2) the deep ocean as a result of hydrothermal injection and/or sediment resuspension; and (3) the oxygen minimum region resulting from in-situ breakdown of organic matter, in-situ MnO2 reduction, and/or advective-diffusive transport of dissolved Mn from anoxic slope sediments.  相似文献   

2.
The trajectory of the North Atlantic Deep Water is traced from 65°N to 20°N latitude. Along this track the dissolved O2 decreases, theδ18O of the dissolved O2 increases, and the14C content of the water decreases. From these observations the rate of in-situ O2 utilization in the deep water is calculated to be 0.10 μmol kg?1 yr?1. As was observed previously in the Pacific, theδ18O data presented here indicate that the utilization is probably caused by bacterial respiration. Carbon dioxide is being added to the water at the rate of 0.07 μmol kg?1 yr?1 from the oxidation of this organic matter. An additional 0.12 μmol kg?1 yr?1 of CO2 is derived from the dissolution of particles of CaCO3.  相似文献   

3.
The combination of magnetic and geochemical methods was used to determine the mineralogy, grain size and domain structure of magnetic particles in indoor dust collected in 195 sites in Warsaw, Poland. Data show an asymmetric distribution of magnetic susceptibility (χ) in the wide range of 20–1514 × 10?8 m3 kg?1. Comparison of magnetic parameters shows that the internal dust contains outside pollution characteristic for air and soil. More than 90% of indoor dust samples were characterized by roughly uniform magnetic mineralogy, typical for fine grained magnetite (diameter of 0.2–5 μm), and grain size between pseudo-single-domain and small multi-domain with small contribution of superpara-magnetic particles (~10%). Samples with χ larger than 220 × 10?8 m3 kg?1 contain mainly magnetite and an anthropogenic metallic Fe with T C > 700°C. The indoor dust contains, characteristic for the urban areas, spherical magnetic particles originated from fossil fuel combustion processes and mixture of irregular angular iron-oxides grains containing other elements, including Na, Ca, Al, Si, K, S, Mn, Cl, and Mg.  相似文献   

4.
Recent studies of dissolved and particulate concentrations of trace elements and radionuclides amply demonstrate the importance of particulate transport in the case of several elements. A significant in-situ addition (J-flux) or removal (J-efflux) occurs in the case of a number of elements. However, to date it is not clear how the particulate processes occur and how the particles themselves are transported. Some of the problems are outlined briefly.It is shown that whereas a substantial flux in the case of some elements is due to transport by consolidated fecal particles, this transport does not generally lead to any substantial in-situ addition to deep waters. Changes in the dissolved concentrations of elements within the oceans occur due to small particles (1–10 μm) which sink stochastically with a mean speed of ~10?3 cm/s. The larger particles sinking at higher Stokes' velocities impact and carry along the small particles. The smaller particles, ~1 μm size are thus transported down rapidly by the larger particles by apiggy-back mechanism. Simple theoretical calculations are consistent with the measured vertical transport rates based on studies of radionuclides.  相似文献   

5.
The most important source of dissolved manganese, Mn(II), to the Dead Sea is by upward diffusion from bottom sediments. This source contributes about 80 tons of Mn(II) each year. The concentration of dissolved manganese in the Dead Sea is extraordinarily high (7.03 mg 1?1). It appears that the content (some 1.026 × 106 tons) of dissolved manganese in the sea has remained constant during 1977–1979, although oxygen was introduced into deeper layers during the deepening of the pycnocline (1977–1978) and during the overturn of its water masses in the winter of 1978/79. The rate of oxidation of Mn(II) in Dead Sea water is extremely slow hence Mn(II) may practically be considered as the stable form of Mn in Dead Sea waters. Dilution by fresh water causes a pH rise and may facilitate faster oxidation of the dissolved divalent manganese. It is shown here that the shape of the Mn(II) profile, observed in the lake during 1963, may have developed by oxidation of Mn(II) in the more diluted upper layers and subsequent reduction of the oxidation products in the anoxic and more saline deeper layers during 260 years of continuous meromixis.  相似文献   

6.
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km~2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr~(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr~(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr~(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr~(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr~(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr~(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr~(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr~(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr~(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr~(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr~(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr~(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr~(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr~(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.  相似文献   

7.
The aim of this study was to assess the level of heavy metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contamination and enrichment in the surface sediments of the Seyhan River, which is the receiving water body of both treated and untreated municipal and industrial effluents as well as agricultural drainage waters generated within Adana, Turkey. Sediment and water samples were taken from six previously determined stations covering the downstream of the Seyhan dam during both wet and dry seasons and the samples were then analyzed for the heavy metals of concern. When both dry and wet seasons were considered, metal concentrations varied significantly within a broad range with Al, 7210–33 967 mg kg?1 dw; Cr, 46–122 mg kg?1 dw; Cu, 6–57 mg kg?1 dw; Fe, 10 294–26 556 mg kg?1 dw; Mn, 144–638 mg kg?1 dw; Ni, 82–215 mg kg?1 dw; Pb, 11–75 mg kg?1 dw; Zn, 34–146 mg kg?1 dw in the sediments while Cd was at non‐detectable levels for all stations. For both seasons combined, the enrichment factor (EF) and the geo‐accumulation index (Igeo) for the sediments in terms of the specified metals ranged from 0.56 to 10.36 and ?2.92 to 1.56, respectively, throughout the lower Seyhan River. The sediment quality guidelines (SQG) of US‐EPA suggested the sediments of the Seyhan River demonstrated “unpolluted to moderate pollution” of Cu, Pb, and Zn, “moderate to very strong pollution” of Cr and Ni. The water quality data, on the other hand, indicated very low levels of these metals suggesting that the metal content in the surface sediments were most probably originating from fine sediments transported along the river route instead of water/wastewater discharges with high metal content.  相似文献   

8.
Bulk hydrocarbon deposition rates have been measured over a 15 month period at four stations in south-eastern Virginia surrounding the lower Chesapeake Bay. A nearly linear trend of atmospheric particulate deposition was recorded. Deposition rates at the urban station (195 μg m?2 day?1) were aproximately three times greater than those recorded for nonurban and coastal locations (mean value 69 μg m?2 day?1). The increased levels at the urban location were attributed to localized source inputs. Anthropogenic hydrocarbons accounted for approximately 50% of the total deposition at all stations. Significant biogenic inputs were indicated by the odd/even n-alkane distribution. A minimum flux to the water surface, based on mean nonurban deposition rates (24 mg yr?1), indicated an annual particulate hydrocarbon flux of +275 metric tons. Little information is available for the comparison of additional source inputs; however, the data reported here indicate that the aerial deposition of hydrocarbons is of the same order of magnitude as the input from municipal wastewater facilities and accidental discharge and is a potentially significant source of hydrocarbon pollution to the Chesapeake Bay Estuary.  相似文献   

9.
Seasonal and spatial aspects of the net settling velocities of particles in Lake Constance were investigated by measurements of settling fluxes and estimates of the concentrations of suspended matter. Annual mean sinking velocities ranged from 2.6 m d?1 in the euphotic zone to 7.5 m d?1 in the aphotic zone. Summer maxima of 36.6 m d?1 were caused by settling calcite crystals, while minima of 0.4 m d?1 during the clear water phase resulted from particulate matter consisting mostly of phytoplankton and organic debris. Winter settling velocities averaged 1,2 m d?1. The mean residence time for the bulk of particles calculated on an annual basis was 27.8 days. The net settling velocities in this study were higher than those calculated for phytoplankton in other investigations but agreed with estimates for particles from Lake Zürich obtained by an approach similar to this study.  相似文献   

10.
Four sediment traps of radically different design were deployed in the Santa Barbara Basin for approximately 45 days. The measured fluxes ranged from 370 to 774 g m?2 yr?1 for the different designs. These values lie within flux measurements previously determined for the basin. Compared to the 25-year record (920 g m?2 yr?1), however, all fluxes determined in this experiment are somewhat low. Because this experiment was conducted during a general period of high storm activity and runoff, measurement of greater than average flux was expected. It is probable that the higher flux recorded by the sediments results from a significant input of detritus into the basin by near bottom transport.The chemical composition of trapped material was nearly identical in all four trap designs. The deep cone design, however, had a significantly lower Mn content. Since this trap was the only one in which reducing conditions were produced in the sample container, reduction and mobilization of manganese after collection is believed to have occurred.In spite of the very different designs tested, the factor of two agreement in flux determination and the compositional similarity of the material collected is encouraging for future attempts to directly measure the flux of particulates in the ocean.  相似文献   

11.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

12.
The progressive weakening and final disappearance (in 1979) of the long-term meromictic structure of the Dead Sea are clearly reflected in the depth profiles of210Pb and210Po. In 1977/78, prior to overturn, dissolved210Pb (35–50 dpm kg?1) predominated over particulate210Pb (1–2 dpm kg?1) in the oxic upper waters, whereas the reverse was true in the anoxic deep waters (16–20 dpm kg?1 particulate vs. 2–5 dpm kg?1 dissolved). The exact extent of the disequilibrium between210Pb and226Ra is hard to evaluate in the upper oxic layers, because the progressive deepenings resulted in mixing with deep waters. By contrast, one can estimate the residence time of dissolved210Pb in the unperturbed anoxic deepest layers, because these remained isolated, at about 3 years. Following the overturn of 1979, dissolved210Pb exceeded particulate210Pb at all depths. The210Po profiles of the stratified lake resembled in shape those of its grandparent210Pb, but with distinct characteristics of their own in the oxic upper waters where particulate210Po (8–12 dpm kg?1) was greatly in excess over particulate210Pb, while dissolved210Po (25–40 dpm kg?1) was slightly deficient. Immediately following the overturn, dissolved and particulate210Po were similar (about 15 dpm kg?1), at all depths. The destruction of the lake's meromictic structure was accompanied by a reduction of its210Pb inventory, while that of210Po was almost unaffected. Thus, at overturn a transient state was created with the inventory of210Po exceeding that of210Pb.  相似文献   

13.
Production rates of22Na (T1/2 = 2.6years) from aluminium by the action of cosmic rays are measured at the Mont Blanc (altitude 4600 m), the Aiguille du Midi (3840 m), and the Col du Lautaret (2070 m). They are2.3 ± 0.5,1.8 ± 0.3,and0.77 ± 0.18 atoms min?1 kg?1, respectively, in good agreement with the calculated production rates, 2.4, 1.7 and 0.6 atoms min?1 kg?1, respectively, at the three stations.Production rates of24Na (T1/2 = 15hours) from aluminium and magnesium are also measured at the Aiguille du Midi; the observed rates of3.4 ± 0.4and6.0 ± 1.7 atoms min?1 kg?1, respectively, agree well with the theoretically expected rates of 3.7 and 5.6 atoms min?1 kg?1.The production rates of3H,7Be,10Be,14C,22Na,26Al,36Cl,37Ar,39Ar,53Mn,54Mn, and55Fe in terrestrial rocks by the action of cosmic rays are calculated in order to show the possibility of applying the measurements of these cosmogenic radionuclides to the earth science.  相似文献   

14.
The majority of the world's mangrove forests occur on mostly mineral sediments of fluvial origin. Two perspectives exist on the biogeomorphic development of these forests, i.e. that mangroves are opportunistic, with forest development primarily driven by physical processes, or alternatively that biophysical feedbacks strongly influence sedimentation and resulting geomorphology. On the Firth of Thames coast, New Zealand, we evaluate these two possible scenarios for sediment accumulation and forest development using high‐resolution sedimentary records and a detailed chronology of mangrove‐forest (Avicennia marina) development since the 1950s. Cores were collected along a shore‐normal transect of known elevation relative to mean sea level (MSL). Activities for lead‐210 (210Pb), caesium‐137 (137Cs) and beryllium‐7 (7Be), and sediment properties were analysed, with 210Pb sediment accumulation rates (SARs), compensated for deep subsidence (~8 mm yr?1) used as a proxy for elevation gain. At least four phases of forest development since the 1950s are recognized. An old‐growth forest developed by the late‐1970s with more recent seaward forest expansion thereafter. Excess 210Pb profiles from the old‐growth forest exhibit relatively low SARs near the top (7–12 mm yr?1) and bottom (10–22 mm yr?1) of cores, separated by an interval of higher SARs (33–100 mm yr?1). A general trend of increasing SAR over time characterizes the recent forest. Biogeomorphic evolution of the system is more complex than simple mudflat accretion/progradation and mangrove‐forest expansion. Surface‐elevation gain in the old‐growth forest displays an asymptotic trajectory, with a secondary depocentre developing on the seaward mudflat from the mid‐1970s. Two‐ to ten‐fold increases in 210Pb SARs are unambiguously large and occurred years to decades before seedling recruitment, demonstrating that mangroves do not measurably enhance sedimentation over annual to decadal timescales. This suggests that mangrove‐forest development is largely dependent on physical processes, with forests occupying mudflats once they reach a suitable elevation in the intertidal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Although the impact of sheet erosion on the selective transportation of mineral soil particles has been widely investigated, little is yet known about the specific mechanisms of organic carbon (OC) erosion, which constitutes an important link in the global carbon cycle. The present study was conducted to quantify the impact of sheet erosion on OC losses from soils. Erosion plots with the lengths of 1‐ and 5‐m were installed at different topographic positions along a hillslope in a mountainous South African region. A total of 32 rainfall events from a three years period (November 2010 up to February 2013), were studied and evaluated for runoff (R), particulate and dissolved organic carbon (POCL and DOCL). In comparison to the 0–0·05 m bulk soil, the sediments from the 1‐m plots were enriched in OC by a factor 2·6 and those from the 5‐m long plots by a factor of 2·2, respectively. These findings suggest a preferential erosion of OC. In addition, total organic carbon losses (TOCL) were incurred mainly in particulate form (~94%) and the increase in TOCL from 14·09 ± 0·68 g C m?1 yr?1 on 1‐m plots to 50·03 ± 2·89 g C m?1 yr?1 on 5‐m plots illustrated an increase in sheet erosion efficiency with increasing slope length. Both TOCL and sediment enrichment in OC correspondingly increased with a decrease in soil basal grass cover. The characteristics of rainstorms had no significant impact on the selectivity of OC erosion. The results accrued in this study investigating the links between sheet erosion and OC losses, are expected to be of future value in the generation of carbon specific erosion models, which can further help to inform and improve climate change mitigation measures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A14C balance for the Eastern Caribbean deep water indicates the average inflow of Atlantic water into the basin to be 2.3 × 105 m3/sec (±30%), or about 2–4 times the values estimated previously. The balance uses a model representation of the deep-water turnover, and is based on14C concentrations at a station in the Venezuelan Basin which average Δ14C= 89‰ below 800 m depth with a total range of only 9‰, as well as on a14C concentration of the Atlantic inflow of Δ14C= ?71%. as obtained from measurements outside the Antilles Arch. The turnover time of the basin water below 2500 m depth is 55 years, which corresponds to an average upwelling velocity at this depth of about 35 m/year. With such upwelling, the temperature profile below 1800 m (the depth of the sill determining the inflow of new water) requires a vertical eddy diffusivity of about 5 cm2/sec. The oxygen consumption, and silica and CO2 regeneration, rates below 2500 m depth are obtained as ?0.18, + 0.08, and + 0.2 μmole kg?1 yr?1, respectively. The CO2 regeneration has but a negligible effect on the14C balance.  相似文献   

17.
Sea floor hydrothermal activity in the Guaymas Basin, Gulf of California, is quite different from that associated with ridge crest spreading centers. Injection of hydrothermal fluids occurs in the bottom of a semi-enclosed basin and water column anomalies produced by this activity increase to much higher values than in the open ocean. In the Guaymas Basin the hydrothermal venting generates large clouds of fine suspended particulate matter (SPM) 100–300 m above active mounds and chimneys. These hydrothermal clouds have potential temperature anomalies of about 0.010–0.020°C, are enriched in dissolved silica, particulate manganese, and depleted in dissolved oxygen relative to areas away from the vents. The particulate manganese values increase from about 3 nmol/kg at ~ 1000 m, well above the enclosing topography of the subsill basin, to 100–150 nmol/kg in the clouds of SPM and in the bottom nepheloid layer. The particulate Mn in the hydrothermal clouds appears to originate from both direct precipitation of dissolved Mn2+ injected by the vents and entrainment of Mn-rich SPM in the rising hydrothermal plumes. Injection of silica-rich vent fluids into the basin bottom waters produces a silica anomaly of 10–15 μmol relative to the other deep basins of the Gulf of California. Spillover of Guaymas Basin deep water produces a silica plume just above the basin sill depth which is detectable to the mouth of the Gulf. A simple two-endmember mixing model indicates that the deep waters of the Guaymas Basin contain approximately 0.1% hydrothermal fluid. Oxygen anomalies associated with the hydrothermal clouds are on the order of 5 μmol relative to regions away from active vents. The basin as a whole shows a depletion in oxygen of about 13 μmol relative to the other deep basins of the Gulf. The mixing model shows that this oxygen consumption can be explained by the oxidation of dissolved sulfide and methane injected by the hydrothermal vents. Box models of the deep basins of the southern Gulf of California indicate that the Guaymas Basin has a significantly higher source term for dissolved silica and sink term for dissolved oxygen than the other basins. The calculated flux of hydrothermal fluids into the Guaymas Basin is 10–12 m3/s.  相似文献   

18.
Based on interpolation of thermoluminescence dates and the mean accumulation rate of 0.034 mm yr?1, four cycles of pedogenic CaCO3 accumulation are found within the Loveland Loess: 415–325 ka, 325–250 ka, 250–195 ka and 195–95 ka. The four CaCO3 peaks correspond chronologically to marine oxygen isotope stages 11, 9, 7 and 5, respectively. The early Wisconsin (95–70 ka) was characterized by sand dune activity. The reddish pedocomplex was formed from 70 to 35 ka under relatively warm and moist climatic conditions with a very slow rate of silt accumulation (0·016 mm yr?1). The Gilman Canyon pedocomplex, enriched in organic matter and dated at 35–20 ka, was formed under a strong physical weathering regime and a relatively high rate of silt accumulation (0·15 mm yr?1), indicating a windy, relatively moist, probably cool environment. It developed when the Laurentide ice sheet was advancing and dust content in Greenland ice core was low. The Peoria Loess was accumulated at a rate of 0·3 mm yr?1 in central Kansas under cold dry conditions when the ice sheet fluctuated around its maximum position and the dust content in the Greenland ice core was the highest. Even the warm substage around 13 ka has some corresponding evidence in the central Great Plains. The well-developed Brady Soil, dated at 10·5–8·5 ka, indicates that the early Holocene was the optimal time for soil development since 20 ka. The poorly weathered Bignell Loess might have been deposited during the Altithermal Period from 8·5 to 6 ka.  相似文献   

19.
A consolidated picture of oil pollution for the northern Indian Ocean is presented. Oil slicks were sighted on 5582 observations, about 83.5% of the total observations of 6689. The range of concentrations, of the floating tar balls, is 0–6.0 mg/m2 in the Arabian Sea. Similarly, the oil tanker route in the Bay of Bengal has the range of 0–69.75 mg/m2. North of this route, the Bay of Bengal is comparatively free from this floating tar. Mean concentrations of dissolved and dispersed hydrocarbons for 0–20 m are 32.5 and 24.1 μg kg?1, respectively, in the Arabian Sea and the Bay of Bengal.  相似文献   

20.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号